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Abstract
In this paper, we study the problem of synthesizing video

frames from the accompanying audio and a few past frames
– a task with immense potential, e.g., in occlusion reasoning.
Prior methods to solve this problem often train deep learning
models that derive their training signal by computing the
mean-squared error (MSE) between the generated frame and
the ground truth. However, these techniques do not account
for the predictive uncertainty of the frame generation model.
This frailty might result in sub-optimal training, especially
when this uncertainty is high. To address this challenge,
we introduce Predictive Uncertainty Quantifier (PUQ) - a
stochastic quantification of the generative model’s predictive
uncertainty, which is then used to weigh the MSE loss. PUQ
is derived from a hierarchical, variational deep net and is
easy to implement and incorporate into audio-conditioned
stochastic frame generation methods. Experiments demon-
strate our method’s faster and improved convergence versus
competing baselines on two challenging datasets.

1. Introduction
In this work, we explore the problem of generating a se-

quence of semantically plausible and contextually consistent
video frames while listening to only the accompanying audio.
This task holds immense potential in developing a variety of
useful applications; including reasoning under occlusions or
developing platforms for the hearing impaired.

From a machine learning perspective, generating the
frames of a video, given only the audio modality, is severely
ill-posed and thus most prior methods explore this research
direction in limited settings, such as synthesizing talking
heads, given the speech [8]. Only recently has the commu-
nity started exploring this problem in more unrestricted set-
tings [2]. However, this entails dealing with the challenging
problem of capturing the possible stochasticity in the events
in the video. To characterize this stochasticity, a stochastic
frame generation model, dubbed Sound2Sight, was recently
proposed [2]. This model uses the audio features and the
video context to generate frames. Specifically, it augments a
standard encoder-decoder sequence-to-sequence model for
predicting a future frame [5] using a stochastic module that
characterizes the random details in the generated frames that
the sound alone cannot account for. However, Sound2Sight
is trained mainly using the mean-squared-error (MSE) loss,
by comparing the generated frames against one of a poten-
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Figure 1: Generation results by our method (PUQ) versus
baselines on YouTube Painting [2]. The red square indicates
the region of dominant motion. Scaled uncertainty ( 1

mt
) is

high (in red), when the painter abruptly switches strokes.

tially infinite set of plausible ground truths (arising because
of the stochasticity). As a result, minimizing the mean-
squared error may be difficult and training the generative
model could be challenging.

To address the above difficulty, we present Predictive
Uncertainty Quantifier (PUQ) – a hierarchical, variational
setup to estimate the predictive uncertainty of an audio-
conditioned visual frame generation model. The key in-
tuition behind PUQ comes from the observation that the
predictive uncertainty is directly linked to the variance in
the distribution of the latent space embedding of the next
frame of, for example, a Sound2Sight [2] model. However,
in such models this uncertainty is modeled in a latent space
and thus can neither be directly interpreted in the space of
generated frames, nor can it be explicitly incorporated in the
training objective. Moreover, the space of generated frames
is very high dimensional (equal to the number of pixels), and
producing a variance for every pixel could be hard. Thus,
we design PUQ to be a scalar quantifier that captures a sum-
mary of the predictive uncertainty of the generated frame
and derive it using a hierarchical, variational framework.

To empirically verify the effectiveness of our model, we
present experiments on a synthetic dataset: Multimodal
Stochastic Moving MNIST (M3SO) [2], and a challeng-
ing real world dataset: YouTube-Painting [2]. Our results
show that our framework trains faster than prior methods,



and leads to state-of-the-art generation quality (see Figure 1).

2. Related Works

Video Prediction/Forecasting entails predicting the future
frames of a video, given a few frames from the past. To-
wards this end, deterministic techniques typically employ an
encoder-decoder architecture to generate video frames auto-
regressively, without modeling the data stochasticity (e.g.,
the randomness in an object’s motion, compression noise,
etc.) [5]. This caveat has been addressed by stochastic frame
prediction approaches [4, 1, 3], however they are mostly
unimodal . Different from these techniques, our model is
both stochastic and multimodal.
Techniques for Video Generation from Audio so far have
mostly operated in very restricted settings, such as generat-
ing human face animations conditioned on speech [9]. These
approaches often make use of additional details to simplify
the problem further – such as using the identity of the per-
son, facial landmarks, etc.- hindering their application to
more generic settings. Some of them, however, propose
to synthesize face motions directly from speech and an ini-
tial frame and are thus more scalable [8]. Chatterjee and
Cherian [2], attempt to synthesize generic videos from audio,
by employing a variational learning scheme coupled with
adversarial training. Nonetheless, different from our method,
these frameworks do not model the predictive uncertainty of
the generated frames.

3. Background

Let x1:T := 〈x1,x2, · · · ,xT 〉 denote a sequence of T
frames of a video and a1:T := 〈a1,a2, · · · ,aT 〉, the corre-
sponding time-aligned audio samples. Assuming we have
access to a few initial frames x1:S , to set the visual con-
text (where 1 ≤ S < T ), and the audio-stream a1:T , our
goal is to generate the remaining frames xS+1:T autoregres-
sively. This task requires estimating a prediction model
pθ(·), parameterized by θ, which generates the frame xt
and minimizes the expected negative log-likelihood. When
generating xt, we use the audio a1:t to peek into the future.

In order to incorporate stochasticity into the generative
setup, one may assume that the frame generation mod-
ule is conditioned on a latent prior model, derived from
the provided audio a1:t, i.e., zt ∼ p(zt|a1:t). The out-
put frame xt is then generated by xt ∼ pθ(xt|x1:t−1, zt).
However, one of the key problems that plagues such
latent stochastic prior models is the intractability of
the estimation of the evidence: p(xt|x1:t−1,a1:t) =∫
zt
p(xt|x1:t−1, zt)p(zt|a1:t)dzt. A typical solution to this

problem [2] is to cast this estimation process in a varia-
tional encoder-decoder regime [6], where the encoder com-
prises a variational posterior qφ(zt|x1:t,a1:t) (with parame-
ters φ) that approximates the true posterior p(zt|x1:t,a1:t),

while the decoder learns a distribution for estimating xt ∼
pθ(xt|x1:t−1, zt). The likelihood setup of this model is
given by log p(xt|x1:t−1,a1:t) ≥ Lθ,φ, where:

Lθ,φ = Eqφ(zt|x1:t,a1:t) log pθ(xt|x1:t−1,zt)−
KL (qφ(zt|x1:t,a1:t)‖p(zt|a1:t)) , for t > S.

(1)

The likelihood loss in Eq. 1 can be efficiently optimized
by employing the re-parametrization trick [6]. Prior works [2,
4] recommend using a data-driven stochastic prior model for
improved results. Thus, p(zt|a1:t) := pψ(zt|x1:t−1,a1:t),
parametrized by ψ. Also note that if pθ(·) is assumed to be
a Gaussian distribution with an isotropic constant variance,
the expectation term in Eq. 1 boils down to a standard MSE
loss over all predicted frames xS+1:T .

While learning the distribution qφ(·) captures the stochas-
ticity of the generation process in the latent space, the
model’s predictive uncertainty (in the output space) remains
unaccounted for. This might unfairly penalize the model for
an incorrect prediction if the frame stochasticity is high, at a
certain time step. Incidentally, a direct per-pixel uncertainty
estimate from the decoder results in a prohibitively large pre-
diction space for successful training (quadratic in the num-
ber of frame pixels). Our proposed uncertainty estimation
framework therefore, leverages the variance of the posterior
distribution over zt, qφ(·), to compute the uncertainty in the
decoded (output) space via a two-step hierarchical process.

4. Proposed Method
Our goal is to regulate the importance of the MSE loss

in the training objective (Eq. 1) by estimating the uncer-
tainty of predicting the next frame. In our setup, as shown
in Figure 2, the prediction model consists of a series of 2d
convolution layers, accepting the previous frame xt−1 as
input, followed by an LSTM - which couples this embedding
with the stochasticity vector zt. Its output is then decoded
to generate the next frame, xt, via a stack of 2D deconvo-
lution layers. Sound2Sight [2] assumes the data likelihood
model pθ(xt|x1:t−1, zt) ∼ N (xt, st), with the variance
st > 0, st ∈ R as an isotropic constant. Thus, the negative
log-likelihood of the predicted frame x̂t reduces to comput-
ing the `2-loss. Instead, in this work, we propose to directly
condition the data likelihood model with the uncertainty de-
rived from the variance of the latent-space posterior, thereby
ensuring that when the uncertainty is high for a predicted
frame, the `2-loss term is weighed down and vice-versa.

We proceed by assuming that the prior
pψ(zt|x1:t−1,a1:t) is a normal distribution N (µz

t ,Σ
z
t ),

with parameters µz
t , the mean, and Σz

t the covari-
ance matrix. We instantiate this prior model with an
LSTM, which operates on the concatenated audio-visual
embeddings obtained from the respective unimodal Trans-
formers [2]. We assume a similar setup for the posterior
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Figure 2: An illustration of the architecture of our proposed approach.

qφ(zt|x1:t,a1:t) ∼ N (µqt ,Σ
q
t ), and instantiate it using an-

other LSTM. Let mt ∈ R,mt > 0, denote the precision (or
inverse variance 1/st) in our data likelihood model. Further,
let the lielihood governing mt be p(mt|x1:t−1,a1:t). Then:

log p(xt|x1:t−1,a1:t) =

∫
zt,mt

log p(xt|zt,mt,x1:t−1,a1:t)︸ ︷︷ ︸
A1

+

+ log p(zt|x1:t−1,a1:t)︸ ︷︷ ︸
A2

+ log p(mt|x1:t−1,a1:t)︸ ︷︷ ︸
A3

dzt dmt

(2)
Computing the above integral exactly, is intractable. So

we approximate it by sampling mt as well as zt. Note that
A1 +A2 in the above equation ( Eq. 2) is lower bounded by
the variational lower bound [6] (as in Eq. 1), as follows:

A1 +A2 ≥ Eqφ(zt|x1:t,a1:t) log pθ(xt|x1:t−1,zt,mt)−
KL (qφ(zt|x1:t,a1:t)‖pψ(zt|x1:t−1,a1:t)) ,

(3)
where t > S. Further, as stated before, we seek to derive
mt from the uncertainty of the posterior Σq

t in the latent
space. We accomplish this via a variational encoder-decoder
network, nested into the larger prediction model, thereby
making our model hierarchical. For increased adaptability,
PUQ permits the parameters of the posterior and prior dis-
tributions of the nested network to be learnt from data. In
particular, during training, the encoder component of this
network, ζλ(·), with parameters λ, embeds Σq

t , to produce
the sufficient statistics of the distribution governing the la-
tent space, qλ(st|x1:t,a1:t), while the decoder τν(·), with
parameters ν, draws a sample from this distribution, st, and
decodes it to generate mt, where mt ∼ pν(mt|st).

In order to appropriately regularize the latent space
distribution, qλ(·), we assume a prior distribution,
pγ(st|x1:t−1,a1:t) - the parameters of which are inferred
by embedding Σz

t via a network δγ(·), with parameters γ.
We assume pγ(·) ∼ Dγ(α

s
t , β

s
t ) with parameters (αst , β

s
t ) is

estimated by the network δγ(·), while qλ(·) ∼ Dλ(α
ŝ
t , β

ŝ
t ),

with parameters (αŝt , β
ŝ
t ) is estimated by ζλ(·), respectively.

Table 1: Human preference score: Ours vs Sound2sight [2]

Datasets Prefer ours
M3SO 67%
YouTube Painting 78%

Given this setup, analogous to Eq. 1, for t > S, we get the
variational lower bound [6] on the likelihood of mt:

A3 ≥ Eqλ(st|x1:t,a1:t) log pν(mt|st)−
KL (qλ(st|x1:t,a1:t)‖pγ(st|x1:t−1,a1:t)) .

Assuming that pθ(xt|x1:t−1, zt,mt) follows a Gaussian
distribution N (xt,

1
mt

) and η1, η2 ≥ 0, η1, η2 ∈ R, leads
us to our final objective, which we minimize using the re-
parametrization trick [6]:

LPθ,φ,ψ,λ =

T∑
t=S+1

1

2

[
mt ‖x̂t − xt‖2 − logmt

]
− (4)

Eqλ(st|x1:t,a1:t) log pν(mt|st)+
η1 KL(qφ(zt|x1:t,a1:t)‖pψ(zt|x1:t−1,a1:t))+

η2 KL (qλ(st|x1:t,a1:t)‖pγ(st|x1:t−1,a1:t)) ,

As is standard in variational settings, we instantiate
Dγ(·, ·) to be a Gaussian, however sincemt ≥ 0,Dλ(·, ·) as-
sumes a truncated Normal form. Additionally, we observed
improved performance when PUQ was trained in conjunc-
tion with the multimodal discriminator of Sound2Sight [2].

5. Experiments and Results
Multimodal MovingMNIST with a Surprise Obstacle
(M3SO): M3SO is a challenging, synthetic, publicly avail-
able dataset [2], which consists of digits from the MNIST
dataset [7] moving along rectilinear paths in a 48× 48 box,
bouncing off in random directions when a collision occurs
with the box boundaries or a fixed-size block introduced at
a random location in the box. M3SO equips each of the ten
digits with a unique Dual Tone Multi-Frequency (DTMF)
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Figure 3: Quantitative evaluation of PUQ versus competing baselines on the M3SO and YouTube Painting test sets.
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Figure 4: Generation results by our method on M3SO and
YouTube Painting. The red square indicates the region of
dominant motion. High scaled uncertainty ( 1

mt
) is in red.

tone as well, making the dataset multimodal. The dataset
has 8,000 training, 1,000 validation, and 1,000 test videos.
During training, algorithms are shown the first 30 frames of
a video and are required to predict the next 30, while test
time prediction is performed over 40 unseen frames.
YouTube Painting: This is a challenging, publicly available
dataset [2], containing 64× 64 YouTube videos of a painter
painting on a canvas in an indoor environment, with the audio
channel having sounds of the painter’s brush strokes. There
are 4.8K videos are available for training, 500 for validation,
and 500 for test. Here, the training regime permits 15 seen
and 15 unseen frames, while the test requires a prediction of
30 unseen frames.
Baselines and Evaluation Metrics: We compare our
method against both multimodal ( [2, 8]) and unimodal
( [4, 5]) baselines, using standard image quality assessment
metrics: (i) Peak Signal to Noise Ratio (PSNR) and (ii)
Learned Perceptual Image Patch Similarity (LPIPS) [10].
Results: Figure 3 presents a quantitative evaluation of PUQ
versus competing baselines on M3SO and YouTube Painting
over different training epochs, as measured by PSNR and
LPIPS. The plots reveal the superiority of our approach
over competing baselines, consistently across both mea-
sures, especially in the early epochs. Moreover, we see
that the multimodal baselines outperform their unimodal
counterparts, in terms of generation quality. However, fail-
ure to incorporate the uncertainty associated with predicting

stochastic frames, poses an insurmountable challenge even
for multimodal methods. Qualitative generation results, as
shown in Figures 1,4, concur with these observations as
well. Furthermore, the scaled uncertainty ( 1

mt
), shown in

the figures is seen to correlate well with the predictability
of the direction of the brush stroke or the direction of digit
motion. Additional results are in the supplementary. Fur-
ther, we also evaluated a randomly selected subset of the
generated videos in order to subjectively assess the video
generation quality by conducting human preference evalua-
tion. Annotators were presented with generated results by
PUQ and its closest competitor Sound2Sight [2] and asked
which one resembled the ground-truth more closely. Table 1
clearly shows that the annotators overwhelmingly preferred
generations by our method, over 67% of the time.

6. Conclusions
In this work we introduce a novel technique for gener-

ating videos from audio and a few context frames – PUQ,
which explicitly incorporates the frame prediction uncer-
tainty into the learning objective. Empirical evaluations on
two challenging audio-visual datasets, show that using PUQ
results in faster training of the generative model while also
outperforming competing approaches.
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