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Abstract—We propose an approximation algorithm called
LINKUMP to compute the Pan Matrix Profile (PMP) under
the unnormalized `∞ distance (useful for value-based similarity
search) using double-ended queue and linear interpolation. The
algorithm has comparable time/space complexities as the state-
of-the-art algorithm for typical PMP computation under the
normalized `2 distance (useful for shape-based similarity search).
We validate its efficiency and effectiveness through extensive
numerical experiments and a real-world anomaly detection ap-
plication.

Index Terms—Pan Matrix Profile, unnormalized Euclidean dis-
tance, double-ended queue, discord discovery, anomaly detection

I. INTRODUCTION

In recent years, the time series Matrix Profile (MP) has
been proposed as a versatile data structure for many data
mining tasks (time series discord discovery, segmentation,
shapelets/motifs/chains discovery etc.) [1]. As a companion
time series, the MP records distances between nearest neigh-
bors of subsequences in the original time series. Under the nor-
malized `2 distance metric (leading to shape-based similarity
search), several fast algorithms have been devised to compute
the MP based on the Fast Fourier Transform (FFT) [1] or
Dynamic Programming (DP) [2]. Under the unnormalized
`p (1 ≤ p ≤ ∞) distance metric (leading to value-based
similarity search), fast algorithms based on DP [3] or selected
special data structures (double-ended queue and segment tree)
[4] are also proposed. Note that, assuming the length of a
given time series is n, then the time complexity of the state-
of-the-art algorithm [2] for computing its MP is O(n2), which
is independent of the subsequence length.

As pointed out in [4], the MP under a specific distance
metric is appropriate for certain tasks, but not necessarily
appropriate for others; its actual performance highly depends
on data and applications. For example, though shown to
be powerful in many tasks, the MP under normalized `2
distance cannot deal with “values of subsequences”-based
discord discovery (anomaly detection), and the normalized `2
distance is even not defined for constant subsequences.

Although the MP is already a convenient enough tool
for many time series data mining tasks, it still requires the
practitioner to set one critical parameter – the subsequence
length (i.e., the query size) for similarity search. To remove
the only parameter, [5] proposes a new data structure – the
Pan Matrix Profile (PMP), which is a matrix with each row
being a Matrix Profile corresponding to a single subsequence

length. Essentially, the PMP is a parameter-free version of
the MP that has potential to deal with various time series
data mining tasks. However, computing an exact PMP is
slow; the time complexity is O(|M |n2), where M is the list
of all considered subsequence lengths and |M | is the total
number of subsequence lengths that M contains. To speed up
the computation for the PMP, [5] proposes an approximation
algorithm called SKIMP, which tries to optimize the order
of candidate subsequence lengths to compute their respective
MP’s. Note, however, that this approximation algorithm does
not deal with the MP’s for the remaining subsequence lengths
when it terminates computing the MP’s for a selected set of
subsequence lengths. As noted by the authors of [5], they use
the normalized `2 distance for the MP/PMP computation, and
this leads to the fact that “given a matrix profile Pi, it is
impossible to predict or even produce an upper or lower bound
for matrix profile Pi+1.”

Another recent work [6] also tries to remove the only
parameter (i.e., the subsequence length for similarity search),
but for a more specific purpose – discord discovery (anomaly
detection). The authors propose a parameter-free algorithm
named MERLIN, for discovery of arbitrary length discords
(anomalies) in massive time series archives. Note that the
MERLIN algorithm is the state-of-the-art in terms of speed,
but it only tries to find discords as fast as possible; to that end,
the algorithm avoids keeping track of the anomaly scores of
the vast majority of all the subsequences. On the other hand,
when applied for discord discovery, the MP/PMP algorithms
output much more information, including anomaly scores of
non-discords, and sometimes such information is intuitive and
important for analysts.

Because algorithms for the MP/PMP under unnormalized
distances would still produce good (or even better) results in
various time series data mining tasks on many data sets, in this
paper we investigate alternative approximation algorithms to
speed up the PMP computation. Our algorithm utilizes the
monotonicity of MP’s with respect to subsequence lengths
to “LINK” (through Linear Interpolation) unfinished MP’s to
already finished MP’s, and thus is essentially different than the
SKIMP algorithm. We call our algorithm LINKUMP, where
“LI” also stands for Linear Interpolation, and “UMP” is short
for Matrix Profile under Unnormalized distances. As a building
block, the computation for the MP corresponding to a single
subsequence length is done using the algorithms (based on
double-ended queue or segment tree) developed in [4].



Recently there has been an explosion of papers on deep
learning based anomaly detection [7], [8], [9], [10], [11], [12],
[13], but “it is not obvious that deep learning outperforms
simpler and more direct” MP based methods [6]. In addition,
most of the proposed algorithms require setting multiple
parameters, thus drastically challenging the practitioners and
easily encountering overfitting issues.

As is shown in [4], the Matrix Profile (MP) under unnor-
malized distances could be applied to anomaly detection tasks;
sometimes it would even outperform the MP under normalized
distances, depending on the data sets. A key observation is
that, no matter under what distance metrics, the MP values
are essentially “anomaly scores” of the subsequences in the
time series, and the maximum MP value means that the
corresponding subsequence has the largest anomaly score; we
call this subsequence the “discord.” As pointed in [6], “since
their introduction, time series discords have emerged as a
competitive approach for discovering anomalies.”

Admittedly, the MP/PMP under unnormalized distances also
has potential to be successfully applied to other time series
data mining tasks (e.g., motif discovery [5]), we focus on
value-based discord discovery (anomaly detection) in this
paper.

The rest of the paper is organized as follows. We define the
MP/PMP (under unnormalized distances) of time series and
prove the monotonicity of the PMP in Section II. In Section III,
we elaborate the LINKUMP algorithm to compute the PMP.
Numerical results are shown in Section IV. We conclude in
Section V. The Appendix (Section VI) contains details of some
subroutines required by the LINKUMP algorithm.

Notation: Let X = [x0, x1, . . . , xn−1] be a real-valued time
series with length n, where xt ∈ R is the value sampled at
time instance t, t = 0, 1, . . . , n− 1. Denote by m the length
of a subsequence (window size), which satisfies 1 ≤ m ≤ n−
1. Let Xj,...,j+m−1 = [xj , xj+1, . . . , xj+m−1] denote the jth
subsequence of X , 0 ≤ j ≤ n−m. Denote by |A| the length
of a given list (or vector) A. Assuming M is a list (vector) and
m ∈M , we let m‖M denote the index of m in M . Given a
lower bound L, an upper bound U (−∞ < L < U < +∞),
and a step size S (0 < S < U −L), we use range(L,U, S) to
denote an ordered list containing all the elements that are on
the interval [L,U) and can be expressed as L+ i× S where
i is an integer.

II. DEFINITION AND MONOTONICITY

We first review the definition of the Matrix Profile under
unnormalized distances [4], and then extend it to the Pan
Matrix Profile.

Definition 1 (Matrix Profile of Time Series)
The Matrix Profile of X is a new time series Y =
[y0, y1, . . . , yn−m], where

yj = min
0≤j′≤n−m,j′ 6=j

d(Xj,...,j+m−1, Xj′,...,j′+m−1), (1)

where d(·, ·) is the `p (1 ≤ p ≤ ∞) distance.

To put it another way, the Matrix Profile (MP) of X at time
instance j is the `p distance between the jth subsequence and
its nearest-neighbor subsequence in X . Similar to [4], to make
descriptions concise while still capturing the essence of the
MP, in Definition 1 we do not include the other component
of the MP (i.e., the respective indices of the nearest-neighbor
subsequences) from the original definition in [1].

Definition 2 (Pan Matrix Profile of Time Series)
Given a list of subsequence lengths M = [m0,m1, . . . ,
m|M |−1], the Pan Matrix Profile of X is an |M | × n matrix
P with each row filled by a Matrix Profile of X , which
corresponds to a specific subsequence length; in particular,

Pi,j = min
0≤j′≤n−mi,j′ 6=j

d(Xj,...,j+mi−1, Xj′,...,j′+mi−1), (2)

∀0 ≤ i ≤ |M | − 1, 0 ≤ j ≤ n − mi, where mi is the
subsequence length corresponding to the i-th row.

Note that, in Definition 2, the unfilled entries of P (i.e.,
Pi,j ,∀0 ≤ i ≤ |M | − 1, n − mi < j ≤ n) could always be
set as a Not-a-Number (NaN) value. We are now in a position
to prove the monotonicity of the PMP with respect to the
subsequence lengths:

Theorem II.1 (Monotonicity of Pan Matrix Profile)
Assume for the list of subsequence lengths M = [m0,m1, . . . ,
m|M |−1] we have mi1 < mi2 ,∀0 ≤ i1 < i2 ≤ |M | − 1. Then
Pi,j’s defined by (2) satisfy Pi1,j ≤ Pi2,j ,∀0 ≤ i1 < i2 ≤
|M | − 1, 0 ≤ j ≤ n−mi2 .

Proof: Arbitrarily fix j ∈ [0, n−mi2 ]. Noting mi1 < mi2 ,
from (2) we have

Pi1,j = min
0≤j′≤n−mi1

,j′ 6=j
d(Xj,...,j+mi1

−1, Xj′,...,j′+mi1
−1)

(a)
≤ min

0≤j′≤n−mi2
,j′ 6=j

d(Xj,...,j+mi1
−1, Xj′,...,j′+mi1

−1)

(b)
≤ min

0≤j′≤n−mi2
,j′ 6=j

d(Xj,...,j+mi2
−1, Xj′,...,j′+mi2

−1)

= Pi2,j .

The inequality (a) above holds due to the fact that the
minimization on the right hand side of (a) is taken over a
subset of distances of the set (of distances) for the left hand
side. To see why the inequality (b) also holds, we further
arbitrarily fix j′ ∈ [0, n −mi2 ], j

′ 6= j. Recalling that d(·, ·)
is the `p distance, we obtain:
(i) if 1 ≤ p <∞, then

d(Xj,...,j+mi1
−1, Xj′,...,j′+mi1

−1)

=
(∑mi1

−1

k=0
|xj+k − xj′+k|p

)1/p
≤
(∑mi2

−1

k=0
|xj+k − xj′+k|p

)1/p
= d(Xj,...,j+mi2−1, Xj′,...,j′+mi2−1);

(ii) if p =∞, then

d(Xj,...,j+mi1
−1, Xj′,...,j′+mi1

−1)



= max0≤k≤mi1−1 |xj+k − xj′+k|
≤ max0≤k≤mi2

−1 |xj+k − xj′+k|
= d(Xj,...,j+mi2−1, Xj′,...,j′+mi2−1).

�
It is worth pointing out that Theorem II.1 would not hold

for the MP/PMP under normalized distances. To see this more
clearly, let us look at an example using a synthesized time
series shown in Fig. 1. In Fig. 2a we plot its exact MP values
under the normalized `2 distance at the 50th time instance,
versus the subsequence lengths. It is seen that the MP values
are not consistently increasing with respect to the subsequence
lengths (there is an obvious decrease around the subsequence
length 50).

Fig. 1: A synthesized time series.

III. ALGORITHM

In this section, we describe the LINKUMP algorithm
to compute the PMP. Without loss of generality, we only
use the `∞ distance (i.e., d(Xj,...,j+m−1, Xj′,...,j′+m−1) =
max0≤k≤m−1 |xj+k − xj′+k|) to illustrate our algorithms.

First, we give a brief review of our previously proposed
algorithm for computing the MP corresponding to a single
subsequence length; we refer the reader to [4] for more
details. This algorithm (see Section VI-C) applies the double-
ended queue data structure, and requires two subroutines: (i)
finding sliding maxima (see Section VI-A) and (ii) computing
element-wise distance to rotated time series (see Section
VI-B). Its time complexity is O(n2) and space complexity
is O(n).

Now we describe the LINKUMP algorithm. It is an ap-
proximation algorithm for PMP computation by utilizing linear
interpolation. The idea is essentially different than the SKIMP
algorithm [5], which tried to order the selected subsequence
lengths and compute only a portion of them from the begin-
ning. On the other hand, our approach is as follows. Once
we have computed the MPs for a set of selected subsequence
lengths, we do linear interpolation for each and every missing
subsequence length; e.g., if we have done computing the
MPs for the following 4 subsequence lengths, [10, 20, 30, 40],
then we do linear interpolation for the corresponding inter-
vals (10, 20), (20, 30), and (30, 40), respectively, to obtain
approximate MPs for subsequence lengths in these intervals.
Fig. 2b visualizes this procedure for the synthesized time
series example (shown in Fig. 1), where both the exact
and approximate MP functions (with respect to subsequence
lengths) are piecewise linear and nondecreasing.

To formalize the algorithm, we denote by L (resp., U ) the
minimum (resp., maximum) subsequence length, S the step

(a)

(b)

Fig. 2: MP values vs. subsequence lengths of the synthesized
time series shown in Fig. 1.

size, and β ∈ (0, 1] the completion rate for the PMP com-
putation of the selected set of subsequence lengths. We sum-
marize the steps as Algorithm 1, where Lines 10 through 17
describe how the linear interpolation works for the in-between
subsequence lengths. It is seen that the time complexity of
this algorithm is O(β|M |n2), and the space complexity is
O(|M |n), where |M | is the number of candidate subsequence
lengths.

Algorithm 1 Pan Matrix Profile under Unnormalized
distance by Linear Interpolation (LINKUMP)

1: procedure LINKUMP(X,L,U, S, β)
2: n← length of X
3: M ← range

(
L,U + 1, S

)
4: P ← |M | × n matrix of NaN’s
5: M ′ ← range

(
L,U + 1,

⌊
1
β

⌋
· S
)

6: for m in M ′ do
7: i← m‖M
8: Pi ← MatrixProfileDeque(X,m)
9: end for

10: for l in range(0, |M ′| − 1, 1) do
11: for m in range

(
m′l + S,m′l+1, S

)
do

12: i← m‖M
13: for j in range(0, n−m+ 1, 1) do
14: Pi,j ← (∗)12

1(∗) = Pm′
l
‖M,j +

m−m′
l

m′
l+1
−m′

l
(Pm′

l+1
‖M,j − Pm′

l
‖M,j)

2If Pm′
l
‖M,j is NaN, we simply take (∗) as NaN; otherwise, if Pm′

l+1
‖M,j

is NaN, we simply take (∗) as the value of Pm′
l
‖M,j .



Fig. 3: A signal from the Mars Curiosity rover T1; annotated as having an anomaly on time instances 2550 through 2585 (an
ultra-subtle anomaly example from [6]).

15: end for
16: end for
17: end for
18: return P
19: end procedure

IV. NUMERICAL RESULTS

In this section, we apply the LINKUMP algorithm for
discord discovery (anomaly detection) purposes. We note
that, in terms of the time complexity (speed), the current
state-of-the-art parameter-free discord discovery algorithm is
MERLIN [6]. However, the MERLIN algorithm only tries
to find discords with the highest speed by avoiding keeping
track of the anomaly scores of the vast majority of all
subsequences. On the other hand, when applied for discord
discovery, our LINKUMP algorithm would output much more
intuitive information (such as anomaly scores of non-discords)
that could be important for analysts (e.g., when one knows
anomaly scores for both discords and non-discords, she would
get an impression of how “serious” the discords are deviating
from the normal subsequences).

It happened that for a dataset with an ultra subtle anomaly
used in the MERLIN paper, the MP with unnormalized `∞
distance would very easily find the correct discord, while the
version with normalized `2 distance would be harder, due to
its strong sensitivity with respect to subsequence lengths.

A. Application in Anomaly Detection

As noted by [6], anomaly detection benchmarks in the
literature typically contain anomalies that also yield to casual
visual inspection, and “it is interesting to ask if we can detect
very subtle anomalies, that would defy human inspection.”
To that end, [6] proposes experiments to obtain ground-truth
subtle anomalies; here we borrow one of the resulting data
sets: the time series of the Mars Curiosity Rover T1.

In Fig. 3 we show a signal from the Mars Curiosity rover
T1 that was annotated as having an anomaly on time instances
2550 through 2585 (an ultra-subtle anomaly example from
[6]). Fig. 4 shows the Matrix Profiles (MPs) of the time series
in Fig. 3 when subsequence length m = 3.

It is seen that using the MP with unnormalized `∞ distance
one could easily find a discord at the correct time instance
(by setting a threshold, say 0.2, for the uMP value; here “u”
means the MP is under the “unnormalized” distance), while
if using the MP with normalized `2 distance one could not

find a discord at the correct time instance, because the MP
values do not have a peak at the correct time interval of the
ground-truth anomaly. In our experiments we also observe
such results for subsequence lengths m = 4, 5, 10, 20, 30, and
only when m gets larger, can both uMPs and MPs enable us
to correctly find the discord. This illustrates that at least for
this example compared to the anomaly scores based on the
MP with normalized `2 distance, the ones based on the MP
with unnormalized `∞ distance are much less sensitive to the
subsequence length m.

It turns out that for this anomaly detection application, the
PMP computed by our LINKUMP algorithm would outper-
form the one computed by the SKIMP alternative, because
these two algorithms use unnormalized and normalized dis-
tances, respectively. In Fig. 5 we show the approximate PMP’s
for the time series in Fig. 3 computed by the LINKUMP and
SKIMP algorithms, respectively, both with 5% MP’s exactly
computed. Thanks to the linear interpolation procedure, we
obtain much more details in the PMP heatmap in Fig. 5a than
the one in Fig. 5b, and it is seen that the PMP computed
by our LINKUMP algorithm can clearly identify the discord
at the correct time interval, while the one computed by the
SKIMP alternative would only be able to vaguely identify
the same discord, after MP’s with larger subsequence lengths
are computed. To see how good the approximations can be
obtained, for the same Mars Curiosity rover T1 signal, we
also show in Fig. 6 the heatmaps of the PMP’s produced by
the LINKUMP algorithm with β = 1, 0.01, 0.02.

B. CPU Time for Pan Matrix Profile Computation

To compute the PMP, similar to the SKIMP algorithm, our
LINKUMP algorithm also has an “anytime” property; namely,
at any time, the algorithm could be terminated, resulting an
approximation of the exact PMP. Depending on how large the
completion rate β is, the execution time of LINKUMP could
be various, but in our experiments we could set β as small
values (say 0.01, 0.05), while still achieving overall good
performance. For example, for a time series X with length
5000, with L = 3, U = 500, S = 1, β = 0.05, the LINKUMP
algorithm implemented in Python can finish running within
10 minutes on a desktop computer with an Intel(R) Core(TM)
i7-4770 CPU and 16 GB of system memory.



Fig. 4: Matrix Profiles of the time series in Fig. 3 when subsequence length m = 3; top: MP with unnormalized `∞ distance
(could easily find a discord at the correct time instance), bottom: MP with normalized `2 distance (could not find a discord at
the correct time instance).

V. CONCLUSION

In this paper, by utilizing the monotonicity of the Matrix
Profiles (with respect to subsequence lengths) and linear
interpolation, we propose an approximation algorithm called
LINKUMP to compute the Pan Matrix Profile (PMP) under
the unnormalized `∞ distance. We show that the algorithm
has comparable time/space complexities as the state-of-the-art
algorithm for typical PMP computation under the normalized
`2 distance. The efficiency and effectiveness of the LINKUMP
algorithm has been validated through extensive numerical
experiments and a real-world anomaly detection application.
Our future work includes extending the linear interpolation to
general polynomial interpolation and considering additional
applications.

VI. APPENDIX

A. Finding Sliding Maxima Using Double-ended Queue

1: procedure SlidMaxDeque(Z,m)
2: n← length of Z
3: if m equals 1 then
4: return Z
5: end if
6: initialize Q as a new empty double-ended queue
7: initialize slidMax as a new empty vector
8: for l = 0, 1, . . . , n− 1 do
9: if Q is nonempty and Q[0] ≤ l −m then

10: remove the leftmost element from Q
11: end if
12: while Q 6= ∅ and Z[l] > Z[Q[−1]] do
13: remove the rightmost element from Q
14: end while
15: append l to the rightmost of Q
16: if l ≥ m− 1 then
17: append Z[Q[0]] to the rightmost of slidMax
18: end if
19: end for
20: return slidMax

21: end procedure

B. Computation of Element-wise Distance to Rotated Time
Series

1: procedure EleWiseDistToRotTimeSeries(X, i)
2: n← length of X
3: eleDist ← the i-th rotated X (i.e., X(i) =

[xi+1, xi+2, . . . , xn−1, x0, x1, . . . , xi])
4: for l = 0, 1, . . . , n− 1 do
5: eleDist[l]← |eleDist[l]−X[l]|
6: end for
7: return eleDist
8: end procedure

C. Computation of Matrix Profile Under Unnormalized `∞
Distance Using Double-ended Queue

1: procedure MatrixProfileDeque(X,m)
2: n← length of X
3: initialize MP as an array with length n−m+1 and each

element being a large enough float number (e.g., 1.0×106)
4: for i = 0, 1, . . . , n− 2 do
5: eleDist← EleWiseDistToRotTimeSeries(X, i)
6: slidMax← SlidMaxDeque(eleDist,m)
7: for j = 0, 1, . . . , n−m do
8: if i ≤ n−m− j − 1 or i ≥ n− j − 1 then
9: MP [j]← min(MP [j], slidMax[j])

10: end if
11: end for
12: end for
13: return MP
14: end procedure



(a) Approximate PMP computed by LINKUMP.

(b) Approximate PMP computed by SKIMP.

Fig. 5: Approximate PMP’s for the time series in Fig. 3 com-
puted by the LINKUMP and SKIMP algorithms, respectively;
both with 5% MP’s exactly computed.

REFERENCES

[1] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets,” in 2016 IEEE 16th international conference on data mining
(ICDM). IEEE, 2016, pp. 1317–1322.

[2] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix profile ii: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins,” in 2016 IEEE 16th international conference on
data mining (ICDM). IEEE, 2016, pp. 739–748.

[3] R. Akbarinia and B. Cloez, “Efficient matrix profile computation using
different distance functions,” arXiv preprint arXiv:1901.05708, 2019.

[4] J. Zhang and D. Nikovski, “Algorithms for fast computation of matrix
profiles of time series under unnormalized euclidean distances,” in SIAM
International Conference on Data Mining (SDM21). SIAM, 2021,
submitted.

[5] F. Madrid, S. Imani, R. Mercer, Z. Zimmerman, N. Shakibay, and
E. Keogh, “Matrix profile xx: Finding and visualizing time series motifs

(a) Exact PMP computed by LINKUMP with β = 1.

(b) Approximate PMP computed by LINKUMP with β = 0.01.

(c) Approximate PMP computed by LINKUMP with β = 0.02.

Fig. 6: PMP’s for the time series in Fig. 3 computed by the
LINKUMP algorithm.



of all lengths using the matrix profile,” in 2019 IEEE International
Conference on Big Knowledge (ICBK). IEEE, 2019, pp. 175–182.

[6] T. Nakamura, M. Imamura, R. Mercer, and E. Keogh, “Merlin:
Parameter-free discovery of arbitrary length anomalies in massive time
series archives,” in 2020 IEEE 20th international conference on data
mining (ICDM). IEEE, 2020.

[7] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial
time series with cyber-attack simulation: Fault detection using an lstm-
based predictive data model,” arXiv preprint arXiv:1612.06676, 2016.

[8] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[9] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and
K. Han, “Enhanced network anomaly detection based on deep neural
networks,” IEEE Access, vol. 6, pp. 48 231–48 246, 2018.

[10] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A deep
learning approach for unsupervised anomaly detection in time series,”
IEEE Access, vol. 7, pp. 1991–2005, 2018.

[11] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[12] Y. Bao, Z. Tang, H. Li, and Y. Zhang, “Computer vision and deep
learning–based data anomaly detection method for structural health
monitoring,” Structural Health Monitoring, vol. 18, no. 2, pp. 401–421,
2019.

[13] F. Ni, J. Zhang, and M. N. Noori, “Deep learning for data anomaly
detection and data compression of a long-span suspension bridge,”
Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 7,
pp. 685–700, 2020.


	Title Page
	page 2

	Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances /Author=Zhang, Jing; Nikovski, Daniel N. /CreationDate=May 19, 2022 /Subject=Data Analytics
	
	Introduction
	Definition and Monotonicity
	Algorithm
	Numerical Results
	Application in Anomaly Detection
	CPU Time for Pan Matrix Profile Computation

	Conclusion
	Appendix
	Finding Sliding Maxima Using Double-ended Queue
	Computation of Element-wise Distance to Rotated Time Series
	Computation of Matrix Profile Under Unnormalized  Distance Using Double-ended Queue

	References



