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Abstract—We propose a novel algorithm to compute the Matrix
Profile (MP) under the unnormalized `∞ distance (useful for
value-based similarity search) using two suitable data structures
(double-ended queue and segment tree). The algorithm has the
same time/space complexity as the state-of-the-art algorithm for
typical MP computation under the normalized `2 distance (useful
for shape-based similarity search). We validate its efficiency
and effectiveness through extensive numerical experiments and
two real-world applications – anomaly detection in the NYC
taxi data, as well as in a simulated communication network.
Depending on data and applications, we show that the value-
based similarity search could perform almost equally well as
the shape-based similarity search, and sometimes outperform the
latter significantly.

Index Terms—Matrix Profile, unnormalized Euclidean dis-
tance, double-ended queue, segment tree, anomaly detection

I. INTRODUCTION.

The Matrix Profile (MP) of a time series has been pro-
posed as a versatile data structure for various time se-
ries data mining tasks (anomaly detection, segmentation,
shapelets/motifs/chains discovery etc.) [1]. MP is a companion
time series recording distances between nearest neighbors of
subsequences in the original time series. MP has become very
popular in the time-series data mining community, due to its
applicability to many common tasks, as well as thanks to the
availability of fast algorithms for its computation. These fast
algorithms are based on the Fast Fourier Transform (FFT) or
Dynamic Programming (DP) to compute MP under normalized
Euclidean distance metrics (leading to shape-based similarity
search, which is appropriate for certain tasks, but not appro-
priate for others). For example, the original MP cannot deal
with “values of subsequences”-based anomaly detection, and
the normalized Euclidean distance is not defined for constant
subsequences. The use of unnormalized Euclidean distances
might possibly outperform the one used in the original MP
algorithm in various applications including anomaly detection.

In this paper, we develop a fast algorithm based on certain
data structures (double-ended queue and segment tree) to
compute the MP under unnormalized Euclidean distances,
thus leading to value-based similarity search, which sometimes
would outperform the MP under normalized distances (shape-
based similarity search). Note that the DP-based algorithms
could be adapted to MPs with unnormalized `p distances for
1 ≤ p < ∞ [2]. Our algorithms are substantially different
from the one based on FFT or DP.

The rest of the paper is organized as follows. We give some
notation and define the MP of time series in §II. In §III,
we propose novel algorithms to compute the MP. Numerical
results from extensive comparative studies and two real-world
applications are presented in §IV. We make a few concluding
remarks in §V. The Appendix (§VI) contains detailed descrip-
tions of some subroutines required by the major algorithm
proposed in §III.

II. NOTATION AND DEFINITION.

Let X = [x0, x1, . . . , xn−1] be a real-valued time series
with length n, where X[l] = xl ∈ R is the value sampled at
time instance l, l = 0, 1, . . . , n − 1. Denote by m the length
of a subsequence (window size), which satisfies 1 ≤ m ≤
n. Let Xj,...,j+m−1 ≡ [xj , xj+1, . . . , xj+m−1] denote the jth
subsequence of X , 0 ≤ j ≤ n−m.

[Matrix Profile of Time Series] The Matrix Profile of X is
a new time series Y = [y0, y1, . . . , yn−m], where

yj ≡ min
0≤j′≤n−m,j′ 6=j

d(Xj,...,j+m−1, Xj′,...,j′+m−1), (1)

where d(·, ·) is the `p distance.
In other words, the Matrix Profile (MP) of X at time

instance j is the distance between the jth subsequence and its
nearest-neighbor subsequence in X . Note that, for economy
of space, while still capturing the essence of the MP, in
Def. II we ignore the other component of the MP (i.e., the
corresponding indices of the nearest-neighbor subsequence)
from the original definition proposed in [1]. It is also worth
pointing out that, unlike in [1], we do not normalize the subse-
quences before computing their distances. In addition, without
loss of generality, throughout the paper we only use the
`∞ distance (i.e., p = ∞; d(Xj,...,j+m−1, Xj′,...,j′+m−1) =
max0≤k≤m−1 |Xj+k −Xj′+k|) to demonstrate the operation
of our algorithms. It should not require much effort to adapt
our proposed algorithms to the `p (1 ≤ p <∞) cases.

III. ALGORITHM.

To facilitate computing the distances between subse-
quences in (1), we rotate the original time series X
to obtain n − 1 new time series, denoted by X(i) =
[xi+1, xi+2, . . . , xn−1, x0, x1, . . . , xi], i = 0, 1, . . . , n − 2.
(Note, however, that in our actual implementation, we do not
need to keep all these rotated time series in memory; instead,
using only one array to store them is enough.) Then, given a
subsequence index j (0 ≤ j ≤ n − m) (i.e., time instance),



all the subsequences to be compared could be extracted from
these rotated time series at the same time instance. To illustrate
this, let us take a look at the example shown in Table I, for
which we have n = 10,m = 4, j = 2. To obtain y2 in (1), we
only need to compute the distances between the subsequence
X2,...,5 and subsequences X

(i)
2,...,5, i ∈ {i|i ∈ N, 0 ≤ i ≤

8} \ {i|i ∈ N, 3 < i < 7}, and find the minimum. Note that
the subsequences X

(i)
2,...,5, i = 4, 5, 6, are not valid ones in the

original time series X , because they violate the monotonicity
of time indices in X .

It is not hard to verify that, to obtain yj in (1) for general
cases, where we have 1 ≤ m ≤ n and 0 ≤ j ≤ n −m, it is
sufficient to compute the distances between the subsequence
Xj,...,j+m−1 and subsequences X

(i)
j,...,j+m−1, i ∈ {i|i ∈

N, 0 ≤ i ≤ n− 2} \ {i|i ∈ N, n−m− j− 1 < i < n− j− 1},
and find the minimum.

TABLE I: Example of Filtering Out Invalid Subsequences
(n = 10,m = 4, j = 2)

X x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

X(0) x1 x2 x3 x4 x5 x6 x7 x8 x9 x0

X(1) x2 x3 x4 x5 x6 x7 x8 x9 x0 x1

X(2) x3 x4 x5 x6 x7 x8 x9 x0 x1 x2

X(3) x4 x5 x6 x7 x8 x9 x0 x1 x2 x3

��X(4) x5 x6 x7 x8 x9 x0 x1 x2 x3 x4

��X(5) x6 x7 x8 x9 x0 x1 x2 x3 x4 x5

��X(6) x7 x8 x9 x0 x1 x2 x3 x4 x5 x6

X(7) x8 x9 x0 x1 x2 x3 x4 x5 x6 x7

X(8) x9 x0 x1 x2 x3 x4 x5 x6 x7 x8

Based on the observations above, to obtain the MP under the
`∞ distance, let us first compute the element-wise distances of
the original time series X and the rotated ones. We summarize
the steps as Procedure “EleWiseDistToRotTimeSeries;” see
§VI-E. It is worth noting that the returned array eleDist is
again a new time series with the same length as the original
X .

We also notice that the key to the MP computation is a sub-
routine that computes the maximum values of sliding windows
given a time series Z (the aforementioned eleDist actually;
we rewrite it as Z to make the description concise) and a
window size m. Specifically, we need to find the maximum
value of the subsequence Zj,...,j+m−1,∀0 ≤ j ≤ n − m.
Clearly, a brute-force approach could simply search the max-
imum value for each and every m-sized window, leading to a
time complexity in the order of O(m(n−m+1)) = O(mn),
which is dependent on the window size m and would be too
slow for a large m. To speed up the computation, we apply
two types of data structures: the double-ended queue and the
segment tree.

A. Finding Sliding Maxima Using a Double-ended Queue.

In this subsection, we apply the double-ended queue to
find maximum values of the sliding windows. We summarize
the steps as Procedure “SlidMaxDeque;” see §VI-A. Lines 9
through 11 remove indices of elements that are not from the
current sliding window. Lines 12 through 14 remove from

the double-ended queue the indices of all elements that are
smaller than the current element X[l]. Noting each element
of the given X would only be added into the queue once and
removed from the queue once, we see that the time complexity
of the procedure is O(n).

B. Finding Sliding Maxima Using a Segment Tree.

In this subsection, we apply the segment tree to find
maximum values of the sliding windows. The segment tree
was originally designed for fast updating an array (list) and
conducting range queries [3]. Considering our goal in this
paper, we only make use of the fast range-query property.
In particular, given a time series with length n, the time
complexity of building a segment tree would be O(n log n),
and each range query (e.g., searching the maximum of a
subsequence) would take O(log n) time only. Note that this
time complexity does not depend on the query size m. For a
fairly large m and n, using the segment tree method would
be faster than the brute-force by a factor m

logn − 1 ≈ O(m).
Before searching the range maxima (i.e., sliding maxima) of
the original time series X , we need to construct a segment
tree from X and implement a subroutine for range query
(i.e., searching range maximum in our case) as preprocessing
steps; see Procedures “SegmentTree” (§VI-B) and “Range-
Maximum” (§VI-C). The remaining steps are summarized as
Procedure “SlidMaxSegTree;” see §VI-D.

C. Computing the Matrix Profile.

Finally, we summarize the steps of computing the MP using
the double-ended queue or segment tree data structures as
Alg. 1, where we use the argument option to indicate which
to choose; when option equals “deque,” we use the double-
ended queue, and when option equals “segtree,” we use the
segment tree. It is not hard to figure out that the total time
complexity is O(n2) for the “deque” option and O(n2 log n)
for the “segtree” option, and the space complexity is O(n)
for both options. Note that these complexities are the same
as those for the state-of-the-art typical MP algorithms (CPU
version only) [1], [4].

Algorithm 1 Computation of Matrix Profile Using
Double-ended Queue or Segment Tree

1: procedure MatrixProfileDequeSegTree(X,m, option)
2: n← length of X
3: initialize MP as an array with length n−m+1 and each

element being a large enough float number (e.g., 1.0×106)
4: for i = 0, 1, . . . , n− 2 do
5: eleDist← EleWiseDistToRotTimeSeries(X, i)
6: if option equals “deque” then
7: slidMax← SlidMaxDeque(eleDist,m)
8: else if option equals “segtree” then
9: ST ← SegmentTree(eleDist)

10: slidMax← SlidMaxSegTree(ST,m)
11: end if
12: for j = 0, 1, . . . , n−m do
13: if i ≤ n−m− j − 1 or i ≥ n− j − 1 then
14: MP [j]← min(MP [j], slidMax[j])



15: end if
16: end for
17: end for
18: return MP
19: end procedure

For cases where 1 ≤ p <∞, the segment tree method still
applies, except that the range query should be about the sum
rather than the maximum. The double-ended queue alternative,
however, would not generalize to such cases; instead, one
could apply the typical dynamic programming approach (see,
e.g., [2]). It is also worth noting that the segment tree could
also be replaced by the binary indexed tree [5]; the two have
similar properties in terms of fast range queries.

IV. NUMERICAL RESULTS.

A. CPU Time for Matrix Profile Computation.

First, we conduct a comparative study on the CPU time of
different algorithms for the Matrix Profile (MP) computation.
The tested time series had a length n = 2000 and was
generated randomly by sampling from a normal distribution
N (5.0, 10.0). We record the CPU time of three algorithms
(i.e., the brute-force approach, the one using the segment
tree data structure, and the one using the double-ended queue
data structure) for MP computation, varying the window size
m, such that m ∈ {10, 30, 50, . . . , 490}. We implement the
algorithms in Python and run them on a desktop computer
with an Intel(R) Core(TM) i7-4770 CPU and 16 GB of system
memory.

The results are shown in Fig. 1. It can be seen that our
proposed algorithm is much faster than the brute-force one; its
CPU time is independent of the window size m, whereas the
CPU time of the brute-force algorithm is approximately pro-
portional to m. Clearly, this is consistent with our complexity
analysis of Alg. 1 and the brute-force baseline algorithm.
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Fig. 1: CPU time vs. window sizes for different algorithms for
Matrix Profile computation (n = 2000).

B. Application in Anomaly Detection.

Next, we apply the proposed algorithm for Matrix Profile
computation to two anomaly detection scenarios.

1) NYC Taxi Data.: The NYC taxi data set [6] contains
time-stamped numbers of NYC taxi passengers, where 8
anomalies occur during the Independence day, Labor day,
Labor day parade, NYC marathon, Thanksgiving, Christmas,
New Years day, and a snow storm. The raw data is from
the NYC Taxi and Limousine Commission1. The data file
included here consists of aggregating the total number of
taxi passengers into 30 minute buckets between 7/1/2014
12:00:00 AM and 1/31/2015 11:30:00 PM. Before the MP
computations, we conduct preprocessing by normalizing the
raw numbers over the whole time range; note that this is
different than normalizing the query windows separately.

To see performance differences between applying the MP
under unnormalized and normalized distances (hence, value-
based and shape-based similarity search, respectively), we
compute MP values for both cases using the same window
size m = 24 hours (i.e., 1 day). The CPU times for both
cases are close and less than 10 minutes using the same
hardware environment described in §IV-A; for the MP under
unnormalized `∞ distance, we implement Alg. 1 in Python
with the “deque” option, and for the MP under normalized `2
distance, we use the Python library STUMPY2.

The obtained MP values are shown in Fig. 2, where the top
subplot shows the MP values under unnormalized `∞ distance
(value-based similarity search), whereas the bottom subplot
shows the MP values under normalized `2 distance (shape-
based similarity search). It can be seen that for this application,
both the value-based similarity search and the shape-based
alternative would lead to approximately equally good anomaly
detection results. Note that the red shaded areas map to the
ground-truth anomalies where we observe that the MP reaches
peak values, indicating “discords” (i.e., anomalies).

Fig. 2: Matrix Profile applied to NYC taxi data anomaly
detection; top: MP values under unnormalized `∞ distance
(value-based similarity search), bottom: MP values under
normalized `2 distance (shape-based similarity search).

2) Communication Network Flow Data.: To generate net-
work traffic (flow) data, we conduct simulations using the
software package SADIT [7], which, based on the fs-simulator

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://github.com/TDAmeritrade/stumpy

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/TDAmeritrade/stumpy


[8], can efficiently generate flow-level network traffic datasets
with annotated anomalies.

We simulate a network (see Fig. 3) consisting of an internal
network involving 8 normal users (CT1-CT8) and 1 server
(SRV) that stores some sensitive data, and 3 Internet nodes
(INT1-INT3) that visit the internal network via a gateway
(GATEWAY). We consider the network with a day-night pattern
where the flow size follows a log-normal distribution. The
simulation settings we use are exactly the same as those in
[9, §IV.B.2]. We generate 10 normal samples, each being a
multidimensional time series lasting for one week (0 h – 168
h). To generate one more test sample, we consider an anomaly
where node CT2 increases its mean flow size by 30% at 59 h
and the increase lasts for 80 minutes before the mean returns
to the normal value (i.e., the anomalies are on the time interval
[212400, 217200] (in seconds)). This kind of anomaly could be
related to the case where an attacker tries to exfiltrate sensitive
information (e.g., user accounts and passwords) through SQL
injection [10].

Fig. 3: Simulation setting (this figure is from [11]).

When dealing with the flow data, we only use the feature
“flow size,” and downsample the original time series by
a factor of 10. Before computing the MP, we conduct a
preprocessing step by normalizing the whole time series; note
again that this is different than normalizing the query windows
separately. Similar to §IV-B1, the CPU times for computing
the MP under unnormalized and normalized distances are close
and less than 20 minutes using the same hardware/software
environment. The window size for both cases is taken as
m = 360 (corresponding to 3600 seconds (i.e., 1 hour) in
the original data).

The resulting MP values are shown in Fig. 4, where the top
subplot shows those under unnormalized `∞ distance (value-
based similarity search), whereas the bottom subplot shows
those under normalized `2 distance (shape-based similarity
search). It is seen from Fig. 4 that the value-based similarity
search would be able to successfully detect the anomalies,
whereas the shape-based alternative would not. Note that
peak MP values correspond to “discords” or, in other words,
anomalies.
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Fig. 4: Matrix Profile applied to communication network
anomaly detection; top: MP under unnormalized distance
(value-based similarity search), bottom: MP under normalized
distance (shape-based similarity search). The red shaded area
maps to the original time interval [212400, 217200] (in sec-
onds) where the anomalies are.

V. CONCLUSION.

Using two carefully selected data structures (double-ended
queue and segment tree), we have proposed a novel algorithm
to compute the Matrix Profile (MP) under the unnormalized
`∞ distance (leading to value-based similarity search). The
algorithm has the same time/space complexity as the state-
of-the-art algorithm for typical MP computation under the
normalized `2 distance (leading to shape-based similarity
search), and is validated through numerical experiments. Also,
our algorithm is readily adaptable to the MP computation
under unnormalized `p (1 ≤ p < ∞) distances (see Remark
III-C).

We also show through specific real-world applications that
the value-based similarity search could perform almost equally
well as the shape-based similarity search, and sometimes
outperform the latter significantly. Of course, this depends on
the data and applications.

Possible future work includes adapting the proposed algo-
rithm to a GPU version, thus leveraging the benefits of parallel
computing, and to a Pan Matrix Profile (PMP) version [12],
thus enabling analysis with varying query sizes. Also, we
might consider additional applications.

VI. APPENDIX.

A. Finding Sliding Maxima Using Double-ended Queue.

1: procedure SlidMaxDeque(Z,m)
2: n← length of Z
3: if m equals 1 then
4: return Z
5: end if
6: initialize Q as a new empty double-ended queue
7: initialize slidMax as a new empty vector
8: for l = 0, 1, . . . , n− 1 do
9: if Q is nonempty and Q[0] ≤ l −m then

10: remove the leftmost element from Q
11: end if



12: while Q 6= ∅ and Z[l] > Z[Q[−1]] do
13: remove the rightmost element from Q
14: end while
15: append l to the rightmost of Q
16: if l ≥ m− 1 then
17: append Z[Q[0]] to the rightmost of slidMax
18: end if
19: end for
20: return slidMax
21: end procedure

B. Construction of Segment Tree.

1: procedure SegmentTree(X) [13]
2: n← length of X
3: initialize a new zero array ST with length 2n
4: copy X to the second half of ST
5: for l = n− 1...1 do
6: ST [l]← max(ST [2× l], ST [2× l + 1])
7: end for
8: return ST
9: end procedure

C. Computation of Range Maximum in Segment Tree.

1: procedure RangeMaximum(ST, left, right) [13]
2: n← (length of ST )/2
3: left← left+ n, right← right+ n
4: initialize max with a small enough float number (e.g.,

−1.0× 106)
5: while left < right do
6: if left is odd then
7: max← max(max, ST [left])
8: left← left+ 1
9: end if

10: if right is odd then
11: right← right− 1
12: max← max(max, ST [right])
13: end if
14: left← left/2, right← right/2
15: end while
16: return max
17: end procedure

D. Finding Sliding Maxima Using Segment Tree.

1: procedure SlidMaxSegTree(ST,m)
2: n← (length of ST )/2
3: initialize slidMax as a new empty vector
4: for j = 0, 1, . . . , n−m do
5: rm← RangeMaximum(ST, j, j +m)
6: append rm to the rightmost of slidMax
7: end for
8: return slidMax
9: end procedure

E. Computation of Element-wise Distance to Rotated Time
Series.

1: procedure EleWiseDistToRotTimeSeries(X, i)
2: n← length of X

3: eleDist← the i-th rotated X (i.e., X(i))
4: for l = 0, 1, . . . , n− 1 do
5: eleDist[l]← |eleDist[l]−X[l]|
6: end for
7: return eleDist
8: end procedure
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