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Abstract
We present the design of a learning-based compliance controller for assembly operations for
industrial robots. We propose a solution within the general setting of learning from demon-
stration (LfD), where a nominal trajectory is provided through demonstration by an expert
teacher. This can be used to learn a suitable representation of the skill that can be general-
ized to novel positions of one of the parts involved in the assembly, for example the hole in
a peg-in-hole (PiH) insertion task. Under the expectation that this novel position might not
be entirely accurately estimated by a vision or other sensing system, the robot will need to
further modify the generated trajectory in response to force readings measured by means of a
force-torque (F/T) sensor mounted at the wrist of the robot or another suitable location. Un-
der the assumption of constant velocity of traversing the reference trajectory during assembly,
we propose a novel accommodation force controller that allows the robot to safely explore
different contact configurations. The data collected using this controller is used to train a
Gaussian process model to predict the misalignment in the position of the peg with respect
to the target hole. We show that the proposed learning-based approach can correct various
contact configurations caused by misalignment between the assembled parts in a PiH task,
achieving high success rate during insertion. We show results using an industrial manipulator
arm, and demonstrate that the proposed method can perform adaptive insertion using force
feedback from the trained machine learning models.
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Imitation and Supervised Learning of
Compliance for Robotic Assembly

Devesh K. Jha, Diego Romeres, William Yerazunis and Daniel Nikovski†

Abstract— We present the design of a learning-based compli-
ance controller for assembly operations for industrial robots.
We propose a solution within the general setting of learning
from demonstration (LfD), where a nominal trajectory is
provided through demonstration by an expert teacher. This can
be used to learn a suitable representation of the skill that can be
generalized to novel positions of one of the parts involved in the
assembly, for example the hole in a peg-in-hole (PiH) insertion
task. Under the expectation that this novel position might not
be entirely accurately estimated by a vision or other sensing
system, the robot will need to further modify the generated
trajectory in response to force readings measured by means of
a force-torque (F/T) sensor mounted at the wrist of the robot
or another suitable location. Under the assumption of constant
velocity of traversing the reference trajectory during assembly,
we propose a novel accommodation force controller that allows
the robot to safely explore different contact configurations. The
data collected using this controller is used to train a Gaussian
process model to predict the misalignment in the position of the
peg with respect to the target hole. We show that the proposed
learning-based approach can correct various contact configura-
tions caused by misalignment between the assembled parts in a
PiH task, achieving high success rate during insertion. We show
results using an industrial manipulator arm, and demonstrate
that the proposed method can perform adaptive insertion using
force feedback from the trained machine learning models.

I. INTRODUCTION

Mating parts under tight tolerances (see Figure 1) is one of
the most important operations in robotic assembly. Over the
last several decades, robots have become very precise in per-
forming pick and place operations. However, complications
arise when the positions of the parts involved in assembly
vary between repetitions of the operation. This can happen in
cases where the parts are deposited onto a surface by a feeder,
and each time end up in a different position; also, in a case
where the parts arrive on a moving conveyor belt. In such
cases, industrial vision cameras can be used to determine the
parts’ position. However, the determined position of the parts
by the industrial vision cameras is usually fairly inaccurate,
often by several millimeters. This is significantly more than
the required tolerances during assembly. For this reason,
standard compliance (e.g., stiffness) controllers usually fail
to perform the operation successfully. Besides, even if the
robotic device knows the exact position of the parts, its
path (via points) still needs to be modified in order to
accommodate the variation in the position of the parts. In
practice, such a modification is performed by means of
dedicated software that takes as input the changed position
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Fig. 1: Experimental setup with a Mitsubishi Electric Factory Automation
(MELFA) RV-5AS-D Assista 6 DoF manipulator arm in a possible contact
configuration with the hole environment. The diameter of the peg is ap-
proximately 20 mm and the tolerance is approximately 2.0 mm. The figure
also shows the industrial vision system that was used in the experiments
for detecting the hole.

of the parts and outputs a new path for the robot. However,
developing such dedicated software is typically very difficult
and laborious, and is currently one of the main contributors
to the high cost of deploying and re-tooling robotic devices
for new assembly operations.

Therefore, there is a strong industrial need for methods for
creating robot controllers that can accommodate varying po-
sitions of assembly parts with minimal or no programming.
That is, the robot controller should be able to generalize over
the positions of the parts. Arguably, generalization is one
of the hallmarks of intelligence, be it human or artificial,
and endowing robots with the ability to generalize over the
starting conditions of assembly tasks would amount to a
qualitatively different type of intelligent assembly function-
ality. Such a functionality would match the ability of human
workers to learn a new assembly skill and apply it to many
new situations.

In this paper, we present a two-fold approach for assembly



so that the agent can generalize to a different initial condition
and accommodate uncertainty in the final goal position.
A demonstration is used to learn the approach movement
of the robot from any initial position to a novel target
position. Then, a supervised learning method is used to learn
a force-feedback policy to accommodate and correct for the
uncertainty in the estimated target position. The purpose
of the force-feedback policy is to interpret the contact
force information and correct the possible misalignment.
A commonly used prototypical robot assembly operation
is the insertion of a peg into a hole (see Figure 1), and
we will use this task as an example when describing and
evaluating the algorithm. We present a method that allows
a robot equipped with a camera and a force/torque sensor
mounted on its wrist to learn this operation, with minimal or
no programming, even when the estimates of the positions
of the parts (returned by the camera) are not very precise.
We assume that a human instructor can provide at least
one demonstration of a successful operation, using the robot
itself.

Contributions: Figure 2 provides an abstract idea of the
proposed method for peg-in-hole assembly. To enable safe
sustained contacts with the environment during insertion
attempts, we propose and describe the design of a safe
accommodation controller that limits contact forces within
desired bounds. We use our novel accommodation controller
as the low-level controller during exploration as well as
operation. The proposed method uses this accommodation
controller to maintain safe contact during the data collection
process. A machine learning model then learns a mapping
from the (quasi-)static contact wrench to the desired tra-
jectory correction to perform insertion. In particular, the
proposed paper has the following contributions:

• We present a design of a learning-based adaptive con-
troller to perform insertion with incorrect knowledge of
the goal location, which can achieve near-perfect inser-
tion performance. This is demonstrated on a physical
robotic system with industrial-grade vision systems.

• We present the design of a stable accommodation con-
troller that allows maintaining contact with the external
environment while ensuring contact forces will always
stay within desired bounds when following a dynamic
reference trajectory.

II. RELATED WORK

Research on robotic assembly has a long history, and a lot
of this research has used PiH insertion as a prototypical task.
The main reason this task is difficult to automate is that when
the peg and hole are in contact, even a small misalignment
between their correct positions would cause a controller that
tracks a desired trajectory defined in terms of robot positions
or applied torques at the joints to result in very large contact
forces that might break the robot and/or the parts. What is
needed is a method that adjusts the motion of the parts in
response to contact forces. Such techniques are also known
as adaptive assembly strategies (AAS) ([1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]).

Fig. 2: The proposed method for design of a force controller-based learning
method for part assembly. The proposed method uses an accommodation
controller as a low-level controller for safe interaction during data collection.
The data collected during exploration is used to train regression models to
correct for the misalignment between the peg and the hole. This machine
learning model-based controller is used at the higher level to correct the
misalignment, so as to perform insertion.

It is generally desirable that a controller be able to make an
active interpretation of force/torque (F/T) signals to generate
corrective actions. Several ideas have been proposed in the
literature to design controllers to compensate for larger
misalignment during insertion. The idea in many of these
controllers is to use a mapping from the contact wrench
measured at the wrist of the robot to a correction in the
motion for the robot. For PiH problems, in rare instances,
it is possible to compute this mapping analytically — for
example, when the axes of a round peg and hole are aligned
perfectly, the point around which moments measured by the
F/T sensor lies on axis of the peg, and at least some overlap
between the peg and hole exists, it is possible to calculate
the direction to the center of the hole using a closed-form
expression ([11]). However, this solution requires careful
calibration of the sensing system, as changing the location of
the peg with respect to the end tool of the robot and its F/T
sensor will affect the sensed force signature in a given contact
configuration and render the analytical formulae incorrect.

Another approach for obtaining the mapping is to use
machine learning algorithms, such as supervised learning or
reinforcement learning. An early method for programmed
compliance proposed in [12] used linear mappings in the
form of linear admittance or accommodation matrices, much
like earlier compliance (e.g. stiffness) controllers. Later,
it was demonstrated that for insertion tasks, the set of
specified appropriate examples of corrective action cannot
be represented by a linear mapping, in general, and the use
of nonlinear regression models such as neural networks was
proposed ([13], [14]). This further significantly expanded
the representation power of the learned controller, but the
question remained how to come up with this set of ex-
amples of correct response to contact forces. To this end,
a reinforcement learning (RL) solution based on a process
of trial and error was proposed in [4], leading to a very
impressive solution of a PiH problem with tight tolerances
that were orders of magnitude tighter than the accuracy



(repeatability) of the used robot. However, this method still
assumed accurate knowledge of the goal state, so it is not
directly applicable to the problem of insertion with uncertain
goal state.

Following the seminal work in [4], there have been
numerous works using machine learning models for de-
signing adaptive controllers. End-to-end visuomotor training
of robots by means of deep RL was demonstrated in [6],
[8]. More recently, there has been some work on using
tactile sensors for designing feedback policies to perform
insertion [15], [7]. The use of RL with recurrent neural
networks for insertion problems was demonstrated recently
in [9]. However, although being a very powerful general
method for learning control policies, RL is also known
for its unfavorable sample complexity, making it a less
attractive choice for learning on actual physical systems.
Compared with all these works, we present an approach
that uses a combination of LfD and a supervised learning-
based method for local adjustment to the LfD trajectory that
is very sample-efficient in its interaction with the physical
equipment. Furthermore, we also present the use of a special-
purpose accommodation controller to safely interact with the
environment during exploration for data collection and actual
insertion operations.

III. PROBLEM STATEMENT

Peg-in-hole insertion is an entire class of problems whose
difficulty can vary widely depending on the type of misalign-
ment present (positional only or positional plus directional),
its magnitude (whether the peg is already partially in the
hole, or if not, whether the peg and hole at least overlap
some), the tolerance of the insertion operation, whether
the parts are chamfered, what kind of sensors are used
(e.g., visual, force, tactile), what their relative accuracy is,
etc. ([16]). An additional consideration is how the robot is
controlled (full joint torque control or position control only).

In this paper, we are considering a version of the problem
that corresponds to fairly typical circumstances often en-
countered in practice. We are designing controllers to handle
inaccuracies in the goal position that are much larger than
the tolerance of insertion, but still smaller than the size of
the parts being inserted. This situation arises, for example,
when we use a camera to estimate the position of the
hole. The positional estimation error of modern cameras for
observed objects in the world frame tends to be on the order
of several millimeters, which is much larger than typical
insertion tolerances in assembly (often sub-millimeter), but
still less than the radius of the parts being inserted. This
assumption entails that if the robot executes in open loop
a motion to where it believes the goal state is, even if the
insertion does not succeed and the peg collides with the rim
of the hole, the resulting contact configuration will have the
peg and hole overlap to at least some degree, allowing the
measured force signature to be used to correct the estimate
of the goal position. (If this condition is not true, and there
is no overlap, a single F/T reading cannot disambiguate
the contact configuration, and the controller must resort to

integrating multiple readings, or perform search; this is a
much more difficult version of the problem that we are not
exploring in this paper, and is usually addressed by very
different kinds of algorithms in the research community.)
In addition, in this paper, we are assuming that there is no
(or very minimal) directional misalignment between the peg
and the hole, which corresponds to the case when the hole
moves on a plane (for example, a work surface in a factory),
changing only its position, but not the angle of its axis with
respect to the plane.

In terms of contact sensors, we are considering a
force/torque sensor mounted at the wrist of the robot. Fur-
thermore, we are using industrial manipulators that are con-
trolled only in (possibly compliant) position-control mode,
that is, we do not assume the availability of direct joint-
torque-control mode. This version of the problem matches
almost exactly the one used in recent work reported in [9],
as well as earlier work on robotic assembly [11].

IV. PROPOSED METHOD

The method proposed in this paper uses two different
machine learning methods, as described below. One of these
methods learns a nominal trajectory for insertion in the form
of a dynamical movement primitive (DMP, [17]), and adjusts
it appropriately for novel start and goal states. The second
method is based on a form of active supervised learning
that collects training examples relating various displacements
of the peg from its correct position for insertion and the
F/T observations measured as a result, by means of active
experimentation with the peg and hole.

Learning starts by collecting one or more demonstrations
of the operation by an expert. The result of the demonstra-
tion(s) is one or more trajectories in Cartesian space of the
end tool of the robot of the form x(t), t ∈ [0, T ], x(t) ∈ R3.
Pose of the parts can be estimated by means of one or more
cameras. Pose estimation by means of computer vision is an
active area of research ([18]), and various methods provide
different trade-offs between cost, speed, and accuracy. We
assume that there exists a pose estimation module which
is properly calibrated with respect to the start and end of
the demonstration trajectory x(t), that is, x0 = x(0) and
g = x(T ) are indeed the estimates returned by the camera.

After one or more trajectories x(t) have been recorded,
a dynamic movement primitive (DMP) learning algorithm is
used to learn a separate DMP for each of the components
of x(t) ([17]). The resulting set of DMPs can generate
a new desired trajectory xr(t), given a new goal position
gd, by integrating the DMP forward in time. This kind of
generalization over the goal state is an essential function
of DMPs. If the new desired goal state gd was indeed
the correct one, then following the new desired trajectory
xr(t) would presumably reach the new goal state. However,
the estimate of the desired new goal state gd is usually
incorrect, because this estimate depends on the new position
of the hole, as described below. Any error in the estimate
of the position of the hole translates into an error in gd.
For this reason, the control law executed by the robot needs



to provide compliance. We use a control law of the form
xc(t) = xr(t)+H(f), where f is the vector of sensed forces
and torques by the FT sensor, and H is a non-linear mapping
that produces corrections to the position of the robot. Here,
H is a general non-linear mapping, which is learnt using a
self-supervised learning method [19], [20], [12], [13].

The purpose of the next stage of the algorithm is to learn
the mapping H through self-experimentation. To this end,
while the hole is still in its original position, variations d(t)
are introduced to one of the original trajectories x(t) demon-
strated by a human operator that successfully completed the
operation. To learn this mapping, we collect force signature
data of the form (fi, di), where fi is the force wrench
experienced by introducing a variation di. However, based
on the understanding that the mapping from displacements
to forces is typically many-to-one (multiple displacements
would sometimes result in the same force), following the
analysis in [21], the inverse mapping would be one-to-
many, that is, not a function that can be learned by means
of machine learning. However, it can be realized that the
exact magnitude of the displacement does not need to be
recovered for successful corrective action, and furthermore,
multiple displacements can generate the same forces only if
the sign of these displacements is the same, as long as the
magnitude of the displacement does not exceed the radius
R of the object being inserted. Based on this realization, a
supervised machine learning algorithm can be used to learn
the mapping sign(di) = H0(fi), for all examples i = 1, N
such that |di| ≤ R. Such a learned machine learning model
is then used to design a corrective controller to correct the
misalignment between the mating parts.

A practical consideration about the exploration method is
how to do it safely. If the robot is commanded to follow the
modified trajectory in standard position control mode, the
resulting collision will either damage the robot or the parts,
or result in a fault due to excessive force. This means that
the robot needs to be controlled in a compliant control mode.
One accommodation controller design for safe exploration
and exploitation of the learned control policy based on these
principles and suitable for execution on industrial robot arms
is descried in the next section.

V. FORCE CONTROLLER DESIGN FOR SAFE
INTERACTION

While there has been significant work in the literature
to perform active control using the contact forces during
insertion-type assembly operations, design of controllers to
ensure safe, sustained contacts has received less attention. In
this section, we present the design and analysis of a force
controller that ensures safe interaction by maintaining contact
forces within safe bounds. In particular, we try to answer and
explain the following in this section:

1) Design of a Generalized Accommodation Controller
(GAC) for safe exploration during assembly attempts.

2) Evaluate the convergence characteristics of the pro-
posed controller.

It is important to note that the design of GAC is critical to
the design of the ACC, as this allows us to collect data in
quasi-steady state by making the contact forces converge to
a value that is representative of the contact configuration,
and not of the applied effort by the robot, thus allowing
interpretation of the phenomena in quasi-static states (instead
of in dynamic states). It is also desirable to have such a
controller to make sure that the interaction force between the
robot and its environment stays within some desirable safe
bounds. We first explain the design of this controller using
the stock stiffness controller provided in general industrial
robots.

A. Generalized Accommodation Controller Design

The idea of the proposed accommodation controller is
presented in Figure 4. As could be seen in the block diagram
in Figure 4, the accommodation controller manipulates the
reference trajectory using force feedback. In particular, the
accommodation controller uses the following feedback law
to manipulate the reference trajectory of the robot. Let us
denote the discrete-time reference trajectory by xr[k], the
trajectory commanded to the low-level position controller
by xc[k], the experienced forces by f [k], the measured
position as x[k], at any instant tk. Let us denote the stiffness
constant of the compliant position controller by Ks and
the accommodation matrix for the force feedback as Ka.
For simplicity, we consider a diagonal matrix Ka. The
commanded trajectory sent to the robot is then computed
using the following update rule:

xc[k] = xc[k − 1] + ∆xr[k] +

k∑
i=0

γk−iKaf [i] (1)

where γ ∈ (0, 1) is a discounting parameter for computing
the integral error, and ∆xr[k] = xr[k] − xr[k − 1] are
desired position increments computed from the reference
trajectory (normally itself computed by the DMP module
based on its estimate of the goal position). Note that the
force experienced during interaction is governed by the
stiffness constant of the robot controller and is given by
f [k] = Ks(x[k]−xc[k]). We assume that such a controller is
available in the control software of the robot; if not, it can be
implemented by interpreting the contact forces accordingly
([22]). This controller guarantees that the contact forces
for the system converge to a steady state even though the
reference trajectory computed for a task keeps on increasing
indefinitely.

B. Convergence Behavior of the Accommodation Controller

In this section, we briefly describe the convergence behav-
ior of the accommodation controller that was described in the
previous section. It has the useful property that even when the
reference trajectory advances indefinitely, the contact force
converges to a constant, as long as the reference velocity is
constant. Because the reference velocity (that is, the velocity
at which the desired reference trajectory xr[k] is traversed)
is entirely under the control of the designer of the controller,
this effectively means that the contact force is under their



Fig. 3: This plot shows the convergence of contact wrench obtained using the proposed GAC during a contact configuration during an insertion attempt.
The reference trajectory advances linearly in the insertion direction at constant velocity even after actual movement of the robot stops due to collision of
the peg with the rim of the hole. For the same reference trajectory, an admittance controller would have produced ever increasing forces and moments.
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Fig. 4: Block Diagram of the generalized accommodation controller that is
designed for the data collection process. Ka: Accommodation Matrix, Ks:
Stiffness gains of the low-level stiffness controller.

control, too, and can be set to a desired safe value. This
is in contrast to the behavior of a standard compliance
controller, such as a stiffness controller, where contact forces
would increase indefinitely if the reference trajectory keeps
advancing for any reason.

Convergence of the GAC can be understood by consid-
ering that by using suitable values for the accommodation
matrix Ka and the discounting factor γ, the contact forces
can be regulated so that both they and the commanded
trajectory reach a constant value, when the position change in
the reference trajectory is kept constant, that is, ∆xr[k] = v
for some constant velocity v along the intended direction
of insertion. To see this, the commanded position will stop
changing (xc[k] = xc[k − 1]) when both update terms to it

cancel each other, that is, v = ∆xr[k] = −
k∑

i=0

γk−iKaf [i].

Under this condition, the commanded trajectory converges
to x̃c = xc[k]. Then, if the movement of the robot has also
stopped at some equilibrium position x̃, under the operation
of the stiffness position controller of the robot with a constant
commanded position x̃c, the steady-state force experienced
by the robot is given by f̃ = Ks(x̃ − x̃c). Then, at steady
state, v = Ka/(1 − γ)f̃ , or f̃ = v(1 − γ)/Ka. This
demonstrates that the contact force at equilibrium can be
reduced by choosing a lower speed of traversal of the refer-
ence trajectory, or a higher discounting factor γ, or a higher

value of the accommodation constant Ka. The convergence
behavior of the forces is also shown in Figure 3. As could
be seen in the plots, the force and moments experienced
by the robot converge to a steady-state value. The speed of
convergence of the system is governed by the discounting
parameter γ. We observed that the convergence is faster with
higher values of γ. In practice, any parameter γ ∈ [0.3, 0.65]
could achieve satisfactory convergence. Values of γ higher
than 0.65 might sometimes lead to oscillations in the system.

In the rest of the paper, we use this controller as the
trajectory-following controller which is used when following
a reference trajectory obtained from a higher level controller
working towards achieving successful insertion for assembly.
This is described in detail in next section.

VI. EXPERIMENTAL RESULTS

In this section, we present results for learning the correc-
tive action in different contact configurations. In particular,
we try to answer the following questions:

1) Can the proposed method resolve the direction of the
error as well as its magnitude?

2) What is the range of misalignment that can be cor-
rected using such a learned model?

3) How well does the proposed controller perform on
insertion tasks with inaccurate knowledge of goal the
state?

A. Experiment Details

We use a Mitsubishi Electric Factory Automation
(MELFA) RV-5AS-D Assista 6-DoF arm (see Figure 1)
for the experiments. The robot has pose repeatability of
±0.03mm. The robot is equipped with Mitsubishi Electric
F/T sensor 1F-FS001-W200 (see Figure 1). The peg has a
diameter of 20 mm and the hole has a diameter of 22 mm. We
use the standard stiffness controller of the robot to design the
corresponding force controller. We use the stiffness controller
with Kz = 2 N/mm and Kx = Ky = 10 N/mm as the
stiffness constants during all the experiments. We use the



Fig. 5: Variation of contact wrench obtained from contact formations with different misalignment w.r.t. the hole along the y axis, for a constant value of x.
This plot shows that, in practice, we obtain a non-linear dependence between the misalignment and the wrench experienced during the contact formation.

GAC only in the axis of approach during insertion operations
but one can implement it for all the six axes.

During the data collection procedure, error is introduced
in the x and y position of the robot end-effector from the
correct target state. This error is sampled from a uniform
distribution in the range [−R,R] around the circumference
of the hole, where R is the radius of the peg. Note that this is
sufficiently larger than the error introduced in previous work,
e.g., [7], [9]. For example, in [9] the baseline success rate
with a stock compliant controller is already 40%, whereas
in the present study, it is 0%, that is, without trajectory
correction, insertion never succeeds. Furthermore, whereas
the method in [9] studied insertion in a slot-like environment
(i.e., misalignment is only along one dimension), we study
a more complex problem of peg insertion where error is
introduced simultaneously in two dimensions. The robot is
moved along the known approach direction with this error
and using the force controller described in Section V (see
Figure 2). The controller maintains contact with the surface
after the initial contact, and the force data for the entire
interaction is stored. The total length of the trajectory is 30
seconds, and the data is collected at 280Hz, which is the
default control rate of the robot.

B. Dependence of Contact Wrench on Misalignment

In this section, we analyze the behavior of the contact
wrench experienced by the peg in contact formations during
an insertion attempt with varying amount of misalignment.
The variation of the contact wrench with varying amount of
misalignment ∆y along the y axis, at a constant value of x,
is shown in Figure 5. These plots show the (quasi-)steady
state values of the contact wrench for a contact formation,
that is, measured at the end of the insertion attempt. There
are several things to infer from these plots shown in Figure 5.
As seen in the plot of Fz , the force experienced in the
vertical direction is constant for all values of misalignment.
This force creates a moment about the x-axis which can be

observed in the plot for Mx. We also observe a moment
about the y-axis of the peg which can be observed in the
plot for My . We also observe that there is a non-linear
dependence between the moments experienced by the peg
and the amount of misalignment. While a planar analytical
model would predict that the force and moments change
linearly during these sustained contacts, we see here that
there is significant non-linearity that is observed, and thus it
provides the intuition for using a non-linear machine learning
model for adjusting the misalignment based on the force
readings obtained from the F/T sensor.

C. Predictive Model for Correcting Misalignment

In this section, we describe learning a model to predict the
actual misalignment between the hole and the peg. We train
a model to predict the misalignment and try to understand
the accuracy and degree to which the misalignment can be
corrected using a supervised machine learning model. The
experimental setup that we use for data collection is shown
in Figure 1 and was described in the previous section. We
use Gaussian processes for learning the predictive model
for misalignment. Gaussian processes are data efficient, and
have been shown to perform well in a wide range of
problems [23], [24], [25]. The Gaussian process regression
is trained using the data collected using the accommodation
controller described in Section V. As was shown earlier in
Figure 3, the system reaches (quasi-)steady state using the
force controller. The Gaussian process regression is trained
using the (quasi-)steady-state force signature obtained by the
force controller. Thus, the input to the regression model is a 6
dimensional vector which is used to predict the misalignment
along the x and y axis. We train two GPR models, one
for each axis, which are then used to predict the errors in
each of the axes. We collect data from a total of 1, 200
trajectories with randomly sampled misalignment around the
circumference of the hole. We train two different regression
models to predict error along the x-axis and the y-axis. We



TABLE I: Classification accuracy in prediction of direction of misalignment
along X and Y axis using Gaussian process classifiers.

Axis Classification Accuracy (higher is better)
X 0.97
Y 1.0

Fig. 6: Mean RMSE error (lower is better) for misalignment prediction along
the x and y axis with increasing values of misalignment. As we can see from
the plots, the RMSE monotonically increases with increasing misalignment.

use a sum-kernel with the RBF kernel and the white kernel
to prevent overfitting of data. Figure 6 shows the prediction
of the regression models for misalignment along the two
axes. These plots show the mean RMSE predicted from 50
different GP models trained and tested over different subsets
of data from the total collected data. We also observe that
the models have consistently better predictive behavior in
the y axis compared to the x axis (this is an artifact of the
contact configurations and not always true in general). We
also train Gaussian process classifiers to predict the direction
of error using a similar sum-kernel to analyze the separation
of data in predicting the direction. The classification results
are listed in Table I which reflects almost perfect direction
recovery.

D. Performance of the ML-based Controller

In this section, we evaluate performance of the learning-
based controller in correcting the misalignment during in-

Fig. 7: The hole surface is moved in the plane in an approximate rectangular
region of 12 cm × 10 cm. This figure shows the approximate region in the
plane where the hole could be detected by the external camera (see Figure 1).
Note that the images show the standard output of an industrial-grade camera.
The frame shown is the robot frame of reference (see also Figure 1).

sertion experiments. We use the Gaussian process classifica-
tion model described in the previous section to correct for
the positional error using force feedback. In particular, we
design a controller that uses a reference trajectory and the
learned correction model to successfully perform insertion
using force feedback. As shown in Figure 2, we use the
accommodation controller at the lower level, and then use
the predictions of the GP model to correct the reference
trajectory using the prediction. We perform two sets of
experiments. In the first set of experiments, the hole base
is manually moved around in the plane (see Figure 7) inside
a rectangular region of approximately 12 cm × 10 cm
to generate 50 novel goal locations. The hole location is
detected by the external camera. This experiment tries to
test the generalization of the controller to novel contact
formations as the hole base is moved around. We observe
that the camera error is biased in a particular direction, and
thus the robot always ends up approaching the correction
from a particular direction. Thus, we also design a second
set of experiments where artificial errors are added to known
location by sampling from the uniform distribution. This
distribution is the same as during training time.

During test of the controller, the robot moves using the
learned models to correct any contact formation during
insertion. In particular, upon any contact formation, the
robot uses the force signature to predict the direction of
misalignment. A unit step of 2mm is used to move the
robot along each axis. The robot retracts in the vertical
direction, moves in the plane and then attempts an insertion
again. The unit step is adaptively changed based on the
successive steps predicted by the model so that the robot
does not get stuck in a limit cycle near the target pose.
In summary, the robot uses the contact wrench at the end
of the contact trajectory as input to the learned Gaussian
process model, uses the predictions from the model to make
corrections in the x and y axis as predicted by the classifier
model, attempts insertion again, and repeats the movement
till either it achieves successful insertion or declares failure.
A failure is declared based on either the total number of
attempts exceeding the maximum number of attempts (10)
or the controller diverging from the desired goal state more
than 15 mm. We implement two different controllers during
test – the first being the DMP trajectory (LfD) computed
using the initial state and the novel goal location. Note that
this is computed using a single successful demonstration
directly provided on the robot using a joystick. The second
controller is the proposed DMP trajectory augmented with
the additional force-feedback controller (LfD+SL). The test
results are listed in Table II. As can be seen, the proposed
method achieves very high success rate during test times,
while the DMP-based controller fails in all test condition in
the final insertion.

VII. CONCLUSIONS AND FUTURE WORK

Insertion is the most important operation of robotic as-
sembly systems. Consequently, it has been widely studied
to create robotic systems which can perform autonomous



TABLE II: Success rate of different controllers

Experiment type LfD+ SL LfD
Moving the hole 48/50 0/50

Error added at known location 79/80 0/80

insertion using sensor-based feedback. However, the problem
still remains open in several aspects, and there is no single
technique to perform generalized insertion. In this paper, we
presented a learning method for solving the problem of peg
insertion during robotic assembly. Most of robotic assembly
problems involve sustained contact phenomena, which makes
it harder to ensure reliable and safe operation. We presented
the design and analysis of an adaptive force controller that
allows us to maintain sustained contacts with limited contact
force in the presence of dynamic reference trajectory. We
show that our proposed controller results in (quasi-)steady-
state behavior by modifying the reference trajectory as the
robot comes in contact with the external environment. We use
this controller for safe exploration to collect data during the
insertion process. This is used to learn a predictive model
that can correct the misalignment during insertion. In our
experiments, we show that we achieve approximately 98.75%
success rate with error sampled in the range of [−R,R] in
both the x and y axis, where R is the radius of the inserted
part. In contrast to the use of closed-form expressions used
for solving similar problems in [11], our method does not
need careful calibration, and works even when the axis of
the peg is not aligned with the F/T sensor. Similarly to the
method recently reported in [9], our method uses supervised
learning instead of reinforcement learning, thus avoiding the
need for prolonged random exploration.

Our method uses the quasi-steady-state force data for
learning the corrective compliance. However, converging to
this quasi-steady state does take some time, which probably
makes the insertion operation slower than it could be. In the
future, we would like to use contact force readings from
times before full convergence, hopefully speeding up the
insertion process. In addition, we plan to study and analyze
contact configurations with directional (rotational) misalign-
ment between the peg and the hole. Another important future
work is to explore the generalization of the work to pegs of
different dimensions and cross-sectional shapes.
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