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Abstract
Physics-informed neural networks (PINNs) have recently become a popular method for solving
forward and inverse problems governed by partial differential equations (PDEs). By incor-
porating the residual of the PDE into the loss function of a neural network-based surrogate
model for the unknown state, PINNs can seamlessly blend measurement data with physical
constraints. Here, we extend this framework to PDE-constrained optimal control problems,
for which the governing PDE is fully known and the goal is to find a control variable that
minimizes a desired cost objective. Importantly, we validate the performance of the PINN
framework by comparing it to state-of-the-art adjoint-based optimization, which performs
gradient descent on the discretized control variable while satisfying the discretized PDE.
This comparison, carried out on challenging problems based on the nonlinear Kuramoto-
Sivashinsky and Navier-Stokes equations, sheds light on the pros and cons of the PINN and
adjoint-based approaches for solving PDE-constrained optimal control problems.
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Abstract

Physics-informed neural networks (PINNs) have recently become a popular method
for solving forward and inverse problems governed by partial differential equations
(PDEs). By incorporating the residual of the PDE into the loss function of a neural
network-based surrogate model for the unknown state, PINNs can seamlessly blend
measurement data with physical constraints. Here, we extend this framework
to PDE-constrained optimal control problems, for which the governing PDE is
fully known and the goal is to find a control variable that minimizes a desired
cost objective. Importantly, we validate the performance of the PINN framework
by comparing it to state-of-the-art adjoint-based optimization, which performs
gradient descent on the discretized control variable while satisfying the discretized
PDE. This comparison, carried out on challenging problems based on the nonlinear
Kuramoto-Sivashinsky and Navier-Stokes equations, sheds light on the pros and
cons of the PINN and adjoint-based approaches for solving PDE-constrained
optimal control problems.

1 Introduction

In the physical sciences, data is often scarce while physical models are frequently available in the form
of partial differential equations (PDEs) [11]. Leveraging these governing equations, physics-informed
neural networks (PINNs) were recently proposed in [24] as a deep learning framework for solving
forward and inverse problems. The basic idea behind PINNs is to approximate the solution to a given
problem with a feed-forward neural network. This neural network is then trained by minimizing a
composite loss function that not only penalizes the prediction error with respect to the available data
but also enforces the governing equations and boundary conditions. A great benefit of PINNs is their
flexibility: they can either solve forward problems in the absence of any data when the governing
equations are fully known, or leverage available data to solve inverse problems involving unknown
model parameters or physical quantities (for reviews on PINNs, see [17] and [2]). PINNs have since
found applications in numerous fields such as fluid mechanics [25, 26, 29], heat transfer [2], solid
mechanics [27, 9], medicine [28, 31], and chemistry [10].

In this paper, we investigate the potential of PINNs to solve PDE-constrained optimal control
problems, for which the governing PDEs are fully known and the goal is to find a control variable that
minimizes a desired cost objective. Such problems arise in a variety of fields including fluid mechanics
[6], transition to turbulence [12], heat transfer [20], electromagnetism [5], topology optimization [22],
and mesh refinement [15]. The control variable to optimize might represent a distributed boundary
actuation, an external body force or an initial condition of the system [30, 1]. Optimal control
problems are usually solved by combining gradient-descent algorithms with adjoint-based sensitivity
analysis, which computes the gradient of the cost objective function with respect to the control
variable using only two PDE simulations [16]. Such adjoint-based optimization frameworks are
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therefore very efficient when the control is a space- and/or time-dependent field, but their complexity
has limited their adoption by the engineering community.

As opposed to adjoint-based optimization, a major strength of PINNs is their ease of implementation.
Here, we show that the PINN framework can be readily extended to the optimal control setting by
approximating the control field with its own neural network in addition to the neural network for the
unknown state variable. These two networks are then simultaneously trained using a composite loss
function that includes the cost objective function in addition to the PDE residual and initial/boundary
conditions. A similar approach was recently proposed by [18] and [4] in the context of inverse design
and parametric optimal control, respectively. In light of these recent works, the novelties of the
present study are two-fold:

1. We propose a set of guidelines falling under two categories for obtaining a good optimal
control solution using the PINN framework. In particular, we emphasize the importance of
evaluating the cost objective using a separate forward computation with the PINN optimal
control as an input.

2. We solve challenging control problems based on the Kuramoto-Sivashinsky and Navier-
Stokes equations using both the PINN and adjoint-based approaches, and we discuss their
respective pros and cons. This systematic comparison enables researchers to better evaluate
and position PINN-based optimal control within the larger context of PDE-constrained
optimization.

2 Methodology

Problem statement. In PDE-constrained optimal control, we are interested in problems of the form

c∗ = arg min
c
J (u, c) subject to F(u, c) = 0, (1)

where J (u, c) is a user-defined cost objective functional, F(u, c) = 0 is a PDE constraint derived
from the physics of the system under consideration, u(x, t) is a space- and possibly time-dependent
vector field characterizing the state of the system, and c(x, t) is a control input that might depend on
space and/or time.

PINNs for optimal control of PDEs. Problem (1) can be solved using the PINN framework by
introducing two neural network approximations uNN(x, t) for the system state and cNN(x, t) for the
control input. The weights and biases θu and θc of these two neural network approximations are
then found by minimizing the loss function

L(θu,θc) = LF (θu,θc) + wJLJ (θu,θc), (2)

where LF measures the mean-square error of the PDE constraint F(uNN, cNN) = 0 over a given set
of residual points, LJ measures the magnitude of the objective function J (uNN, cNN), and wJ is a
scalar weight controlling the relative importance of LF and wJ . In this way, the training process
finds a control and a state that both satisfy the PDE constraint while minimizing the cost objective.
However, the presence of two conflicting objectives LF and LJ in the loss function (2) creates
training difficulties [14]. A major contribution of the present work is therefore the following set of
guidelines to help find a good optimal control solution:

1. Validation. We ensure that the optimal state u∗NN found by the PINN framework reasonably
satisfies the PDE and its initial/boundary conditions. This is done by first solving a forward
problem based on the same PDE, which gives an idea for the magnitude of LF required for
an accurate solution. Turning to the optimal control problem, a line search is performed to
find the largest value of wJ that yields a similar magnitude for LF in the solution to the
optimal control problem as in the forward problem.

2. Evaluation. We evaluate the performance of the optimal control c∗NN found by the PINN
framework by separately computing the solution of the corresponding forward problem with
fixed c = c∗NN. This forward solution can be performed with a PINN or a traditional solver.

Adjoint-based optimal control of PDEs. The framework of adjoint-based optimal control is a
direct extension of the method of Lagrange multipliers to the case where the equality constraints are
formulated as PDEs [7]. In this work, we consider as a baseline the direct-adjoint-looping (DAL)
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algorithm, which is a specific way to solve the optimality conditions given by the adjoint-based
framework.

The PINN and adjoint-based methodologies are described in detail in Appendix A.

3 Results

Kuromoto-Sivashinsky (KS) equation. The KS equation is a nonlinear PDE serving as a proto-
typical model for pattern formation and chaos in physical systems. Here, we consider a problem
defined over the 1D periodic domain x ∈ [0, L] and time interval t ∈ [0, T ]. Appendix B shows
that starting from a given initial condition, the unforced system develops chaotic dynamics. For the
optimal control problem, we thus seek a space- and time-distributed control force that drives the
system state towards zero everywhere, using a cost function that penalizes the norms of both the state
and the forcing over the entire spatio-temporal domain. The complete formulation of the problem can
be found in Appendix B.

(a)

(c) (d)

(b)

Figure 1: Optimal control of the KS equation. (a,b) Optimal forcings
f∗ obtained from PINN and DAL. (c,d) System states obtained from
spectral method solutions of the KS equation driven by the optimal
forcings f∗ obtained from PINN and DAL.

The solution of the prob-
lem using both the PINN
and DAL approaches is de-
scribed in Appendix. The
optimal distributed control
forces found by PINN and
DAL are shown in Figures
1(a) and 1(b), respectively,
and look very similar to one
another. The efficacy of
these control forces at driv-
ing the state towards zero
is then evaluated by com-
puting a spectral method so-
lution of the KS equation
using these control forces.
The resulting state is dis-
played in Figures 1(c) and
1(d), showing that the PINN
and DAL optimal forcings
both manage to drive the
state towards near-zero val-
ues. The corresponding
cost objectives, calculated
from the spectral solutions,
have remarkably similar val-
ues of J = 20.58 and
J = 20.64 for the PINN
and DAL optimal forcings,
respectively.

Navier-Stokes (NS) equations. The NS equations are a set of coupled nonlinear PDEs describing
the spatio-temporal behavior of the velocity and pressure in a fluid flow. Here, we consider a 2D
horizontal channel (x, y) ∈ Ω with blowing and suction boundaries on the top and bottom walls. As
shown in Appendix C, the flow imparted by a parabolic velocity profile at the left inlet boundary will
be affected by the blowing and suction boundaries, resulting in a skewed velocity profile at the right
outlet boundary. For the optimal control problem, we thus seek the velocity profile at the left inlet
boundary so that the corresponding velocity profile at the outlet boundary is as close as possible to
parabolic profile. The complete formulation of the problem can be found in Appendix C.

The PINN and DAL frameworks converge to rather different optimal inlet velocity profiles, shown in
Figure 2(a). These profiles nonetheless share a few features: two local maxima near the centerline and
around y = 0.8, as well as a region of negative velocity for y < 0.3. We evaluate the quality of these
optimal inlet profiles by computing the corresponding flow fields using the open-source finite-volume
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(b) (c)(a)

(d) (e)

Figure 2: Optimal control of the NS equations. (a) Optimal inlet velocity profiles u∗in obtained using
PINN and DAL. (b,c) Outlet velocity profiles of two forward OpenFOAM solutions calculated using
the optimal inlet profiles u∗in from PINN and DAL, compared with the target parabolic profile. (d,e)
Velocity magnitude and streamlines of the OpenFOAM solutions calculated using the optimal inlet
profiles u∗in from PINN and DAL.

solver OpenFOAM. The resulting outlet velocity profiles, displayed in Figures 2(b,c), are both nearly
parabolic with comparable cost values: J = 0.00298 and J = 0.00265 for the PINN and DAL inlet
profiles, respectively. Yet, the PINN inlet velocity profile is smoother and produces an outlet profile
that has a more parabolic shape than its DAL counterpart. Figures 2(d) and 2(e) display the velocity
magnitude and streamlines of the two OpenFOAM solutions calculated using the PINN and DAL
optimal inlet profiles, respectively. In both cases, the bottom region of negative inlet velocity attracts
some of the fluid entering through the blowing boundary, which reduces the effect of the latter on the
outlet profile.

4 Discussion and conclusions

We now draw lessons from our comparative study and assess the pros and cons of the PINN and DAL
approaches. Our results demonstrate that the PINN approach can be similarly effective as DAL in
solving optimal control problems. In terms of computational costs, our PINN solutions were obtained
in 2 hours 4 min for the KS problem and 8 hours 20 min for the NS problem using one Tesla V100
GPU. On the other hand, the DAL solutions were obtained in 2 hours 55 min for the KS problem
and 28 hours for the NS problem, using a single CPU core. Contrary to what is usually claimed in
the PINN literature, DAL is therefore computationally more efficient since it achieves comparable
runtimes with a single CPU core. This being said, important advantages of the PINN framework are
its flexibility and ease of implementation, since it takes very little effort to adapt a PINN code for
any forward problem to an optimal control problem. By contrast, the DAL approach may involve the
cumbersome derivation of the adjoint equation and cost objective gradient, which needs to be repeated
after any mere change of boundary conditions or cost objective function. The adjoint equation and
DAL iterative procedure then need to be implemented in a numerical solver, which is no small
task when complicated governing PDEs and/or complex geometries are involved. Thus, the PINN
framework brings optimal control problems within reach of a much wider community compared with
adjoint-based approaches such as DAL, which may compensate its lesser computational efficiency.
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A Methodology details

In order to provide additional details on the PINN and adjoint-based methodologies for solving the
control problem (1), we need to specify the equations contained in the PDE constraint F(u, c) = 0.
These are

R[u(x, t); cv(x, t)] = 0, x ∈ Ω, t ∈ [0, T ], (3a)
B[u(x, t); cb(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T ], (3b)
I[u(x, 0); c0(x)] = 0, x ∈ Ω, (3c)

whereR is the residual of the PDE, B are the boundary conditions, I is the initial condition, Ω ⊂ Rd
is the domain over which the problem is defined, and [0, T ] is the time window of interest. The
control input c consists of cv , cb and c0, which are respectively volume, boundary and initial control.

A.1 PINN for optimal control of PDEs.

As described in the main text, the PINN approach is based on the construction of two neural network
approximations uNN(x, t) for the system state and cNN(x, t) for the control input. The loss function
(2) is then used to train the weights and biases θu and θc of these two neural networks. Assuming for
clarity of exposure that we only have volume control, that is, c = cv , the term LF in (2) is given by

LF (θu,θc) =
wr
Nr

Nr∑
i=1

|F [uNN(xri , t
r
i ;θu); cNN(xri , t

r
i ;θc)]|2

+
wb
Nb

Nb∑
i=1

|B[uNN(xbi , t
b
i ;θu)]|2 +

w0

N0

N0∑
i=1

|I[uNN(x0
i , 0;θu)]|2,θc), (4)

where {xri , tri }
Nr
i=1 ∈ Ω, {xbi , tbi}

Nb
i=1 ∈ ∂Ω, {x0

i }
N0
i=1 ∈ Ω are sets of residual points over which to

enforce the PDE residual (3a), boundary conditions (3b), and initial condition (3c), respectively, and
wr, wb, w0 are scalar weights for the different terms. The term LJ (θu,θc) consists of a Monte-Carlo
approximation of the integral usually present in J (u, c), using the same sets of residual points. We
normalize the input (x, t) before passing it to the first layer of the neural networks uNN and cNN.

We select the tanh activation function for uNN and cNN, use Glorot initialization of the parameters
[8], and employ the Adam optimizer [13] to find optimum values (θ∗u,θ

∗
c) that minimize (4). At each

iteration k, the parameters from both networks are concurrently updated as

θk+1
u = θku − α(k)∇θuL(θku,θ

k
c), (5a)

θk+1
c = θkc − α(k)∇θcL(θku,θ

k
c), (5b)

where α(k) is an adaptive learning rate set by the Adam optimizer. At the end of the training
procedure, the trained neural networks uNN(x, t;θ∗u) and cNN(x, t;θ∗c) approximately solve the
optimal control problem (1).

A.2 Adjoint-based optimal control

The framework of adjoint-based optimal control is a direct extension of the method of Lagrange
multipliers for constrained optimization to the case where the equality constraints are formulated as
PDEs [16]. Applying this method to problem (1), one first constructs the Lagrangian

L(u, c,λ) = J (u, c)− 〈λ,F [u; c]〉, (6)

where u is required to satisfy the boundary and initial conditions (3b) and (3c), λ = λ(x, t) is the
Lagrange multiplier or adjoint field, and the inner product 〈·, ·〉 is defined as

〈a,b〉 =

∫ T

0

∫
Ω

a(x, t)Tb(x, t)dxdt. (7)

Then, problem (1) is equivalent to the unconstrained problem

u∗, c∗,λ∗ = arg min
u,c,λ

L(u, c,λ), (8)
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whose solution is given by the stationary point(s) of the Lagrangian. This yields the relations〈
∂L
∂u

, δu

〉
= 0 ∀ δu, (9a)〈

∂L
∂c

, δc

〉
= 0 ∀ δc, (9b)〈

∂L
∂λ

, δλ

〉
= 0 ∀ δλ, (9c)

where the admissible variation u+ δu has to satisfy the boundary and initial conditions (3b) and (3c).
The Fréchet derivative 〈∂L/∂u, ·〉 is defined so that〈

∂L
∂u

, δu

〉
= lim
ε→0

L(u + εδu, c,λ)− L(u, c,λ)

ε
∀ δu, (10)

and similarly for 〈∂L/∂c, ·〉 and 〈∂L/∂λ, ·〉. Expanding the stationarity conditions (9) leads to〈
∂L
∂u

, δu

〉
=

〈
∂J
∂u

, δu

〉
−
〈
λ,
∂F
∂u

δu

〉
=

〈
∂J
∂u
− ∂F
∂u

†
λ, δu

〉
= 0 ∀ δu, (11a)〈

∂L
∂c

, δc

〉
=

〈
∂J
∂c

, δc

〉
−
〈
λ,
∂F
∂c

δc

〉
=

〈
∂J
∂c
− ∂F
∂c

†
λ, δc

〉
= 0 ∀ δc, (11b)〈

∂L
∂λ

, δλ

〉
= −〈δλ,F〉 = 0 ∀ δλ, (11c)

where we have defined the adjoint A† of a linear operator A as

〈a,Ab〉 = 〈A†a,b〉 ∀a,b, (12)
where a satisfies the boundary conditions carried by the operator A. The process of finding the
adjoint operator A† involves integration by part and yields terminal and boundary conditions for the
adjoint field b. Thus, satisfying (11a) for given u and c gives the adjoint equation

∂J (u, c)

∂u
− ∂F [u, c]

∂u

†
λ = 0, (13)

for the adjoint field λ, with associated terminal and boundary conditions. The third stationary
condition (11c) simply enforces the governing equation (3) for u given c, that is,

F [u, c] = 0, (14)
with associated initial and boundary conditions. When (11a) and (11c) are satisfied, we have J = L,
and (11b) therefore gives the total gradient of the cost objective with respect to the control c,

dJ (u, c)

dc
=
∂L(u, c)

∂c
=
∂J (u, c)

∂c
− ∂F [u, c]

∂c

†
λ. (15)

For the optimal solution, dJ (u∗, c∗)/dc = 0 holds.

There exists various adjoint-based algorithms for obtaining the optimal solution u∗, c∗,λ∗ given
by the stationarity conditions (11). These algorithms solve the same set of equations, namely the
direct (forward) PDE (14) and adjoint PDE (13), to determine the sensitivity of the cost function
to the design parameters, given by (15). The difference is, however, in the manner by which the
optimal solution is obtained by each algorithm. In this work, we use the direct-adjoint-looping (DAL)
algorithm [6, 19, 20], which proceeds as follows. At each iteration k, one first solves the forward
PDE (14) for uk, given the current control ck. With uk and ck in hand, one then solves the adjoint
PDE (13) for λk in backward time since the adjoint PDE contains a terminal condition instead of an
initial condition. Finally, one computes the gradient of the cost objective using (15), which is then
used to update the control as

ck+1 = ck − β dJ (uk, ck)

dc
, (16)

with β a learning rate that we will keep fixed. It should be noted that the convergence rate can be
increased by employing more sophisticated update formulas such as quasi-Newton methods [21].
In our case, every gradient update only requires two PDE solutions, one for the forward PDE and
one for the adjoint PDE. We end the iterations once the cost objective has stopped decreasing, or
alternatively once the gradient (15) becomes small enough.
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B Kuramoto-Sivashinski equation

B.1 Problem formulation

Figure 3: Spectral method simu-
lation of the forward KS equation
without forcing.

The Kuramoto-Sivashinsky (KS) equation is one of the simplest
PDEs that generates chaotic behavior. It takes the form

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= f(x, t), (17)

where u(x, t) is the velocity at position x ∈ [0, L] and time
t ∈ [0, T ], and f(x, t) is a distributed control force. We use
periodic boundary conditions and choose as initial condition

u0(x) = cos

(
2πx

10

)
+ sech

(
x− L/2

5

)
. (18)

Solutions to the KS equation without forcing undergo a se-
quence of bifurcations as L increases; the zero state is a stable
solution for L < 2π but becomes linearly unstable for L > 2π,
while for even larger L the solution becomes chaotic. Here, we
choose L = 50 which corresponds to the chaotic regime [3] as
shown in Figure 3.

For the optimal control problem, we thus seek the control force f(x, t) that drives the state towards
zero everywhere. We formulate the optimal control problem as

f∗ = arg min
f
J (u, f) subject to (17), (19)

where the objective cost is

J (u, f) =
1

2

∫ T

0

∫ L

0

(|u(x, t)|2 + σ|f(x, t)|2)dxdt. (20)

Thus, we seek the optimal forcing f∗(x, t) that drives the unstable state to zero by minimizing a
quadratic cost that balances the norms of both the state and the forcing. This quadratic cost functional
is widespread in control theory; here we choose σ = 1.

B.2 Implementation of the PINN solution

Figure 4: Loss components during
training of the PINN solution.

To solve this problem in the PINN framework, we represent
u(x, t) and f(x, t) with two neural networks consisting of 5 hid-
den layers of 50 neurons each. We sampleNr = 80000 residual
training points (xi, ti) ∈ [0, L]× [0, T ] using Latin Hypercube
Sampling (LHS). We select Nb = 82 equally-spaced boundary
training points (xi, ti) ∈ {0, L}× [0, T ], and N0 = 41 equally-
spaced initial training points (xi, ti) ∈ [0, L]× {0}. We then
train both networks simultaneously using the loss (2). At the
beginning of each epoch, the entire set of Nr residual points
is shuffled and divided into 20 minibatches of Nr/20 = 4000
points each. We evaluate the integral in the cost objective
(20) using Monte Carlo integration with the same minibatch
of residual training points used in evaluating the residual loss
component. We use the scalar weights wr = wb = w0 = 1
and wJ = 10−3, choose an initial learning rate of 10−3 and
decrease it by a factor 10 after 10k and 20k epochs of training, for a total of 30k epochs. The
convergence of the loss components during training are shown in Figure 4.

B.3 Implementation of the adjoint-based solution

The adjoint KS equation and the gradient of the cost objective can be derived by applying the
methodology outlined in Appendix A.2. The adjoint KS equation, obtained from (13) using integration
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by part, is

−∂λ
∂t
− u∂λ

∂x
+
∂2λ

∂x2
+
∂4λ

∂x4
= −u(x, t), (21)

where λ(x, t) is the adjoint field and u(x, t) is the forward field that solves the KS
equation (17) given the control (forcing) f(x, t). The adjoint equation is supple-
mented with periodic boundary conditions and the terminal condition λ(x, T ) = 0.

Figure 5: Cost objective during
DAL iterations.

Finally, the total gradient of the cost objective with respect to
the control f(x, t), obtained from (15), is

dJ (u, f)

df
= 2σf(x, t)− λ(x, t). (22)

The DAL optimal solution is obtained by iteratively solving the
KS equation and its adjoint, updating the control f(x, t) at each
iteration with the gradient descent formula (16). A spectral
solver with 256 Fourier modes and semi-implicit Euler scheme
with dt = 10−4 is used to solve the forward and adjoint KS
equations. We start the iterations with a zero initial guess for
the control f(x, t) and employ a learning rate β = 0.001. The
convergence of the cost objective during the DAL iterations is
shown in Figure 5.

C Navier-Stokes equations

C.1 Problem formulation

x

y

Γi Γo

Γw

Γb

Γs

Lx = 1.5

Ly = 1

x = 0.5 x = 1

uin(y)
vb(x) = 0.3

vs(x) = 0.3

Ω

Figure 6: Setup of the domain.

We consider the steady 2D incompressible
Navier-Stokes (NS) equations in the geometry
depicted in Figure 6. In non-dimensional form,
these equations are expressed as

(u · ∇)u = −∇p+
1

Re
∇2u, (23a)

∇ · u = 0, (23b)

where the velocity field u(x) =
(u(x, y), v(x, y)) and pressure field
p(x) = p(x, y) are defined in the rectan-
gular 2D domain Ω = (Lx, Ly) = (1.5, 1), and
we choose the Reynolds number Re = 100.
The boundary conditions for the velocity are

u = (uin(y), 0) on Γi, (24a)
u = (vb(x), 0) on Γb, (24b)
u = (vs(x), 0) on Γs, (24c)

(n · ∇)u = (0, 0) on Γo, (24d)
u = (0, 0) on Γw, (24e)

while the boundary conditions for the pressure are

(n · ∇)p = 0 on Γi ∪ Γb ∪ Γs ∪ Γw, (25a)
p = pa on Γo, (25b)

where n denotes the unit surface normal, and pa is a reference pressure that we set to zero. These
boundary conditions correspond to a prescribed horizontal velocity profile uin(y) at an inlet Γi, a
prescribed velocity profile vb(x) and vs(x) at two blowing and suction boundaries Γb and Γs, an
outflow boundary Γo and no-slip walls Γw. We choose vb(x) = vs(x) = 0.3, and uin(y) will be
specified later. Although pressure boundary conditions are not usually stated explicitly, they do affect
the solution and we will therefore implement the same boundary conditions for the PINN and the
adjoint-based solutions.

10



(c)

(a)

(b)

Figure 7: OpenFOAM forward solution of the Navier-Stokes equa-
tions. (a) Velocity magnitude and streamlines. (b,c) Velocity profile
at the outlet Γo.

Using a parabolic inlet velocity
profile uin(y) = uparab(y) =
4y(1−y)/L2

y produces the flow
field shown in Figure 7, ob-
tained with the finite-volume
code OpenFOAM on a mesh
of size 400 elements (20 ×
20). The finite-volume solu-
tion is carried out using the
icoFOAM solver, which imple-
ments the SIMPLE algorithm
[23] for pressure and velocity
decoupling. We observe that
the blowing and suction bound-
aries deflect the parabolic in-
let profile as the fluid moves
through the channel, resulting in
a skewed velocity profile at the
outlet, reaching its maximum
value at y = 0.7.

Is it then possible to find an
inlet velocity profile uin(y) so
that the outlet velocity profile is
close to parabolic? This moti-
vates the control problem

u∗in = arg min
uin

J (u) subject to (23), (24) and (25), (26)

where the objective cost is

J (u) =
1

2

∫ Ly

0

(|u(Lx, y)− uparab(y)|2 + |v(Lx, y)|2)dy, uparab(y) =
4

L2
y

y(1− y). (27)

C.2 Implementation of the PINN solution

x

y

Γi Γo

Γw

Γb

Γs

Lx = 1.5

Ly = 1

x = 0.5 x = 1

uin(y)
vb(x) = 0.3

vs(x) = 0.3

Ω

Figure 8: Loss components during
training of the PINN solution.

The PINN solution is obtained by representing u(x, y), v(x, y),
p(x, y) with a single network containing 5 hidden layers of
50 neurons each, and the control inlet profile ui(x, t) with a
another neural network consisting of 3 hidden layers of 30
neurons each. We sample Nr = 40000 residual training points
(xi, yi) ∈ Ω using LHS with 30000 points distributed in the
entire domain and 10000 points distributed in 4 boxes of size
0.1 × 0.02 adjacent to the endpoints of Γb and Γs. We select
Nb = 328 boundary training points (xi, yi), 82 of them equally
spaced along the vertical boundaries Γi and Γo, and the rest
equally spaced along the horizontal boundaries Γb, Γs, and
Γw. We then train both networks simultaneously using the
loss (2). At the beginning of each epoch, the entire set of
Nr residual points is shuffled and divided into 10 minibatches
of Nr/10 = 4000 points each. We evaluate the integral in
the cost objective (20) using the midpoint rule at NJ = 41
equally-spaced training points on the outflow boundary Γo. We use the scalar weights λu-mom

r = 1,
λv-mom
r = 2, λcont

r = 1, wb = 100, and wJ = 3. We choose an initial learning rate of 10−3 and
decrease it by a factor 10 after 100k and 200k epochs of training, for a total of 300k epochs. The
convergence of the loss components during training are shown in Figure 8.

C.3 Implementation of the adjoint-based solution

The adjoint NS equation and the gradient of the cost objective can be derived by applying the
methodology outlined in Appendix A.2. We use the Einstein notation so that the velocity field will

11



be denoted u(x) = (u1(x1, x2), u2(x1, x2)). The augmented objective functional, i.e. Lagrangian,
corresponding to the control problem (26) is

L = J +

〈
λi,

∂uiuj
∂xj

+
∂pi
∂xi
− 1

Re

∂2ui
∂x2

j

〉
+

〈
Π,−∂uj

∂xj

〉
, (28)

where λ = (λ1(x1, x2), λ2(x1, x2)) and Π are adjoint velocity and pressure fields, respectively, and
the inner product 〈·, ·〉 is defined as

〈a, b〉 =

∫
Ω

a(x)b(x)dV. (29)

The variation of the Lagrangian is

δL = δJ +

〈
λi, δuj

∂ui
∂xj

+ uj
∂δui
∂xj

+
∂δpi
∂xi

− 1

Re

∂2δuj
∂x2

j

〉
+

〈
Π,−∂δuj

∂xj

〉
. (30)

For optimality δL = 0 should be satisfied. Using vector calculus and integration by parts for each
term, appropriate Euler-Lagrange equations can be derived. For instance,〈

λi, δuj
∂ui
∂xj

〉
=

〈
δui, λj

∂uj
∂xi

〉
(31a)〈

λi, uj
∂δui
∂xj

〉
= −

〈
δui, uj

∂λi
∂xj

〉
+

∫
∂Ω

λiδuiujnjdS (31b)〈
λi,

1

Re

∂2δui
∂x2

j

〉
=

〈
δui,

1

Re

∂2λi
∂x2

j

〉
+

∫
∂Ω

1

Re

(
nj
∂λi
∂xj

δui − nj
∂δui
∂xj

λi

)
dS, (31c)

and so on for the other terms. Here, n = (n1, n2) is the normal unit vector of the surface. From the
volumetric integrals, the adjoint equations are recovered as

λj
∂uj
∂xi
− uj

∂λi
∂xj
− 1

Re

∂2λi
∂x2

j

+
∂Π

∂xi
= 0, (32a)

∂λj
∂xj

= 0. (32b)

Setting surface integrals to zero and decomposing these integrals into normal and tangential com-
ponents, we obtain the corresponding boundary conditions for the adjoint velocity and pressure as

λ1 = λ2 = 0, (n · ∇)Π = 0 on Γi ∪ Γb ∪ Γs ∪ Γw, (33a)

u1λ2 +
1

Re

∂λ2

∂x1
= −u2 on Γo, (33b)

u1λ1 +
1

Re

∂λ1

∂x1
= u1 − uparab + Π on Γo. (33c)

x

y

Γi Γo

Γw

Γb

Γs

Lx = 1.5

Ly = 1

x = 0.5 x = 1

uin(y)
vb(x) = 0.3

vs(x) = 0.3

Ω

Figure 9: Cost objective during
DAL iterations.

Finally, the total gradient of the cost objective with respect to
the control is given by

dJ (u)

duin
= Π(0, x2)− 1

Re

∂λ1

∂x1
(0, x2), (34)

where all values are evaluated at the inlet. For more details, the
reader is invited to refer to [20].

We implement the DAL procedure in the icoFoam solver of
OpenFOAM. The DAL optimal solution is obtained by iter-
atively solving the NS equations and their adjoint, updating
the control uin(y) at each iteration with the gradient descent
formula (16). The adjoint equations are solved with the same
numerical methods as the direct equations. We choose the
parabolic velocity profile uparab(y) as initial guess for the con-
trol uin(y) and employ a learning rate β = 0.001. The conver-
gence of the cost objective during the DAL iterations is shown
in Figure 9.
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