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Abstract  
Models that correctly describe the dynamic behavior of 

vapor compression cycle at low or zero refrigerant mass 

flow rates are valuable because they can be used to 

handle low load, on/off cycling and inactive component 

conditions. However, low- or zero-flow simulation 

imposes significant computational challenges because 

of high frequency oscillations in mass flow. We explore 

techniques that may be used for improving robustness 

and performance of low- or zero-flow simulation. 

Comparisons are conducted to demonstrate the efficacy 

of the proposed techniques. It is shown that these 

techniques can result in simulations that are more robust 

and significantly faster than real-time.  

Keywords: Modelica, zero flow, heat exchanger 

modeling, dynamic simulation, vapor compression cycle 

1 Introduction 

Numerical simulations are widely employed in the 

modern day HVAC&R (Heating, Ventilation, Air-

Conditioning and Refrigeration) industries to assist in 

the design and optimization of advanced products in 
response to the increasing pressure of cost reduction and 

high-energy efficiency standards. With the aid of 

simulation tools, design engineers can evaluate a 

conceptual product design on computers instead of 

building real systems and conducting expensive tests in 

the laboratory, thereby shortening the time required for 

design cycles.  

In general, vapor compression system simulations 

can fall into one of two categories: steady-state or 

transient. The evaluation of the steady-state, full-load 

performance of vapor compression systems is often used 

to determine the system capacity and size. However, 

vapor compression systems rarely operate under steady-

state conditions, and dynamic models are also used to 

study a realistic representations of the system response.  
These models are typically used for two types of studies: 

(1) examining small-scale changes in the refrigerant-

side behavior, such as flow instabilities, and (2) 

examining larger system-level changes, such as system 

behavior during start-up, shut-down, or defrosting.  

While many models can typically reproduce small-scale 

behavior quite accurately, the increased complexity and 

nonlinearity associated with large-scale transients often 

results in predictions that have much lower accuracy. 

Low and zero-flow phenomena are often encountered 

in the operation of vapor compression systems with 

large transients, including on/off cycling of air-

conditioning systems, operating mode switch of variable 

refrigerant flow systems, and reverse-cycle defrosting of 

heat pump systems as examples. Simulation of system 

dynamics under such conditions presents numerical 
challenges, such as problems with robustness and an 

attendant increase in simulation time due to direction 

switching flows. In recognition of these problems, 

Dermont et al. (2016) proposed an approach to improve 

zero flow simulation based on a systematic analysis of 

heat transfer coefficients. Although this approach was 

shown to increase simulation robustness under (near) 

zero flow conditions, the presented use cases ran much 

slower than real time. In his sole-authored paper, 

Zimmer (2020) suggested that regularization schemes 

were required to improve model robustness against zero 

mass flow without giving further details. Li (2020) 

discussed the computational improvement from table-

based refrigerant property calculation models with 

analytical Jacobians. However, the implementation of 

their methods is a long-term task and requires 
significant effort. We are thus motivated to explore 

effective numerical techniques to improve the 

performance of zero-flow simulations, especially 

focusing on robustness and improvements in the 

simulation speed, with a goal of achieving faster than 

real-time dynamic simulation. 

The remainder of the paper is organized as follows. 

In Section 2, we present a regularized pressure drop 

model that has significant benefits for these on/off 

transient simulations. In Section 3, we discuss the 

advantages and disadvantages of static and dynamic 

heat transfer coefficient models. In Section 4, we 

describe the single pressure heat exchanger model and 

its potential to speed up the zero-flow simulation. 

Conclusions from this work are then summarized in 

Section 5. 



2 Pressure Drop Model

The finite volume method is often used to discretize the 

governing equations that describe the dynamics of 

refrigerant flow because it has been highly successful in 

approximating the solution of a wide range of thermal-

fluid systems and maintaining quantity conservation. In 

many of these types of models, a staggered grid scheme 

is utilized to decouple the mass and energy balance 

equations from the momentum balance equation. As a 

result, the mass and energy balances are calculated 

within the volume cells while the momentum balance is 

calculated within the flow cells, as depicted in Fig. 1. 

Figure 1. Staggered grid scheme

Since the inertia term, dynamic pressure wave and 

gravity effect in the momentum equation are usually of 

minor importance in these applications, they are often 

neglected in heat transfer analyses to reduce the 

modeling complexity (Brasz and Koenig, 1983). As a 

result, the discretized governing equations for 1-D flow 

are often given as
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Pressure and specific enthalpy are often selected as 

state variables to avoid non-linear algebraic equations 

when they are the independent properties in the media 

models. The equations of mass and energy can then be 

rewritten using the time-derivative of pressure and 

specific enthalpy based on the chain rule. 

It is evident from Eq. (3) that the pressure difference 

between adjacent volumes is solely determined by the 

frictional pressure loss and mass flow rates, which are 

algebraic variables. The frictional pressure drop is often 

a complex nonlinear function of Reynolds number and 

thus mass flow rate, and is often impossible to invert 

analytically. Since the pressures in each control volume 

are known at each time step, numerical iterations may 

be required to solve mass flow rate based on pressure 

difference, resulting in slower simulations. 

Unlike the steady-state models that are often used for 

system design and require high prediction accuracy, 

dynamic models are widely used over much wider 

operating ranges and thus require high robustness and 

high efficiency, which is sometimes achieved at the 

expense of accuracy or fidelity to published frictional 

pressure loss correlations (Idelchik, 1986). Therefore, 

simplified models are often used to reduce modeling 

complexity and improve simulation speed. Among 

those, the following model approximating the frictional 

pressure loss (Laughman and Qiao, 2018) is expressed 

as
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where Dp0 and !" # are the parameters in the nominal 

condition, and K and b (often greater than 1) are curve-

fitting constants. This relation is not only less nonlinear 

than the original correlation-based relations, but it is 

also easily invertible and can allow the pressure loss to 

be calculated as a function of the mass flow rate, or vice 

versa. As such, the resulting system simulations have

much faster performance, since the nonlinear

dependence on the variety of input variables is removed 

from the relation and the integrator can take much larger 

steps. The derivative of mass flow rate with respect to 

pressure drop from Eq. (4) can be computed as
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Eq. (5) suggests that the mass flow becomes 

increasingly sensitive to pressure drop as it approaches 

zero and eventually the derivative becomes infinite 

when mass flow is zero. This limit causes trouble with 

Newton type nonlinear equation solvers, since solutions 

are often iterated in the following manner:
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Eq. (6) makes it clear that the step size decreases with 

the increases in the magnitude of the derivative. When 

the magnitude of this derivative approaches infinity, the 

time step is reduced to zero. The point with infinite 

derivative is often called singularity point. In 

consequence of this behavior, the simulation often stalls 

for off-cycle conditions of vapor compression systems 

in which mass flow rate is extremely low. A 



conventional remedy for this behavior is to replace the 

singular part with locally non-singular substitute; this 

process is often referred to as regularization. According 

to Dermont et al. (2016), a regularized pressure drop 

correlation is necessary for a complex thermo-fluid 

model to compute under zero flow conditions. The built-

in implementation of power function that employs such 

regularization for terms in Eq. (4) can be found in 

Modelica.Fluid.Utilities.regPow. 

 
function regPow 

  extends Modelica.Icons.Function; 

  input Real x; 

  input Real a; 

  input Real delta=0.01; 

  output Real y; 

algorithm  

  y := x*(x*x+delta*delta)^((a-1)/2); 

end regPow; 

 

This regPow function approximates $%&'()*|)|+ and is 

regularized with finite derivatives around the singular 

point. In this function, the parameter delta is used to 

specify the regularization range. When abs(x) << 

delta, the regularization results in a linear 

approximation for the original function. Although the 

built-in implementation successfully eliminates the 
singularity point, it can be further improved. 

Consequently, one more parameter can be added to 

regPow so that different types of regularization can be 

formulated.  

 
function regPowGen 

  extends Modelica.Icons.Function; 

  input Real x; 

  input Real a; 

  input Real delta=0.01; 

  input Real b=1; 

  output Real y; 

algorithm  

  y := x^b*(x*x+delta*delta)^((a-b)/2); 

end regPowGen; 

 

With different values for the parameter b, different 

approximations can be obtained for the original 

function. When b = a, the regPowGen function is 

equivalent to the original power function without 

regularization. With b = 1, the function is the same as 

the built-in function regPow. Fig. 2 shows different 

regularization schemes for the pressure loss relation in 

the neighborhood around the singularity point. Without 

regularization, the derivative at the origin is infinite and 

the mass flow rate is extremely sensitive to the change 

in pressure loss around the singularity point, which can 

cause simulation of low or zero flow conditions to crash. 

The simulation performance does improve with the 

built-in approach, but is still far from satisfactory 

because small pressure differences can still result in 

large variations in mass flow. With b = 3, a cubic 

approximation is used around the singularity point and 

the mass flow rate becomes far less sensitive to pressure 

differences so that the solver can take much larger step 

sizes. 

To evaluate the efficacy of different types of 

regularization, off-cycle transients of a room air-

conditioning system, illustrated in Fig. 3, were 

simulated. The system ran steadily before it was shut 

down at 500 sec. The off-cycle period then lasted for 

4500 sec and the simulation ended at 5000 sec. As 

shown in Fig. 4, adequate regularization can make a 

substantial improvement to the simulation performance. 

With the built-in regPow function for the simplified 

pressure loss relation, it took more than 23000 sec of 

CPU time to finish a 5000 sec simulation. However, 

with modified regularization scheme (b=3), it only took 

around 1700 sec to finish the simulation and CPU time 

was reduced by more than 10 times. Reducing the 

sensitivity of the mass flow rate to the pressure 

difference around the singularity point can thus be a key 

for faster simulation of low or zero flow conditions. No 

changes in the component models were required with 

the proposed regularization scheme. 

 

 

Figure 2.  Different types of regularization for pressure 

loss relation 

 

 

Figure 3.  Modelica model of a room air-conditioning 

system 

dp/dp0

No regularization (b=a)

Built-in regularization (b=1)

Modified regularization (b=3)



Figure 4.  CPU time vs. simulation time with different 

types of regularization

3 Heat Transfer Coefficient Model

The description of local heat transfer coefficients

(HTCs) in the simulation models of thermofluid systems 

can be particularly challenging, as the correlations are 

usually formulated with accuracy as the primary 
concern, and with little regard for computational 

considerations. Consequently, they can be difficult to 

incorporate into system-level models of thermofluid 

systems as they may be extremely nonlinear.

Meanwhile, these correlations are usually defined only 

for specific flow conditions or refrigerant phases, so that 

there will inevitably be significant discontinuities 

between regions of the validity for specific correlations. 

Dynamic simulation presents additional difficulties as 

the unknown refrigerant mass flow rates, pressures, and 

specific enthalpies preclude the use of any initial 

information about the phase of the refrigerant 

(condensation, evaporation, liquid, or vapor) or the flow 

regime (laminar or turbulent), so the correlations must 

be defined in a manner which encompasses a wide range 

of flow conditions.

One alternative approach that has been successfully 

used to mitigate the nonlinearities of detailed heat 

transfer coefficient correlations has been the creation of 
simplified models that capture the general trends of 

those detailed correlations without implementing their

complexity. These simplified correlations can be 

justified via the improved numerical performance of the 

simulation models, which may not even function with 
some of the complex correlations found in the literature, 

as well as the fact that the overall heat transfer 

coefficient for many refrigerant-to-air heat exchangers 

is dominated by the air-side heat transfer coefficient, 

rather than the refrigerant-side heat transfer coefficient. 

A wide variety of forms can be used for these 

relations, depending on the required parametric 

dependence or level of fidelity to the behavior of the 

original correlations. For example, we used a simplified 

heat transfer relation for each phase according to
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b
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The constants a0 for the liquid, two-phase, and vapor 

flow regions were calculated by coarsely approximating 

the behavior of the full correlations over their regions of 

validity, and a trigonometric interpolation method was 

used to smoothly transition between phases (Richter, 

2008).

Laughman and Qiao (2018) proposed the 

incorporation of dynamics into the closure models to 

decouple the heat transfer coefficient from the other 

state variables. This makes the closure variables into 

state variables of the system, and will decouple the value 

of the closure variable in the fluid computations with the 

value of the closure variable calculated from the other 

state variables. In the case of the heat transfer

coefficient, this may be calculated by

( )1
ˆ

d

dt

a
a a

t
= - (8)

where ,- represents the algebraic heat transfer 

coefficient which can be calculated using either detailed 

or simplified relations, and a represents the filtered

version of the heat transfer coefficient. The parameter t
should be tuned to be substantially faster than other time 

constants of the system in order to ensure that it will not 

change the system response.

This dynamic heat transfer coefficient model has 

proved to be effective at eliminating the spurious 

oscillations caused by the high gain of .,/.) in the 

transition region from vapor phase to two-phase and 

increase model robustness. However, for the case of off-

cycle simulation, the filtered heat transfer model can 

potentially slow down the simulation because it 

increases the number of state variables in the system. As 

demonstrated in Fig. 5, it took around 3700 sec CPU 

time to finish the same off-cycle simulation of the air-

conditioning system described in Fig. 3 with filtered 

heat transfer coefficient model, which was 2 times 

longer than the CPU time of the simulation with static 

heat transfer coefficient model. It was evident that the 

filtered model slowed down the simulation remarkably 

for the first 500 sec after the system was shut down. 

During this period of time, the refrigerant mass flow 

rates declined dramatically, resulting in a rapid change 

in heat transfer coefficients. Setting ‘log norm true’ 

during the running simulation when using the Modelica 

compiler Dymola 2020x (Dymola, 2020) can determine 

that some of heat transfer coefficient states were causing 

the integrator to be slow. In summary, the filtered heat 

transfer coefficient model can help improve model 

robustness and eliminate the high-frequency numerical 

oscillations, but not necessarily speed up the off-cycle 

simulation. It is recommended that modelers try both 
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static and filtered approaches to the heat transfer 

coefficients to choose a more appropriate approach on a 

case-by-case basis. 

Figure 5.  CPU time vs. simulation time with different 

HTC models

4 Single Pressure Heat Exchanger 

Model

Heat exchangers usually require particular attention in 

the modeling of vapor compression cycles because they 

are the main components where exchange of mass, 

energy and momentum take place. Accurate 

mathematical and physical representations for heat 

transfer and fluid flow phenomena in heat exchangers

are always crucial for the overall cycle simulation. In 

general, three modeling paradigms are often used for 

heat exchanger simulations. In order of increasing 

complexity and sophistication, they are the lumped 

parameter method, the moving boundary method and 

the finite volume method, respectively.

Lumped parameter models simplify the description of 

the characteristics of an inherently spatially distributed 

physical system with mean properties that are assumed 

homogeneous throughout the heat exchanger by 

averaging out the spatial variations. With this approach, 

only the overall mass and energy balances (2 equations)

are considered and the thermal behavior of heat 

exchangers is modeled as a single control volume. Since 

this approach disregards the spatial variation in 

properties and the distinct differences of the heat 

transfer mechanisms between single-phase and two-

phase, these models inevitably result in the most 

inaccurate predictions amongst these three modeling 

approaches. 

Recently, Qiao and Laughman (2022) developed a 

new low-order heat exchanger model based on the 

lumped parameter approach. Unlike conventional 

lumped parameter models, this new model assumes a 

distribution of refrigerant enthalpy so that the spatial 

variations of refrigerant properties such as density and 

specific enthalpy can be taken into account. The overall 

mass and energy balances to describe the refrigerant 

dynamics are given as
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It is assumed that refrigerant enthalpy varies 

exponentially in the heat exchanger. Therefore, the local 

refrigerant quality is determined by
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where z is the fraction of the heat exchanger covered by 

the portion from the inlet to the location of interest.

Fractions of vapor, two-phase and liquid zone can be 

readily computed with this enthalpy distribution profile. 

The mean specific enthalpy of refrigerant in the heat 
exchanger can also be determined by
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where 01 is the mean void fraction of the two-phase flow. 

Since 23 is a state variable and is known at each time 

step, Eq. (12) can be used to iterate hout so that the entire 

system is closed. The accuracy of the new models can 

be significantly improved with the addition of 

refrigerant enthalpy profile as compared to moving 

boundary models, but with minimum additional 

computational cost. A full description of this modeling 

approach, which is beyond the scope of the present 

work, can be found in the referenced paper.

In comparison, the moving boundary method is 

characterized by dividing the heat exchanger into 

different control volumes, each of which exactly 

encompasses a particular fluid phase (vapor, two-phase 

or liquid) and is separated by a moving boundary where 

the phase transition occurs. In contrast to the distributed 

parameter models, the number of control volumes in 

moving boundary models may vary because fluid phases 

can disappear or appear under large disturbances. These 

models may consist of at most three control volumes and 

at least one at a time (6 equations at most). The objective 

of such models is to capture the thermal behavior inside 

these control volumes and time-varying position of 
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phase boundaries. Moving boundary models generally 

result in much faster simulations compared to 

distributed parameter models due to their small size

while more accurately capturing the time-varying 

dynamics of these systems, but these models are 

inherently fragile due to their variable model structures.

For instance, moving boundary models cannot manage 

zero or reverse flows because these models are designed 

with the strict assumption that refrigerant flow enters the 

heat exchanger from one end, and leaves from the other. 

These models are either are either over- or 

underdetermined if these assumptions are violated (Qiao 

et al., 2016).

Finite volume heat exchanger models are particularly 

useful for describing spatially dependent phenomena 

and detailed component performance, such as the effect 

of local heat transfer and pressure drops or the branching 

and joining of refrigerant pipes as a result of particular 

circuiting configurations. As discussed earlier, finite 

volume models are comprised of an alternative sequence 

of volume cells and flow cells. The resultant modular 

nature allows great flexibility in system configurations, 

and different component models can be seamlessly 

linked together (Qiao et al., 2015). However, one of the 

disadvantages of this modeling approach is that it 

creates many dynamic pressure states. For a model with 
N control volumes, it has 2N dynamic states, i.e., N 

pressure states and N specific enthalpy states, resulting 

in N mass flow rates that need to be computed based on 

pressure differences. Therefore, 3N equations are 

needed to solve the model. Under off-cycle conditions, 

these N mass flow rates will all decline rapidly and each 

will enter the region where the mass flow rate is highly 

sensitive to pressure difference. This will inevitably 

increase the likelihood that the integrator will 

substantially reduce the step size during the solving 

process of the model. Based on this reasoning, it is 

anticipated that the off-cycle simulation can be greatly 

accelerated if the dependence of mass flow upon 

pressure difference can be removed. We thus propose a 

heat exchanger model with a single pressure state and 

the governing equations are given as 

,
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In this new modelling approach, the volume cells 

within the component model share the same pressure. 

The number of dynamic states is N+1, i.e., one pressure 

and N specific enthalpies. Mass flow rates between 

volume cells will be computed through the coupling 

between the equations of mass and energy (Qiao and 

Laughman, 2018). The momentum equation is therefore

not needed, so that the whole model consists of only 2N 

equations. It is worthwhile to point out that pressure 

drop between components is still taken into account in 

the system model, though the pressure drop is lumped 

together and calculated at the inlet or the outlet of the 

component model depending upon the model structure. 

As a result, the number of pressure states is significantly 

reduced, while the number of flow models calculating 

mass flow based on pressure differences is also 

decreased. These changes can substantially speed up the 

off-cycle simulation. 

With the modified regularization scheme for pressure 

loss relation, static heat transfer coefficient model, and 

single pressure heat exchanger model, the same off-

cycle simulation finished with around 200s of CPU 

time, which was 9 times faster than the conventional 

finite volume models, as shown in Fig. 6. The speedup 

improvement achieved using all of the techniques 

discussed in this work was substantial, given that the 

off-cycle simulation without any of these enhancements 

was more than 100 times slower. The discrepancies 

arising from the approximation of lumped pressure drop 

were minimal, as the system pressures equalize quickly 

under off-cycle conditions, and pressure drops between 

volume cells are negligible. Fig. 7 illustrates the suction 

and discharge pressure transients as well as compressor 

mass flow during off-cycle. The compressor mass flow 

instantly dropped to zero after system was shut down, 

and suction and discharge pressures came to an 

equilibrium shortly afterwards, which somewhat 

justified the key assumption of the proposed single

pressure heat exchanger modeling approach. 

Fig. 8 illustrates a vapor compression system with 

two evaporators, which was modified based on the 

results of the single-evaporator system described in Fig. 

3. To further demonstrate the efficacy of the proposed 

enhancement techniques for zero-flow simulation, we 

present another case study, in which the system 
described in Fig. 8 was operated normally for the first 

500 sec with two active evaporator branches, after 

which the first evaporator branch was turned off (the fan 

was off and the valve was closed) and the system 

continued running before being completely shut off at 

3000 sec. The changes in the actuators and the CPU time 

as a function of simulation time were given in Fig. 9. 

This simulation finished smoothly and only took 600 sec

of CPU time, indicating the effectiveness of the 

proposed techniques.



 

Figure 6.  CPU time vs. simulation time with different 

heat exchanger models 

 

 

Figure 7.  Pressure and compressor flow transients under 

off-cycle operation 

 

 

Figure 8.  A vapor compression system with two 

evaporators 

 

 

Figure 9.  Actuator changes and CPU time vs. simulation 

time for the system in Fig. 8 

5 Conclusions 

This paper explored a set of techniques to improve the 

robustness and speed for zero-flow simulation of vapor 

compression cycles. It was found that reducing the 

sensitivity of mass flow to pressure differences was an 

important key to accelerating the zero-flow simulation. 

This can be achieved by regularizing the pressure loss 

relation with cubic approximation in the neighborhood 

around the singularity point. We also recommend using 

a static heat transfer model because it reduces the 

number of dynamic states if no spurious oscillations 

appear in the simulation. Lumping refrigerant pressure 

drops at the inlet or outlet of heat exchangers or pipes 

also demonstrated value in further speeding up the zero-

flow simulation. These techniques proved to be efficient 

to handle refrigerant dynamics in on/off cycling and 

inactive component conditions. 
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