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Automated Controller Calibration
by Kalman Filtering

Marcel Menner, Karl Berntorp, and Stefano Di Cairano

Abstract—This paper proposes a method for calibrating control
parameters. Examples of such control parameters are gains of
PID controllers, weights of a cost function for optimal control,
filter coefficients, the sliding surface of a sliding mode controller,
or weights of a neural network. Hence, the proposed method
can be applied to a wide range of controllers. The method
uses a Kalman filter that estimates control parameters, using
data of closed-loop system operation. The control parameter
calibration is driven by a training objective, which encompasses
specifications on the performance of the dynamical system. The
performance-driven calibration method tunes the parameters
online and robustly, is computationally efficient, has low data
storage requirements, and is easy to implement making it
appealing for many real-time applications. Simulation results
show that the method is able to learn control parameters quickly,
is able to tune the parameters to compensate for disturbances,
and is robust to noise. A simulation study with the high-fidelity
vehicle simulator CarSim shows that the method can calibrate
controllers of a complex dynamical system online, which indicates
its applicability to a real-world system. We also verify the
real-time feasibility on an embedded platform with automotive-
grade processors by implementing our method on a dSPACE
MicroAutoBox-II rapid prototyping unit.

Index Terms—Automatic controller calibration, data-driven
control, parameter learning, Kalman filter

I. INTRODUCTION

COMMISSIONING a control system or designing a con-
troller of a dynamical system requires considerable man-

ual calibration effort in order to meet certain specifications,
which slows down the development process. Furthermore,
controller calibration is often done at the production stage of
the system, while conditions change over the system’s lifetime.
Thus, automating controller calibration and enabling online
tuning of controllers is relevant for many applications, as it
reduces deployment time and cost, and ensures that the system
performance remains high throughout the life of the device.

Controller calibration often aims at making the closed-loop
system operation achieve certain specifications. Examples of
such specifications include reaching a target state within a
certain time, avoiding oscillations, or limiting overshooting
of a target state. In this paper, we propose a method for the
automatic calibration of control parameters driven by such
specifications. The method can be applied to controller archi-
tectures with a given parametric structure, e.g., it can calibrate
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Fig. 1. Closed-loop tuning of control parameters. The closed-loop of the
controller with the dynamical system is augmented by a calibration module
that takes data to tune the control parameters, θ, online. The safety check can
be used to verify the control parameters for control-theoretic properties such
as eigenvalues or Lyapunov stability.

gains of a PID controller, cost function weights of an optimal
controller, filter coefficients for loop shaping techniques, slid-
ing mode controllers, neural network controllers, etc. Further,
the proposed method considers complex system dynamics for
the controller calibration, whereas more traditional controller
calibration approaches often focus on linear or linearized
systems, see, e.g., literature on PID tuning [1].

The method is implemented recursively using a Kalman
filter that estimates control parameters rather than the state of
the dynamical system. In this setting, the Kalman filter uses
a training objective evaluating the performance of the closed-
loop system operation online, which is then used to tune the
parameters to improve upon the closed-loop system operation
measured with respect to the training objective. The training
objective encompasses the specifications for the closed-loop
system performance and has a highly flexible structure. Fig. 1
shows the block-diagram of the proposed scheme, where the
Kalman filter acts as a tuning module that uses data to calibrate
the optimal controller. The Kalman filter is utilized as a least-
squares parameter estimator optimizing a training objective. It
tracks a joint posterior distribution of the control parameters,
which is refined recursively using the training objective and
data of closed-loop system operation.

The main advantages of using the proposed Kalman filter
are that it (i) tunes the parameters online during system oper-
ation, (ii) is robust to noise due to the filter-based design, (iii)
maintains safety guarantees of the closed-loop operation, (iv)
is computationally efficient, (v) requires reduced data storage
due to the recursive implementation, and (vi) is easy to imple-
ment, hence making it appealing for industrial applications. In
this paper, the method is applied to a state feedback controller,
an optimal controller, a PID controller, an H∞ controller, a
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sliding mode controller, a dynamic output feedback controller,
and a neural network controller, but the method is not restricted
to these controllers. Simulation results show that the method
achieves fast convergence of the control parameters with a
24% average decay factor of the closed-loop cost per Kalman
filter recursion, improves the closed-loop system performance
with a 29% improvement on tracking precision, and is robust
to noise. Further, we present a simulation study using the high-
fidelity vehicle simulator CarSim, in which the Kalman filter
method calibrates lane-change controllers. The study shows
that the method can calibrate controllers of complex dynamical
systems online, which indicates its applicability to a physical
system.

This paper extends our initial study in [2], where the
conceptual idea was introduced for optimal controllers. In this
extension, we present the complete study with the generalized
framework to include different controller architectures, discuss
a safety check that can be used to verify the control parameters
for safety, and verify the method using CarSim and its real-
time implementation in embedded architectures on a dSPACE
MicroAutoBox-II rapid prototyping unit.

A. Related Work

The two recent research directions that are most closely
related to the method in this paper are Bayesian optimization
(e.g., [3]–[5]) and retrospective cost optimization (e.g., [6]–
[8]). Extended related research directions include iterative
learning control (e.g., [9]–[12]), iterative feedback tuning
(e.g., [13]–[17]), virtual reference feedback tuning (e.g., [18]–
[23]), and unfalsified control (e.g., [24]–[27]), and there is
literature that focuses on specific controller classes (e.g., for
optimal control [28]–[37]).

Bayesian optimization (BO): BO-based approaches usually
learn a mapping as a black-box function from the control
parameters to a pre-specified performance metric, e.g., a
reward function, using trial-and-error search [3]–[5]. Similarly
to BO, we use a training objective to learn control parameters.
Differently from BO, we do not require an episodical learning
task and we do not have a trial-and-error implementation.
While our method can be applied for episodical learning
tasks, it can also be implemented recursively, which allows
to compensate for disturbances, while learning the control
parameters. Furthermore, the recursive implementation is data
efficient as the data history need not be stored.

Retrospective cost optimization (RCO): RCO uses transfer
functions and optimizes a cost function retrospectively [6]–
[8]. RCO adapts certain coefficients such that the new set
of coefficients would have led to better performance over a
previous window of operation. The idea is that the coeffi-
cients that would have performed better in the past will also
perform well in the future, which is the case, e.g., in the
presence of systematic disturbances. Similarly to retrospective
cost optimization, we can also calibrate an optimal controller
retrospectively, which allows for compensating systematic
disturbances. Differently from retrospective cost optimization,
we use a Kalman filter with a training objective to tune generic
control parameters beyond optimal control.

Iterative Learning Control (ILC): Another approach that
uses iterations of a repeating task is ILC [9]–[12]. ILC does
not learn feedback controllers but feedforward control inputs
in order to compensate for disturbances and/or unmodeled
dynamics, e.g., [11] uses a Kalman filter as a disturbance
estimator. Hence, ILC relies on repeatability of the specific
task, e.g., [12] applies ILC with a disturbance estimator
to a mobile robot that repeatedly traverses the same path.
Differently from ILC, the proposed approach does not rely
on repetitive tasks, i.e., it can be implemented online for
continuous control tasks.

Iterative Feedback Tuning (IFT): IFT is an approach based
on transfer functions and aims to optimize control parameters
with respect to a cost function by leveraging gradients [13],
[14]. In order to estimate the gradient, [15] shows how to
utilize closed-loop experimental data. IFT is applied to PID
tuning in [16] with the objective of achieving a fast system
response. In [17], IFT is used for tuning both the inner and
the outer loop of a cascaded control system. Similarly to IFT,
the proposed approach uses the notion of local improvement
of control parameters with respect to a cost function by
means of an (approximated) gradient. Differently from IFT,
the proposed Kalman filter implementation provides a frame-
work that recursively updates not only the control parameter
values, but also their joint distribution for achieving the best
closed-loop performance. This joint distribution is essential
as it determines how—and how quickly—to adapt the control
parameters, which has been observed to be a key benefit in
our studies as it improves/accelerates the convergence speed.

Virtual Reference Feedback Tuning (VRFT) and Unfalsified
Control: VRFT is an approach that uses data and the transfer
function of an ideal closed-loop behavior [18]–[23]. VRFT
uses input-output data in order to compute a virtual reference,
which is used, in turn, to obtain the control parameters
that most closely achieve the ideal closed-loop performance.
Unfalsified control theory uses similar ideas as VRFT of using
data of closed-loop system operation [24]–[27]. Differently
from VRFT, unfalsified control uses input-output data in order
to falsify candidate members of a class of controllers that
are not consistent with the performance specifications. Some
differences from VRFT include that the proposed method is an
online-implementable controller calibration method that can
incorporate a general selection of training objectives rather
than focusing on reference trajectories. Differently from un-
falsified control, the proposed approach does not use candidate
control laws and a falsify mechanism. Instead, it uses data of
closed-loop system operation and a Kalman filter to update
control parameters and their joint distribution.

Extended Literature on Controller Calibration: Inverse
reinforcement learning (IRL) is probably the best known
example for calibrating a specific class of controller. IRL
uses human demonstrations to learn a cost function and often
aims at transferring human expertise to an autonomous system,
e.g., for humanoid locomotion [28], [29], identifying human
movements [30], robot manipulation tasks [31], [32], or au-
tonomous driving [33], [34]. For model predictive controllers
(MPC), a popular research focus lies in designing terminal
components to mitigate the potential short-sightedness due to
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the limited prediction horizon [38], [39]. Similarly to IRL,
we also learn a cost function. Differently from IRL, we
do not utilize human demonstrations and we do not require
an episodical learning task, although our method can be
implemented episodically. Instead, our approach estimates cost
function parameters online during system operation. Other
examples of methods tailored to specific controller classes
include auto-tuning PID controllers [40]–[42], loop shaping
for H∞ controllers [43], [44], and calibrating sliding mode
controllers [45]–[50].

B. Notation

Given two integer indices n,m with m < n and a vector
xi ∈ Rnx , we define Xm|n ∈ Rnx(n−m+1) as the vectorized
sequence that comprises xi from i=m through i=n,

Xm|n :=

xm...
xn

 . (1)

Further, diag(λ) ∈ Rnλ×nλ is a matrix, whose diagonal
entries are the entries of a vector λ ∈ Rnλ , I is an iden-
tity matrix of appropriate dimension, and 0 is an all-zero
matrix of appropriate dimension. We define ∥x∥Σ := xTΣx
and the conditional probability density (PDF) function of a
vector xk at time steps k = 0, ..., N , conditioned on y as
p(x0:N |y) := p(x0, x1, ..., xN |y). N (µ,Σ) is the Gaussian
distribution with mean vector µ and covariance matrix Σ. A
continuous function α : [0, a) → [0, ∞) is said to belong to
class K, i.e., α ∈ K, if α(0) = 0 and if α is strictly increasing.
Further, α ∈ K∞ if α ∈ K and α(r) → ∞ as r → ∞.

C. Outline

Section II states the problem formulation. In Section III we
present the Kalman filter calibration method used to solve the
problem defined in Section II. Section IV contains simulation
results for analytical system models, where the Kalman filter
is applied to seven different controller architectures and com-
pared to Bayesian optimization. Section V presents simulation
studies, where the Kalman filter is applied to the high-fidelity
vehicle simulator CarSim and implemented on a dSPACE
MicroAutoBox-II rapid prototyping unit. Finally, Section VI
concludes the paper.

II. PROBLEM STATEMENT

We consider discrete-time systems of the form

xk+1 = f(xk, uk) + wk, (2)

where xk ∈Rnx is the state at time step k, uk ∈Rnu is the
input, wk is the process noise or the model mismatch compared
to the real-world system, and f is a general nonlinear function.
The inputs are set by a controller that takes measurements (or
estimates) of the state,

uk = κθ(xk, zk), (3)

where κθ is the function representing the control law, which
could be implicit, e.g., resulting from solving an optimization

problem, a pre-determined function, multiplication with gains,
or a state-feedback controller. Here, zk denotes potentially
internal/latent variables such as integral controller variables,
filter states, or state estimates. In this work, we present an ap-
proach to calibrate the parameters of the controller, θ ∈ Rnθ ,
for any controller that is expressed using a parametric structure
according to (3). For example, θ can represent the gains of a
PID controller, the weights of a cost function for MPC, or
coefficients of a neural network. To illustrate the applicability
of the proposed approach, Section IV applies the method to a
selection of seven different controllers.

A. Specifications and Goal of the Calibration Method

Typically, a control system aims at manipulating the be-
havior of a dynamical systems such that certain specifications
are achieved, in full or as closely as possible. Examples of
such specifications include minimizing the deviation to a target
state, avoiding oscillations, limiting overshooting of a target
state, and exceeding a nominal range of operation for not more
than a maximum time. Our proposed method calibrates the
control parameters, θ in (3), based on sensor measurements,
xk and uk, and a training objective, which evaluates the per-
formance of the controller and encompasses the specifications
for the closed-loop operation of the dynamical system.

The method in this paper adjusts the control parameters
online and recursively with a sliding window of data such
that the closed-loop system operation maintains its stability
guarantees. As the method uses time-varying parameters, i.e.,
the parameters are adjusted at each time step, we use time-
indices similar to the state and input variables with

θk+1 = θk +∆θk, (4)

where θk are the parameters at time step k that are used in the
controller (3). The goal is thus to find an adaptation law for
the control parameters, ∆θk, such that θk eventually satisfy
or optimize certain specifications provided by the system
designer, which is discussed next.

B. Procedure and Training Objective

The calibration method takes sensor measurements of the
state, evaluates the performance of the controller with respect
to the specifications, and outputs a new set of parameters
for the controller, θk+1. The method calibrates the control
parameter vector θ of the generic controller in (3) to minimize
the training objective

∥yk − r(Xk−N |k, Uk−N |k−1)∥C−1
v

(5)

with a positive definite Cv , desired nominal values yk, and
specification function,

r(Xk−N |k, Uk−N |k−1) ∈ Rnr . (6)

Hence, the specification function (6) takes the past state and
input sequences (of length N ), Xk−N |k and Uk−N |k−1, and
compares the computed specifications in (6) with a nominal
value yk ∈ Rnr that the controller should ideally achieve. One
difference between the training objective and a cost function
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for optimal control is that the training objective is generic in
its structure and flexible in its specifications. For example, the
training objective can include non-analytic functions. On the
other hand, the cost function often requires a certain structure
that enables real-time implementation, e.g., suited for convex
optimization.

Remark 1: Our approach is related to Bayesian optimiza-
tion, where a reward/loss is obtained after a trial. The main
conceptual difference is the online capable, recursive, and
real-time feasible implementation, which uses a Kalman filter-
based design outlined in Section III rather than a trial-and-error
search.

Remark 2: The method proposed in this paper is similarly
applicable if only a subset of the parameters are to be adjusted
with θk+1 = θk+G∆θk, e.g., if certain parameters are known
or should be fixed. For ease of exposition, however, we use
(4) throughout.

III. KALMAN FILTER FOR CONTROL PARAMETER
CALIBRATION

In this section, we propose the recursive algorithm to
calibrate or adjust the parameters of a generic controller. Given
the parameters at the current time step, θk, we perform an
update, ∆θk, based on data of closed-loop system operation
as in (4) aiming at minimizing the training objective (5).
Hence, the learning method makes (6) follow a nominal value
yk “as closely as possible”, i.e., the dynamical system is
controlled perfectly if yk = r(Xk−N |k, Uk−N |k−1). In order to
ease exposition, using the notation in (1), we define a, possibly
nonlinear, function F with

Xk|k+N+1 = F (Uk|k+N , xk,Wk|k+N ), (7)

where Wk|k+N denotes the stacking of wk in (2) from time k
to k+N , i.e., (7) is equivalent to applying (2) iteratively from k
to k+N . Let yk=r(Xk−N |k, Uk−N |k−1)+vk, where vk denotes
a slack variable. As the input sequence Uk−N |k−1 results from
the state sequence due to feedback control as in (3) that is fully
determined by the initial state of the dynamical system at time
k−N , xk−N, the initial state of the controller (if the controller
has internal states), zk−N, the model mismatch Wk−N|k−1, as
well as the control parameters, θk. Therefore, the evaluation
function, r, can be replaced by a function r0 with

yk = r(Xk−N |k, Uk−N |k−1) + vk

= r0(θk, xk−N, zk−N,Wk−N|k−1) + vk.

Note that Wk−N|k−1 can readily be computed with (2) using
state measurements and inputs. To further ease notation, we
define

h(θk) := r0(θk, xk−N, zk−N,Wk−N|k−1).

Finally, we obtain the following two main equations for the
tuning method proposed in this paper,

θk+1 = θk +∆θk (8a)
yk = h(θk) + vk. (8b)

In order to drive the adaptation law, we model the parameters,
∆θk, as well as the slack variable, vk, as i.i.d. random variables
with Gaussian zero-mean prior distributions

∆θpriork ∼N (0,Cθ) and vk∼N (0,Cv). (9)

As a result, we obtain the parameter adaptation law from the
corresponding posterior distribution

p(θk+1|θ0:k, y0:k) =
k∏
i=0

p(θi+1|θi, yi)p(θ0), (10)

estimated by a Kalman filter where yk is a vector of desired
values for the system operation rather than sensor measure-
ments. One benefit of using the Kalman filter is that it allows
for a recursive implementation, which means that we do not
need to store the entire data history but only the data used for
the Kalman-filter recursion. In (8b), h(θk) considers process
noise (or the model mismatch), Wk−N |k−1, explicitly. Hence,
we seek to find the parameters θk that optimize the training
objective for the process noise distribution/disturbances at
hand. This allows for accommodating systematic disturbances
as described in Section IV. In the following, we present two
implementations of the Kalman filter parameter tuning method
and discuss stability properties.

A. Extended Kalman Filter

If h(θk) is differentiable with respect to the control parame-
ters θk, the following implementation of the extended Kalman
filter (EKF) can be used to compute the parameter update in
(4),

∆θk = Kk (yk − h(θk)) (11a)

with Kalman gain Kk computed as

Kk = Pk|k−1H
T
k S

−1
k , (11b)

Sk = HkPk|k−1H
T
k +Cv, (11c)

Pk|k−1 = Pk−1|k−1 +Cθ, (11d)
Pk|k = (I −KkHk)Pk|k−1, (11e)

where Hk = ∂
∂θh(θ) |θ=θk , Sk is the innovation covariance,

and Pk|k is the estimate covariance matrix. In order to compute
the linearization Hk, we use the chain rule

Hk =
∂h(θ)

∂θ
=
∂h(θ)

∂z

∂z

∂θ
, z =

[
Xk−N |k
Uk−N |k−1

]
.

The only step of the EKF implementation that is (potentially)
computationally demanding for some controller configuration
is the gradient computation Hk. For optimization-based con-
trollers, we can use ∂z

∂θ ≈ ∆z
∆θ , where ∆z

∆θ is obtained by
differentiating the KKT conditions. This strategy to compute
sensitivities is based on applying the Implicit Function Theo-
rem to the KKT conditions [51], [52].

Remark 3: We use the EKF implementation to refer to a
gradient-based method. However, as outlined in [53], there
exist implementations of an EKF that avoid computing the
gradient explicitly.
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B. Unscented Kalman Filter

An even more promising and attractive alternative to the
EKF is to use an unscented Kalman filter (UKF) to compute
the Kalman gain Kk. The UKF uses deterministic samples
(called sigma points) around the mean, which are propagated
and used to update the mean and covariance estimates [54].
The sigma points are computed using the current best estimate
of the distribution of the control parameters, defined by the
mean and the covariance. In the following, we use super-
scripts, spi, to index sigma points, as opposed to the subscripts
indicating the time step, k. Using a UKF, h(θk) need not be
differentiable, which is one major advantage of this implemen-
tation. Here, the adaptation law for the parameters is given as

∆θk = Kk(yk − ŷk) (12a)

with the Kalman gain Kk computed using evaluations of sigma
points with respect to the specification function (6),

θ̂k =
∑2L
i=0 w

a,iθspik (12b)

yspik = h(θspik ) (12c)

ŷk =
∑2L
i=0 w

a,iyspik (12d)

Kk = CszS
−1
k (12e)

Sk = Cv +
∑2L
i=0 w

c,i(yspik − ŷk)(y
spi
k − ŷk)

T (12f)

Csz =
∑2L
i=0 w

c,i(θspik − θ̂k)(y
spi
k − ŷk)

T (12g)

Pk|k−1 = Cθ +
∑2L
i=0 w

c,i(θspik − θ̂k)(θ
spi
k − θ̂k)

T (12h)

Pk|k = Pk|k−1 −KkSkK
T
k , (12i)

where θspik with i = 0, ..., 2L are the sigma points, wc,i and
wa,i are the weights of the sigma points, Csz is the cross-
covariance matrix, Sk is the innovation covariance, and Pk|k
is the estimate covariance.

The main advantage of the UKF-based implementation is
the ability to embed non-differentiable objectives, as gradients
do not need to be computed. Instead, evolutions of the system
dynamics are simulated for all 2nθ+1 sigma points, where nθ
is the number of control parameters, which are then used to
obtain the update direction with the Kalman gain as in (12).
This advantage is also highlighted in [55], where digital twin
simulations are used to obtain a control policy by means of
a UKF-based solver. In this paper, we choose the following
weights and computation of sigma points

θsp0k = θk

θspik = θk +
√
L/(1− w0)[A]i i = 1, ..., L

θspik = θk −
√
L/(1− w0)[A]i i = L+ 1, ..., 2L

with weights −1<w0 =wa,0 =wc,0 < 1, wa,i =wc,i = (1−
wa,0)/(2L) and [A]i being the ith column of A with Pk−1|k−1 =
AAT , i.e., A is calculated using the Cholesky decomposition.
Other choices of sigma points and weights are also possible.

Remark 4 (State-Dependent Parameters): It is straightfor-
ward to include a state dependency for the control parameters,
e.g.,

uk = κθ(xk)(xk, zk).

This might be useful for applications where the controller is
adjusted based on the state, which is often done, e.g., through
gain scheduling. For example, the i-th control parameter could
be the result of basis functions, ϕ(x), and/or depend on certain
regions,

θi(x) =


χT1,iϕ(x) if ψ(x) ≤ ψ1

χT2,iϕ(x) if ψ1 ≤ ψ(x) ≤ ψ2

χT3,iϕ(x) otherwise.

(13)

For (13), the Kalman filter calibrates θi indirectly through the
weights of the basis functions, χ1,i, χ2,i, and χ3,i, as well as
the boundary of the regions, ψ1 and ψ2.

Remark 5: The UKF implementation is purely based on
evaluating sigma points and no gradient computation is
needed. Due to the simplicity of implementation and flexi-
bility, we employ the UKF for most of the validation studies
in this paper.

Remark 6: The entries in the training objective may be
as simple as the state trajectory with yk as the reference
trajectory. However, the entries may be any objective that can
be calculated from the state and input trajectories. For the
UKF implementation, the training objective can also be more
complex, e.g., to limit the overshoot or oscillations, to avoid
exceeding a nominal operating range for longer than given
duration, or to achieve an objective within a certain amount
of time. The UKF implementation can also include logic in
the form of if/then/else statements.

C. Interpretation of Covariance Matrices

The interpretation of covariance matrices in the presented
framework is different than the interpretation for a classical
implementation of the Kalman filter. First, the covariance
matrix Cv defines the relative importance of the components of
the vector-valued specification function in (6). In the proposed
method, the Kalman filter is utilized as error-driven estimator,
where the error is defined by means of the training objective
in (5). Hence, the Kalman filter drives the control parameter
adaptation to minimize the error in (5). In the classical Kalman
filter setting, this error is defined by the measurement error.
The choice of Cv comes natural from the training objective
in (5). Second, the covariance matrix Cθ determines the
aggressiveness of the controller calibration adjustment. For
example, let Cθ = cscale · I with cscale > 0. Then, a smaller
cscale makes the algorithm more conservative and potentially
converge not as quickly, which may increase robustness. A
higher cscale makes the algorithm more aggressive and poten-
tially converge faster. For gradient-based methodologies, cscale
can be thought of as a (prior) step-size. Note, however, that the
adaptation rate changes during operation as the joint posterior
distribution of the control parameters is updated. Hence,
one advantage of the Kalman filter-based implementation is
that this joint distribution defines the spread of the control
parameters as they relate to the training objective in (5). This
spread is leveraged in order to determine how quickly the
control parameters can be adjusted, which has been observed
empirically to improve convergence. For example, for the UKF
implementation, this joint distribution is used to compute the
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sigma points, which define what control parameter realizations
should be evaluated. It is also possible to tune the covariance
matrices during application, see the work in [56] in which
covariance matrices for a Kalman filter are calibrated.

D. Safety Check to Enforce Stability Properties

The proposed approach for calibrating controller parameters
can be augmented with a Safety Check module for certifying
or enforcing closed-loop stability, as shown in Fig. 1. The
safety check module must ensure two conditions: (i) each
set of parameters provided to the controller must result in
asymptotic stability (AS) of the closed-loop if such parameters
are held indefinitely; (ii) the control parameter update should
not cause loss of closed-loop AS. According to Fig. 1, the
safety check only affects the output of the Kalman filter-based
adaptation. Thus, even if the safety check module rejects the
updated parameters due to violating the safety conditions, the
Kalman filter state is not affected and hence the entire data
history will be reflected in any future updates of the control
parameters.

Condition (i) involves evaluating a closed-loop with fixed
parameters, and hence may be verified using any standard
method, such as eigenvalues, Nyquist arguments, or gain/phase
margins, for linear systems. Equivalent methods can be applied
for the cases of nonlinear controllers, albeit usually more
complex and applicable only to specific controller classes,
e.g., [57], [58] use reachability arguments for neural network
controllers. The ranges of parameter values for satisfying these
conditions may be also determined offline.

Condition (ii) can be approached using tools from switched
systems literature [59]. An approach is to assume knowledge
of Lyapunov functions for the controllers with fixed parame-
ters, which is guaranteed to exist by condition (i), and then
to show that the combination of such Lyapunov functions
obtained guarantees the existence of a Lyapunov function for
the closed-loop with changing parameters, when this is enabled
by as appropriate safety check.

Let Θ be the, possibly unbounded, set of parameter vectors,
and for all θ ∈ Θ, let Vθ(x) be a Lyapunov function for
the closed-loop system when the parameter vector is θ ∈ Θ,
constantly, i.e., there exists αθ, αθ, α

∆
θ ∈ K∞, such that

αθ(∥x∥) ≤ Vθ(x) ≤ αθ(∥x∥) (14a)

∆Vθ(x) ≤ −α∆
θ (∥x∥), (14b)

where ∆Vθ(x) = Vθ(fθ(x)) − Vθ(x), and fθ denotes the
closed-loop system obtained for parameter vector θ. Further,
let 1 α, α, α∆ ∈ K∞ where, for all x,

α(∥x∥) = inf
θ∈Θ

(αθ(∥x∥)) (15a)

α(∥x∥) = sup
θ∈Θ

(αθ(∥x∥)) (15b)

α∆(∥x∥) = inf
θ∈Θ

(α∆
θ (∥x∥)). (15c)

1This assumption is reasonable since the pointwise minimum and maximum
of class-K∞ functions result in class-K∞ functions.

Theorem 1: Let (14), (15) hold for all θ ∈ Θ, and the safety
check allows the parameter to be updated from θk to θk+1 at
state x only if

Vθk+1
(x) ≤ Vθk(x). (16)

Then, for the closed-loop system with the control parameter θ
being updated according to (11) or (12), and the condition
in (16), there exists a Lyapunov function for the state x.

Proof: The sequence of Lyapunov functions Vθk(xk)
when the parameter vector θ is time varying, can be seen
as function of both state and parameter V (θk, xk). Next, we
prove that V (θk, xk) is a Lyapunov function for the state,
xk. Consider θk, xk, and θk+1, xk+1. Due to Vθk being
a Lyapunov function for the closed-loop when θk is held
constant, we have Vθk(xk+1) ≤ Vθk(xk) − α∆

θk
(xk). Due to

the condition (16), Vθk+1
(xk+1) ≤ Vθk(xk+1), regardless of

whether θk+1 = θk or not. Thus, combining these with (15c),

V (θk+1, xk+1) ≤ V (θk, xk)− α∆(∥xk∥).

Considering (15a) and (15b) providing uniform K∞ function
bounds with respect to θ, we obtain

α(∥xk∥) ≤ V (θk, xk) ≤ α(∥xk∥) (17a)

∆V (θk, xk) ≤ −α∆(∥xk∥). (17b)

Hence, (17) gives a Lyapunov function for xk, i.e., according
to LaSalle’s invariance principle [60], it guarantees AS of the
state x, while the parameter θ evolves freely.

For the results of Theorem 1 to hold, the parameter vector θ
must be updated only when (16) is satisfied, which is an easy
condition to check. The additional assumptions of (15) may be
checked offline, for all parameter values θ ∈ Θ. Alternatively,
one could start from pre-assigned α, α, α∆ ∈ K∞, and
accept a parameter update value θ only if (15) is satisfied
for Θ ⊇ {θj}k−1

j=0 ∪ θ. Theorem 1 does not provide guarantees
for the convergence of θ to a value, and in fact the parameter
often exhibits at steady state oscillation with a small amplitude,
especially in the presence of disturbances or modeling errors.
In practice, the calibration algorithm will freeze the parameter
vector, i.e., it will stop the updates, when the updates or their
impact is smaller than a used-defined threshold, to possibly
restart later if the proposed updates grow again, e.g., due to
some condition changes.

Finally, the condition (16) in Theorem 1 is only one example
of the conditions that can be enforced by the safety check
to ensure AS. We derived condition (16) from switched
Lyapunov functions, such as those for the analysis of piece-
wise affine systems [61]. Alternative, more relaxed conditions
can be applied from other methods in switched dynamical
systems. For instance, when there exist Lyapunov functions
for constant control parameters (14) for all θ ∈ Θ, dwell
time methods may be applied to hold the parameter constant
“long enough” to ensure that the Lyapunov function with
changing parameter values decreases with respect to previous
most recent parameter update. Thus, the value θk̄ ̸= θk̄−1

is accepted only if Vθk̄(xk̄) ≤ Vθk̂(xk̂) − α∆(∥xk̂∥) where
k̂ = maxh≤k−1{θh : θh ̸= θh−1}. This condition ensures
stability according to the results in [59], through the stability
of the subsequences at the instances of parameter updates.
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IV. SIMULATION RESULTS

A. Application to Controlling Double Integrator

In this section, we show the proposed Kalman filter-based
calibration method for different controller architectures. For
this purpose, we study a simple double-integrator system
model,[
pk+1

vk+1

]
=

[
1 Ts
0 1

] [
pk
vk

]
+ Ts

([
0
1

]
uk +

[
0
1

]
δvk

)
, (18a)

ek = pk − pref , (18b)

with the goal to track a certain reference position, pref , where
pk is the position at time step k, vk is the velocity, uk is
the input (the acceleration), and δvk is unmodeled noise/dis-
turbance. The sampling period is Ts = 0.1 s. Throughout
this paper, we choose Cθ = I implying that there are no
preferences for tuning specific parameters faster than others.
Similarly, Cv = I .

1) Design Choices for Controller Architectures: First, we
show the parametric structure of the different controllers
applied to the system in (18a). For the calibration, we utilize
the UKF implementation in Section III-B.

• State Feedback Control: For this controller, the Kalman
filter calibrates the feedback gain directly,

uk =
[
θ1 θ2

] [ek
vk

]
,

i.e., there are two control parameters.
• Optimal Control: For this controller, the Kalman filter

calibrates the quadratic cost function,

J =

∞∑
k=0

[
ek
vk

]T [
θ1 θ2
θ2 θ3

] [
ek
vk

]
+ θ4u

2
k,

which we implement as a linear–quadratic regulator,

uk = kθ

[
ek
vk

]
,

where kθ results from the discrete-time algebraic Riccati
equation (DARE). Hence, there are four control parame-
ters.

• PID Control: For this controller, the Kalman filter cal-
ibrates three control parameters, the proportional, the
integral, and the derivative gain,

uk = uk−1 + (θP + θI + θD)ek

+ (θI − θP − 2θD)ek−1 + θDek−2.

• H∞ Control: As this controller is often implemented for
output feedback, we assume that only the position is
measurable. Here, we calibrate filter coefficients of a pre-
compensator and a post-compensator of the dynamical
system. This loop-shaping technique can be seen, e.g.,
in Fig. 9.17 in [62], and is applied to obtain a trade-off
between robustness (provided by the H∞ optimization)
and performance. For the H∞ optimization we use the
algorithm in Table 9.2 in [62]. We choose both pre- and
the post-compensator as first-order filters

Hpre(s) =
θ1s+ θ2
θ3s+ θ4

, Hpost(s) =
θ5s+ θ6
θ7s+ θ8

,

i.e., there are eight control parameters. Then, the con-
troller is given by

zk+1 = A∞zk + b∞ek,

uk = c∞zk + d∞ek,

where A∞ ∈ R6×6, b∞ ∈ R6, c∞ ∈ R1×6, d∞ ∈ R re-
sult from the H∞ optimization algorithm in combination
with the pre- and post-compensators and zk is the state
of the controller.

• Sliding Mode Control: For the double integrator model,
the control law becomes

uk = −θ1vk − θ2 · sign(ek + θ1vk),

where ek+ θ1vk is the sliding surface, i.e., there are two
control parameters.

• Dynamic Output Feedback Control: For this controller,
we assume that only the position is measurable and the
controller is given by[
p̂k+1

v̂k+1

]
=

[
1 Ts
0 1

] [
p̂k
v̂k

]
+

[
0
Ts

]
uk +

[
θ3
θ4

]
(p̂k − pk),

uk =
[
θ1 θ2

]([p̂k − pref
v̂k

])
,

where p̂k and v̂k are the estimated position and velocity,
respectively. Hence, there are four control parameters,
where θ1, θ2 define the feedback gain and θ3, θ4 define
the observer gain.

• Neural Network Control: We choose a fully connected
Neural Network with one input layer (2 · 10+10 = 30
parameters), one hidden layer (10 · 10+10=110 param-
eters), and one output layer (1 · 10+1=11 parameters),
i.e., the control law is

uk = θoutσ

(
θlayσ

(
θin

[
ek
vk

]
+ θin,0

)
+ θlay,0

)
+θout,0

with θout ∈ R1×10, θout,0 ∈ R, θlay ∈ R10×10,
θlay,0 ∈ R10×1, θin ∈ R10×2, and θin,0 ∈ R10×1. We
use the leaky ReLu activation function y = σ(x) with
yi = max(0.1xi, xi) for all elements i = 1, ..., 10. Hence,
the Kalman filter calibrates 151 parameters.

2) Reference Position Tracking: First, we study a reference
tracking task, where p0 = 0, pref = 1, and δvk = 0 with a
time horizon of 15 s. In this simulation study, the proposed
controller calibration method is implemented episodically, i.e.,
the Kalman filter is executed in between iterations/repetitions
of the reference tracking task and 15 s of data. We use two
training objectives,

yk =

[
pref · 1150×1

0150×1

]
, h(θk) =

[
p1:150
u1:150

]
, (19a)

yk =

pref · 1150×1

0150×1

0

 , h(θk) =
 p1:150

u1:150
costovershoot

 , (19b)

with p1:150 = [p1 p2 ... p150]
T , u1:150 = [u1 u2 ... u150]

T ∈
R150, and

costovershoot =

{
10 if max(p1:150) > 1.1

0 else.
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Fig. 2. Convergence of closed-loop cost for seven controllers. The plot
displays the initial calibration phase of the controllers, where the Kalman filter
is implemented episodically, i.e., the reference tracking task is executed 100
times. The model-based calibration enables fast convergence for all controller
structures.

Note that (19a) and (19b) differ only by virtue of the additional
cost for overshooting.

Fig. 2 shows the convergence of the closed-loop cost for the
seven different controllers using the training objective (19a). It
shows that all controllers gradually decrease the cost, but the
convergence speed and achieved cost after 100 iterations differ.
The optimal controller achieves both the fastest convergence
and the lowest steady-state cost, which is expected due to
the structural similarities between the cost function and the
training objective. The neural network controller converges
the slowest, which is also expected due to the high number
of parameters and its black-box design. The H∞ controller
converges to a slightly higher cost than some of the other
controllers, because the learning method balances performance
with robustness. The H∞ controller also requires an initial set
of parameters that can stabilize the system, which is the reason
why the initial cost is lower than for the other controllers. The
PID controller also converges to a slightly higher cost, which
is caused by the integral term, which requires the controller to
overshoot the reference value. In order to quantify convergence
speed, we empirically compute decay factors for the seven
controllers as

∆F =
1

99

98∑
i=0

c̄i − c̄i+1

c̄i+1
, c̄i =

ci − c100
c0 − c100

, (20)

where ci is the cost at iteration i as in Fig. 2. The decay factor,
∆F , evaluates the average of how much the cost is reduced at
each iteration. In Fig. 2, the decay factors as in (20) are 16.4%
(state feedback), 79.2% (optimal control), 6.55% (PID), 7.82%
(H∞), 37.6% (sliding mode control), 15.3% (dynamic output
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Fig. 3. State trajectories for selection of controllers. Left: State trajectories
after calibration using training objective (19a). Right: State trajectories after
calibration using training objective (19b) with cost for overshoot. The full
state feedback controller and the sliding mode controller are not changed by
the additional penalty for overshooting, since they do not overshoot to begin
with. The sliding surface can be identified easily from this plot. On the other
hand, the state trajectories of the PID and the H∞ controller change to avoid
overshooting.

feedback), and 6.39% (neural network). On average, the decay
factor is 24.2%.

Fig. 3 illustrates a selection of state trajectories of different
controllers with the training objective in (19a) and (19b). The
selection of controllers is made to illustrate the implications
of the two training objectives. While some controllers avoid
overshooting with training objective (19a), even without the
additional penalty, see state feedback and sliding mode control,
some controllers overshoot the reference value by more than
10%, see PID and H∞ control. However, if a penalty for
overshooting is added as in (19b), then all controllers limit
overshooting the reference position to a maximum value of 1.1.
In particular, the state feedback and sliding mode controller’s
performances remain unchanged, while the performances of
the PID and the H∞ controller are altered to meet the
specification.

3) Continuous Control Task with Disturbances: Table I
shows a simulation study in which the controllers are exposed
to noise/disturbances. It shows two test cases, δvk ∼ N (0, 1)
and δvk = 1, and the controllers aim at regulating the system
around the origin, pref = p0 = 0. In this simulation study, the
proposed controller calibration method is implemented online,
i.e., the Kalman filter is executed in receding horizon fashion at
each time step with a sliding window of length N . The training
objective for this task is (19a). The table shows a comparison
between two sets of control parameters for each controller
and each test case. The first set of control parameters is the
result of the initial calibration obtained after 100 iterations as
in Section IV-A2. The second set of control parameters uses
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TABLE I
COST FOR DIFFERENT PROCESS NOISE AND DISTURBANCES

Test Case for Regulation
δvk ∼ N (0, 1) δvk = 1

Controller Type Parameters that are adjusted Initial Param. Param. adjusted online Initial Param. Param. adjusted online

State Feedback Feedback gain 0.166 0.166 (-0.01%) 0.470 0.413(-12.1%)
Optimal Control Cost function weights 0.173 0.173 (-0.01%) 0.465 0.436 (-6.24%)
PID Gains 0.367 0.352 (-4.08%) 0.536 0.361 (-32.7%)
H∞ Filter coefficients 0.380 0.300 (-21.1%) 5.67 0.856 (-84.9%)
Sliding Mode Control Sliding surface and gains 0.489 0.425 (-13.2%) 0.318 0.318 (-0.01%)
Dynamic Output Feedback Feedback and observer gains 2.95 2.94 (-0.34%) 3.04 2.82 (-7.15%)
Neural Network Weights 6.32 2.33 (-63.2%) 6.01 2.33 (-61.9%)

online calibration (starting from the same initial parameters)
to improve upon the closed-loop system performance. It can
be seen that no controller performs worse using the online
adaptation in any test case. This indicates that the Kalman filter
does not over-fit the parameters in the presence of noise. While
all controllers improve their performance, the H∞ controller
exhibits one of the largest improvements. This makes sense
as the pre- and post-compensators are adjusted to exhibit the
desired frequency response by the Kalman filter. For the neural
network controller, the performance improves by more than
60%, which is expected as the neural network adjusts to the
specific test case and because more data are used for training.

B. Application to Vehicle Model and Comparison of UKF,
EKF, and Bayesian Optimization

In the following, we present a comparison of UKF, EKF,
and Bayesian optimization applied to a reference tracking task
using an optimal controller, in which a vehicle tracks a certain
lateral deviation from the center-line and a certain velocity.
Here, the proposed method is implemented episodically similar
to BO. The kinematic single track vehicle model is given
by [63]

xk+1 = f(xk, uk) (21a)

with xk =
[
pX,k pY,k ψk vk δk

]T
, uk =

[
v̇k δ̇k

]T
,

and

f(xk, uk) =


vx,k cos(ψk + βk)/ cos(βk)
vx,k sin(ψk + βk)/ cos(βk)

vx,k tan(δk)/L
v̇k
δ̇k

 , (21b)

where pX and pY are the vehicle’s position in the world frame,
ψ is the heading (yaw) angle, vx is the longitudinal velocity,
δ is the steering angle of the front wheel, L = lf + lr is the
wheel base, and β = arctan(lr tan(δ)/L) is the kinematic
body-slip angle. The inputs u1 and u2 are the longitudinal
acceleration and the steering rate. The road is oriented such
that the longitudinal progress is in the pX direction.

We use the quadratic cost function
∑N−1
k=0 ∥M(xk−xref)∥Q+

∥uk∥R with M = [04×1 I4], i.e., all states but the longitudi-
nal progress are penalized (road oriented in pX direction).
Hence, we learn the cost function parameters Q∈R4×4 and
R∈R2×2. Throughout this section, we use the sampling time
Ts = 0.25 s and a planning horizon of the optimal controller

N = 20. For all simulations and methods in the following,
we initialized the parameters, Q,R, using randomly sampled
positive definite matrices.

1) Comparison with Bayesian Optimization: We consider
a reference tracking task with xref = [0, 0, 0, 10 m/s, 0]T ,
where the initial state is x0 = [0, 2 m, 0, 12 m/s, 0]T . The
learning algorithm uses the training objective

yk = 0, h1(θ) =



M(x0 − xref)
...

M(xN − xref)
u0
...

uN−1


.

Fig. 4 reports the cost ∥yk − h(θ)∥22 over time, by show-
ing the results of 500 trials, where the cost parameters are
initialized randomly at the beginning of each trial. It shows
the convergence behaviors of the two recursive algorithms
proposed in this paper, the EKF and the UKF, along with
a Bayesian optimization (BO) approach, which is added as
comparison. Here we use an episodical learning task to ob-
tain a meaningful comparison with BO. The BO approach
uses a squared exponential kernel and the Upper Confidence
Bound (UCB) acquisition function, both commonly used in
the literature, e.g., [5]. Further, we restrict the BO approach
also to the search space of positive definite matrices. It can
be seen that both the EKF and UKF variants outperform BO
in terms of convergence speed and steady-state cost at the
end of the simulation at time step 100. We used the same
randomly sampled positive definite matrices for the BO as
for the Kalman filter-based adaptation. For BO, we used the
squared exponential kernel with lengthscale l=1 and output
variance σ2=1.

Remark 7: The slower convergence speed of BO can be
attributed to its trial-and-error approach, in which BO keeps
testing control parameters that have not been tested in order
to ensure global optimality. Other BO implementations in the
literature may have an improved convergence speed. For exam-
ple, there are BO approaches that use gradient information [64]
or focus on constraining the policy search space to a local
domain [65]. For some applications, a potential drawback of
the method proposed in this paper can be that the lack of global
exploration, compared to BO. Combining the method in this
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Fig. 4. Evaluation of controller performance. Both recursive algorithms, EKF
and UKF, as well as BO are displayed. The plot shows the median (solid or
dashed lines), as well as 75th and 25th percentiles (shaded areas) of 500 trials.
Top: Cost of operation at each time step. Bottom: Average cost of controllers
over time. The bottom plot is particularly interesting as it shows the increased
cost that BO incurs due to the trial-and-error implementation.

paper with BO to achieve both fast and global convergence
may be subject to future studies.

2) EKF and UKF for Non-Differentiable Objective: In
addition to the tracking task described in Section IV-B1,
the training objective in this simulation includes a penalty
for each sign change in δ̇ with yk = 0 and h2(θ) =
[h1(θ)

T , #δ̇ sign changes]T . One rational behind this penalty
is to reduce oscillatory or jittering motions of the vehicle. This
additional penalty is a discontinuous function of the control
input sequence. Fig. 5 shows the performance of the EKF
and UKF implementation in the presence of the partially non-
differentiable training objective. It shows that the UKF adjusts
the parameters to capture the discontinuity, whereas the EKF
converges to a set of parameters that incur higher cost.

V. APPLICATION TO VEHICLE STEERING CONTROL IN A
HIGH-PRECISION SIMULATION

This section presents the proposed calibration scheme ap-
plied to calibrate two vehicle lane-change controllers imple-
mented in CarSim [66]. CarSim is a high-fidelity vehicle dy-
namics simulator, which we utilize to study the method’s per-
formance and applicability to a complex dynamical system—
with a simplified model for controller design. The rationale for
this study is that a controller applied to a real-world system
has to deal with a mismatch between the controller model
and the physical system. CarSim is a third-party multi-body
high-fidelity simulator for automotive applications, especially
vehicle dynamics, that includes models for chassis dynamics,
suspension, tires, road friction and slip, etc. On the other
hand, the controller and the calibration module use a simple
kinematic single track vehicle model. Hence, being able to
execute the applied algorithms using a simplified control-
oriented model against the high-fidelity simulator indicates the
robustness of the method and suggests the applicability to a
physical vehicle.
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Fig. 5. Evaluation of controller performance for partially non-differentiable
objective. The plot shows the median (solid or dashed lines), as well as 75th
and 25th percentiles (shaded areas) of 500 trials. Top: Cost of operation at
each time step. Bottom: Average cost of controllers over time. The UKF
implementation is able to identify the cost-beneficial tuning of the parameters.
It can be seen that the UKF moves toward the beneficial region, even if it
means to encounter slightly higher cost temporarily (top plot, around time
steps 4–8).

A. CarSim Simulation Setup

Fig. 6 shows a block-diagram of a vehicle in CarSim being
controlled in a Simulink interface. Fig. 7 shows a screenshot
of the CarSim environment, in which a vehicle performs
lane changes while adjusting its control parameters. We have
included a supplementary video to illustrate this scenario. For
reproducibility, the selected modules and simulation parame-
ters can be found in the Appendix. The simulation sampling
period 0.5 ms was chosen to be much faster than the control
loop sampling period of 0.1 s, to make the simulation more
precise. The reference generator uses a pulsating signal, which
switches between the lateral position references ±1.5 m every
7.5 s. We use a simple velocity controller to regulate the
velocity as this study focuses on adjusting the lane-change
controller.

B. Controller and Calibration

We implemented two types of controllers, an optimal con-
troller and a state feedback controller. In the former, we
use a kinematic single track vehicle model for both optimal
control and the calibration of the control parameters. In the
latter, a system model is not needed for the controller, but
for the calibration of the control parameters. Fig. 6 also
highlights the different vehicle system models used in the
simulation setup. While the optimal control and the controller
calibration module use a kinematic single track vehicle model,
the dynamical system to be controlled uses a high-fidelity
vehicle model in CarSim.

We utilized the UKF implementation in Section III-B. The
UKF is implemented online in receding horizon fashion with
a sliding window of length N . The kinematic single track
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Fig. 6. CarSim simulation setup with highlight on vehicle system model.
Inputs to CarSim are the throttle position, the brake pedal position, as well as
the steering angle command for the right and the left front wheels. Outputs
from CarSim are the longitudinal position, the lateral position, the yaw angle,
the vehicle velocity, as well as the steering angle for left and right wheels.
The controller block uses the state (for a kinematic bicycle model) and a state
reference in order to compute a steering rate command as well as a torque
command. The steering angle is obtained by integrating the steering rate and
the throttle and brake positions are computed using the torque command as
well as the current velocity.

Fig. 7. Illustration of vehicle performing lane-change maneuvers in CarSim,
while controller parameters are adjusted online. The yellow arrows illustrate
forces acting onto the wheels.

vehicle model is given as in (21). We use the training objective

yk =

pY,ref · 150×1

050×1

050×1

 , h(θk) =
 pY,1:50
0.1 · ψ1:50

10 · u1:50

 . (22)

Remark 8: It is possible to use a more complex vehicle
model for the calibration and/or the controller, e.g., that
includes the lateral dynamics of the vehicle based on tire
forces. However, the presented results highlight the capabilities
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Fig. 8. Calibration of optimal controller. A velocity-dependence of the
control parameters can be seen as they change when the velocity changes.
In particular, the penalty for the yaw angle is higher for higher velocities and
lower for lower velocities. The penalty for the lateral position error exhibits
the opposite trend.

of the Kalman filter in the presence of a significant model
mismatch, which will also be vital for real-world applications.

C. Results for Optimal Controller

First, we analyze an optimal lane-change controller with the
cost function

J =

∞∑
k=0

θyp
2
Y,k + θψψ

2
k + δ̇2k. (23)

For simplicity, we linearize the model of the system dynamics
in (21) around xlin = [0 0 0 vx 0]T and ulin = [0 0]T for
computing the control law, which is obtained from solving the
DARE. The UKF uses the nonlinear system model in (21).

Fig. 8 shows trajectories of the closed-loop simulations of
the lane-change optimal controller with the cost function in
(23) in CarSim. At time 0 s, all control parameters are set to
zero, θ0 = 0. The Kalman filter quickly notices that the cost
function parameters need to be positive in order to execute the
lane change. This is because of the model-based structure of
the calibration module that uses a kinematic bicycle model.
After three lane-change maneuvers (around 20 s), the Kalman
filter has found a set of parameters that works well—as defined
by the specifications—given the vehicle velocity of around
70 km/h. Then, the velocity is decreased at 50 s. As a result,
the Kalman filter adapts the cost function parameters in order
to optimize the specifications given the altered vehicle velocity.
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Fig. 9. Calibration of state feedback controller.

D. Results for State Feedback Controller

Second, we analyze a lane-change controller with the con-
trol law

δ̇k =
[
θy θψ θδ

] pY,k − pY,k,ref
ψk
δk

 . (24)

Fig. 9 shows trajectories of the lane-change state feedback
controller (24) with the CarSim simulator. At time 0 s, all
control parameters are set to zero, θ0 = 0. Then, the Kalman
filter calibration module realizes that the gains need to be
negative in order to execute the lane change. Here, too, the
control parameters are adapted in the “right” direction due
to the model-based structure that uses a kinematic bicycle
model. While the first lane-change maneuver is executed
successfully, the performance is not ideal yet, cf., lateral
position oscillations around 0–8 s. Consequently, the Kalman
filter continues to calibrate the control parameters to further
improve upon the system performance (measured with respect
to the specifications). After 25 s the control parameters enter
a repetitive pattern. At time 50 s, the velocity is decreased.
As a result, the control parameters are adapted by the Kalman
filter in order to perform the lane changes at lower velocity.
For example, θδ is decreased and θy is increased. Note that the
different scales of the control parameters are partially caused
by different units, e.g, the lateral position error in meters takes
higher values than the angles in radians.

E. Extended Discussion

Due to the model mismatch between the kinematic single
track vehicle model used in the feedback controller and/or the

Kalman filter-based adaptation module and the high-fidelity
vehicle simulator in CarSim, the estimated control parameters
are expected not to converge. Instead, the control parameters
can enter a limit cycle, which is best observed in Fig. 8,
e.g., between 30s–50s and between 100s–120s. The model
mismatch is important to calibrate the controller to achieve
the best closed-loop performance. This is a key advantage of
the proposed method, because it leverages the fact that the
feedback controller uses a simplified control-oriented model
in order to control a complex dynamical system. Note that
some industrial applications may require non-adaptive control
parameters, e.g., due to regulations. In such a scenario, the
calibration may be performed at production stage by freezing
the control parameters at the time that the limit cycle is
entered, or by averaging the control parameters over one limit
cycle. Furthermore, state-dependent control parameters can
still be considered by interpolating between pre-computed sets
of control parameters, which is similar to gain scheduling.

For the online implementation of the proposed method, the
Kalman filter uses a sliding window of length N in order
to calibrate the control parameters, θ. While this is different
from the standard Kalman filter implementation, this sliding
horizon is important to be captured for calibrating control
parameters in order to evaluate the evolution of the dynamical
system under a given control parameter realization. This setup
is comparable to moving horizon estimation [67], where a
sliding window is needed in order to capture the behavior of
a dynamical system under constraints.

F. Computation Times

We implemented the proposed adaptation method on a
dSPACE MicroAutoBox-II rapid prototyping unit, which is
equipped with a 900 MHz PowerPC real-time processor
(IBM PPC 750GL) and 16 MB of RAM. The dSPACE
MicroAutoBox-II rapid prototyping unit reflects the cur-
rent and next-generation capabilities of embedded micro-
controllers in automotive systems. We utilized an implemen-
tation in Simulink using the Matlab function block with
automatic C code generation.

For the optimal control CarSim example in Section V-C,
the maximum computation time on the MicroAutoBox-II
was 0.0196 s. For the state feedback controller example
in Section V-D, the maximum computation time on the
MicroAutoBox-II was 0.0205 s. For both examples, the com-
putation times are well within the sampling period of 0.1 s
used in this implementation, thus validating the real-time
capabilities of the proposed method in automotive embedded
platforms.

VI. CONCLUSION

This paper proposed a method to calibrate controller pa-
rameters. The method is implemented in a recursive fashion
using a Kalman filter that estimates control parameters rather
than the system’s state. The calibration is driven by a training
objective, which encompasses specifications on the operation
of the closed-loop system. The main benefits of the proposed
method are the low computational requirements, low data
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storage requirements, and a relatively high flexibility e.g, in
embedding non-differentiable objectives in the control system.
Simulation results showed that the method is able to calibrate
parameters for a wide range of controllers, such as state
feedback, optimal, PID, H∞, sliding mode, dynamic output
feedback, and neural network controllers. In particular, the
method was shown to learn the control parameters quickly
and robustly (approximately 24% average decay factor of
closed-loop cost). Further, the method was shown to adjust
the parameters to systematic disturbances, thereby effectively
reducing closed-loop cost of the system operation (approx-
imately 29% improvement on tracking precision). Further,
a simulation study with the high-fidelity vehicle simulator
CarSim showed that the method can calibrate controllers
of a complex dynamical system online, which suggests its
appropriateness to operate on real-world systems. Finally, we
showed that the algorithm is implementable on current and
next-generation embedded platforms for automotive applica-
tions using a dSPACE MicroAutoBox-II rapid prototyping
unit. Overall, this paper verifies the algorithm on a vehicle
model that is close to a physical vehicle and on an embedded
platform suitable for automotive applications. Hence, the find-
ings in this paper also validate the applicability of the proposed
algorithm today’s and near future vehicles.

APPENDIX: CARSIM PARAMETERS

Table II shows the main modules and vehicle parameters
used for the CarSim simulation.
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