
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Scalable Bayesian Optimization for Model Calibration: Case
Study on Coupled Building and HVAC Dynamics

Chakrabarty, Ankush; Maddalena, Emilio; Qiao, Hongtao; Laughman, Christopher R.

TR2022-030 April 06, 2022

Abstract
Model calibration for building systems is an key step to achieving accurate and reliable predic-
tions that reflect the dynamics of real systems under study. Calibration becomes particularly
challenging when integrating building and HVAC dynamics, due to large-scale, nonlinear,
and stiff underlying differential algebraic equations. In this paper, we describe a frame-
work for calibrating multiple parameters of coupled building/HVAC models using scalable
Bayesian optimization (BO), whose advantages include global optimization without requiring
gradient information, and its ability to perform calibration in a data-efficient manner. The
proposed methodology is improved online via two additional steps: domain tightening and
domain slicing, both of which leverage the surrogate calibration cost function. We demon-
strate effectiveness of the proposed algorithm by simultaneously calibrating 17 parameters
(including emissivities, heat transfer coefficients, and thickness of walls/floors) of a Modelica
model of joint building and HVAC dynamics, with 2 weeks worth of training data. This high-
dimensional calibration task is solved via our proposed method, which yields parameters that
are > 90% accurate with < 1000 model simulations, and the outputs of the final calibrated
model on unseen testing data complies with standard ASHRAE calibration guidelines.

Energy and Buildings 2022

c© 2022 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Scalable Bayesian Optimization for Model Calibration:
Case Study on Coupled Building and HVAC Dynamics

Ankush Chakrabartya,1, Emilio Maddalenab, Hongtao Qiaoa, Christopher Laughmana

aMitsubishi Electric Research Laboratories, Cambridge, MA, United States
bÉcole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract

Model calibration for building systems is an key step to achieving accurate and reliable predictions that reflect

the dynamics of real systems under study. Calibration becomes particularly challenging when integrating

building and HVAC dynamics, due to large-scale, nonlinear, and stiff underlying differential algebraic equa-

tions. In this paper, we describe a framework for calibrating multiple parameters of coupled building/HVAC

models using scalable Bayesian optimization (BO), whose advantages include global optimization without

requiring gradient information, and its ability to perform calibration in a data-efficient manner. The pro-

posed methodology is improved online via two additional steps: domain tightening and domain slicing, both

of which leverage the surrogate calibration cost function. We demonstrate effectiveness of the proposed

algorithm by simultaneously calibrating 17 parameters (including emissivities, heat transfer coefficients, and

thickness of walls/floors) of a Modelica model of joint building and HVAC dynamics, with 2 weeks worth

of training data. This high-dimensional calibration task is solved via our proposed method, which yields

parameters that are > 90% accurate with < 1000 model simulations, and the outputs of the final calibrated

model on unseen testing data complies with standard ASHRAE calibration guidelines.

Keywords: Parameter estimation, Gaussian processes, Machine learning, Bayesian methods, Sensitivity

analysis, Digital twins

1. Introduction

Physics-informed simulation models and digital twins of heating, ventilation, and cooling (HVAC) sys-

tems play a critical role in predicting system dynamics and enabling analysis, control, and optimization of

buildings and equipment [1, 2]. Key advantages of physics-based modeling are that designs can be based

upon geometric and material information readily available from construction documents, and that the infor-

mation encoded in their mathematical structure tends to demonstrate accurate extrapolative and predictive

properties in comparison to more generic model structures. These predictive capabilities often come at the
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cost of increased nonlinearity and numerical stiffness, which can make these models difficult to simulate,

and often impossible to obtain closed-form solutions or analytical (equation-based) representations.

Calibration mechanisms are essential to enable precise predictive performance of a simulation model for

a given building, as the initial parameters obtained from tables of physical properties or architectural draw-

ings may deviate from the actual materials or geometry used in the construction process, while other model

parameters (e.g. heat transfer coefficients) may only be derived from correlations or empirical observa-

tions. The parameter values that most accurately represent observed data must therefore be systematically

identified by algorithms that optimize a given calibration-cost map, such as the mean squared error. Once

identified, the calibrated parameters of physics-based models can be useful not only for generating accu-

rate simulations of the system dynamics, but also because the parameters themselves could have physical

meaning and, therefore, be used to infer information about the system state.

Maps from model parameters to calibration-cost often present numerical challenges because they tend

to be quite nonlinear, they are not always differentiable or convex, and their parameter sensitivities often

vary over a wide range of magnitudes. Furthermore, measured data is corrupted by environmental effects or

process noise, limiting the effectiveness of gradient-based methods. Population-based, gradient-free searches

are scalable and effective, but incur high computational expenditure as they require extensive simulations [3,

4], which renders them unsuitable for calibrating stiff dynamical models that require long simulation times.

Solely relying on dynamical estimators such as Kalman filters can also limit calibration performance due to

multi-rate dynamics and low generalizability of linearized state-space models typically used to design these

estimators [5, 6].

Coupled interactions between dynamic systems, as with an HVAC system and its associated building

envelope, should also be accounted for during calibration. Although calibration of each of these system

models is often performed independently, a number of variables (such as room air temperature) contain

information about both the envelope and the HVAC system, so that the calibration of the joint system

has the potential to yield more accurate parameters than the independent calibration of each subsystem.

Decoupling calibration of the building envelope from the HVAC is a missed opportunity. The calibration

of this integrated model presents additional challenges that must be addressed through algorithm design.

This is due to the larger model size and the fact that the joint system often has dynamics over more widely

separated time constants than either of the subsystem models1.

Probabilistic learning algorithms can be used construct an approximation of the parameter-to-calibration-

cost map to guide model calibration for systems with integrated dynamics of buildings and HVAC equipment,

while accounting for noise and uncertainty. The learner explores subregions of the parameter space with

high uncertainty (exploration) or high likelihood of obtaining a better solution (exploitation) and queries

1We show evidence of these numerical complications in Fig. 3 later in the paper.



the model only where collecting simulation data is likely to yield useful information. Intelligent, iterative

sampling leads to lower simulation data requirements compared to widely used calibration mechanisms [7].

Bayesian methods, including Bayesian calibration [8–10], are particularly effective because they provide un-

certainty quantification capabilities, as they both incorporate prior knowledge one might have of the building

or HVAC system at hand and provide confidence envelopes around the nominal predictions specifying its

degree of certainty without requiring a large amount of data [11].

The most widely used Bayesian algorithms for calibrating dynamical models and energy models fall

under the umbrella of Markov chain Monte Carlo (MCMC) methods [12–14]. While these methods provide

demonstrably excellent solutions for building energy calibration with few unknown parameters, they suffer

from three major limitations: they typically require a large number of iterations for ‘burn-in’ and exhibit slow

convergence in high-dimensional parameter spaces [13], they require preconditioning steps such as sensitivity

analysis which is itself computationally expensive, and they require learning of multi-input multi-output

maps via probabilistic learning methods to replace the emulator. Our proposed BO methodology is related

to, but distinct from, the philosophy of Bayesian calibration. Although both Bayesian Calibration (BC)

and Bayesian Optimization (BO) aim at adjusting parameters of simulation models, important differences

between the two methodologies exist, described next. Whereas BC explicitly accounts for the presence of

states x and outputs y, which are later used to compute metrics such as the CVRMSE cost, BO bypasses

the estimation of x and relies solely on the availability of the measurements y and the dataset of parameters

θ with their associated calibration cost. As numerous simulation runs are typically required in BC, it is

customary to design meta-models to replace the high-fidelity simulators [15]. On the other hand, BO relies

directly on the high-fidelity simulator and reduces the number of times simulations need to be performed,

thereby reducing the need for a large number of initial simulations for meta-modeling. Coupled with the

previous point, an advantage of BO over BC methods is that we do not model the states or dynamics, we

instead rely on a model of the cost, which is a simpler learning problem. Even though both approaches

usually rely on Gaussian process models, the posterior distribution is often analytically intractable in BC

and users have to resort to different flavors of MCMC to gather samples from it [16]. MCMC is notoriously

sample-heavy and requires a large number of samples just for burn-in [17]. In contrast, the posterior density

can be found in closed-form in BO, dispensing with the need of performing MCMC, and we can analytically

evaluate the posterior for inference.

In this work, we demonstrate a proposed GP-based Bayesian optimization (GP-BO) method for cali-

brating grey-box models of joint building-HVAC equipment systems. Advantages of this method include:

BO usually requires few iterations to converge, does not require prior sensitivity analysis since it automat-

ically determines relevance of parameters within the training phase, and a multi-input one-output map is

learned (which reduces learning complexity) since we only seek to approximate the calibration-cost func-

tion rather than replacing the more complex underlying physics-informed model, thereby preserving fidelity.



Furthermore, BO methods are model agnostic: since we do not assume knowledge of the underlying model

equations, BO can be used to calibrate both white-box and black-box models. Irrespective, we assume that

the model’s closed-form representation is unknown, i.e. it is black-box from the perspective of the calibration

algorithm.

Gaussian processes (GPs) have been previously shown to be particularly effective for calibrating building

energy maps; see [18–20]. In all these case studies, however, the dynamics of the underlying system are not

considered, and the number of parameters is quite small. As pointed out in [21], the computational stability

and efficiency of GP-based methods scale poorly when the number of iterations of the calibration algorithm

is large. This is because standard implementation of Bayesian optimization using exact GP has cubic-

time and quadratic-storage complexity on the number of data-points [22], which prevents its application

to calibrating a large number of parameters. In order to overcome this important limitation, a variety of

approximation techniques are available under the unifying name of sparse Gaussian processes (SGPs) [23, 24].

These methods rely on summarizing the information of the original dataset with a smaller collection of

representative data points, also called inducing points or pseudo-inputs, whose number is determined by

the user. In doing so, the domain expert can trade-off the approximation precision and the computational

complexity of the resulting GP surrogate (more inducing points = more precision and more complexity, and

vice versa). In this paper, we employ a state-of-the-art SGP technique for scalability during calibration,

that is theoretically sound, easy to implement using open-source software tools, and yields fast and accurate

results in practice.

The contributions of this paper are as follows: (1) We study the problem of developing scalable

algorithms for calibrating physics-informed dynamical models of joint building and equipment dynamics.

This paper is a first attempt at learning parameters of a complex, large-scale dynamical model that accurately

reflects the physical and engineering processes involved at both the equipment-level and the building-level. (2)

We employ data-driven Gaussian processes (GPs) for learning a parameter-to-calibration-cost function that

contains the true cost with high probability. The GP also generates confidence bounds around predicted

function values that quantify the prediction uncertainty at various regions in the parameter space. A

major advantage of this is that the surrogate model is constructed from parameters to calibration-cost which

is typically a lower-dimensional learning problem than learning large-scale nonlinear dynamics, which is

typically how GPs are currently used [11, 12]. (3) We utilize confidence bounds to explore the parameter

space without requiring numerous simulations by collecting simulation data for parameters in regions with

large uncertainty bounds and high likelihood of containing global optima, both of which are estimated by

designing an appropriate acquisition function (as per standard Bayesian optimization). By leveraging the

learned statistics to automatically trade-off exploitation and exploration, we reduce the total number of model

simulations required to complete the calibration task, and do not require a large number of initial simulations

for ‘burning-in’ a distribution.



The rest of the paper is organized as follows. In Section 2, we describe the workflow of physics-based

model calibration with BO. The section also provides an overview of Gaussian processes (GPs) and Bayesian

optimization (BO). Section 3 explains how to make the BO framework scalable to a large number of parame-

ters using sparse GP approximations, and discusses modifications to SGP-BO such as domain tightening and

domain slicing that improves convergence speed. The potential of our proposed approach is demonstrated

using Modelica simulations in Section 4, where 17 parameters of a physics-based dynamical model is cali-

brated to high accuracy. We also show that integrating the HVAC to building envelope dynamics resulted

in sizeable model complexity, making the case study a significant test bed for calibration. We present our

conclusions and open problems in the Section 5.

2. Model Calibration with Bayesian Optimization

An overview of the proposed calibration framework is presented in Figure 1. The following subsections

describe in more detail the individual components illustrated in the figure.

Figure 1: Schematic diagram of the proposed Bayesian optimization-based calibration method.



2.1. Model calibration

We denote by

y0:T =MT (θ)

an abstraction of a simulation model of the true system dynamics, parameterized by the parameter vector

θ ∈ Θ ⊂ Rnθ . The admissible set of parameters Θ is assumed to be known at calibration time; for instance,

Θ could denote a set of upper and lower bounds on parameters, obtained from physics or domain expertise.

The output vector y0:T ∈ Rny×T contains all measured output data from the physical system over a time

period [0, T ].

Note that we do not require an underlying mathematical description of the dynamics at design time.

That is,MT (θ) could be a completely black-box or white-box model. We do require that the model can be

evaluated for different parameters, and that simulatingMT (θ) forward with a fixed (and admissible) set of

parameters θ yields a time-sequence of outputs

y0:T :=
[
y0 y1 · · · yt · · · yT

]
,

with each output measurement yt ∈ Rny .

This assumption implies that our method is applicable to a wide range of models proposed in the

literature.

Example

For instance, consider the commonly used [14, 25] building energy model

yt = η(xt, θ) + δ(xt) + ε(xt),

where η denotes the energy prediction, δ is the model discrepancy, and ε is the observation error. Clearly,

by recursively simulating this model from t = 0 to t = T , one can obtain a representation that conforms to

our abstracted modelMT (θ).

Example

In the case of a state-space description [26] of the joint dynamics such as

ẋb = fb(xb, xe, ub, wb, θb),

ẋe = fe(xe, xb, ue, we, θe),

y = h(xb, xe, ub, ue, vb, ve),

then defining θ := [θb, θe] and integrating from [0, T ] also yields a model of the form MT (θ). Here x, u,

w, v denote states, inputs, process noise, and measurement noise, respectively, and the subscripts b and e

correspond to the building and equipment, also respectively.



Since we are considering the problem of data-driven model calibration, we assume that we have some

measured output data y?0:T that can be used to fit the model MT (θ). Our objective is thus to obtain the

optimal set of parameters θ? such that the modeling error y?0:T −MT (θ?) is minimized, according to a given

distance metric. To this end, we propose an optimization problem to find the optimal parameters

θ? = arg min
θ∈Θ

J(y?0:T ,MT (θ)). (1)

While the designer is free to select any modeling error function J in (1), we have found

J(y?0:T ,MT (θ)) := log10

[
T∑
t=0

(y?t − yt)>W (y?t − yt)

]
, (2)

to work well, where W is a ny × ny positive-definite matrix that is used to assign importance or scale the

output errors; recall y0:T =MT (θ). The logarithm operator log10(·) promotes good numerical conditioning

for learning by transforming very large or very small cost function values.

In order to perform global optimization, we solve the problem (1) by sampling the parameter space

Θ, forward simulating the physics-based model MT (θ) over [0, T ] to obtain y0:T , and computing the cost

J(y?0:T , y0:T ). By doing so, we avoid dependence on the underlying description of MT (θ), since just the

simulated outputs are sufficient. Clearly, in high-dimensional parameter spaces, the number of samples

required to obtain good solutions to (1) can be large unless the sampling is done intelligently. In this paper,

we propose the use of Bayesian optimization to reduce sampling complexity by building probabilistic models

of the mapping between the parameters and the calibration-cost, and iteratively exploiting the uncertainty

associated with this probabilistic model. An overview of BO is presented next.

2.2. Overview of Bayesian optimization (BO)

The Bayesian optimization (BO) algorithm typically consists of two steps that automatically balance

exploration and exploitation [27]. Probabilistic machine learning methods are used to approximate the map

from parameters to the calibration-cost function J . Note that though the functional form of J is known

from the model output error through (2), we do not know how J depends on θ, which is why the map

θ 7→ J needs to be learned. Representing the calibration cost as a stochastic process is a key difference

from prior Bayesian calibration methods that focus on modeling the state transitions or building energy

output directly. By quantifying the uncertainty from parameter to calibration-cost, we can indirectly model

various uncertainty sources on the building model, along with noise, in a holistic manner without learning

a high-dimensional dynamical map from multiple states to multiple outputs. By learning a stochastic

representation, one can use the approximation to generate a predictive distribution for J at each parameter

θ. Furthermore, this predictive distribution is used to generate subsequent search directions, with a focus on

subregions of Θ where the function most likely contains the global solution θ? which minimizes the cost (1).

After a new sample is acquired in the promising subregion, the probabilistic model is updated through Bayes



rule, thus incorporating new information and refining its predictions. The process is then repeated until

a stopping criterion in met. Gaussian processes are the prevailing surrogate model choice in BO due to

the existence of a closed-form model update expression as well as a closed-form objective to tune it [22].

Note that the final parameter candidate selected by BO is deterministic, even though the cost function

approximation is stochastic.

We utilize GPs to model a stochastic process, equivalently, a distribution over functions. The under-

lying assumption made is that the calibration cost function J to be optimized has been generated from

such a prior distribution, characterized by a zero mean and a kernelized covariance function K(θ, θ′). The

covariance function K is singularly responsible for defining the characteristics of the associated functions

such as smoothness, robustness to additive noise, and so on. While many kernel functions are available, we

have found (empirically) that the Matérn 3/2 function provides a good approximation of calibration-cost

functions.

Assume that we have already evaluated the objective at Nθ input samples. Let this training data be

denoted by

{(θDk , J(θDk ) + νk}Nθk=1,

where νk ∼ N (0, σ2
n) is additive white noise in the measurement channel with zero-mean and unknown

covariance σ2
n. After specifying a kernel function, one can compute the following elements

KD(θ) =
[
K(θ, θD1 ) · · · K(θ, θDN )

]
and

KD =


K(θD1 , θ

D
1 ) · · · K(θD1 , θ

D
N )

...
. . .

...

K(θDN , θ
D
1 ) · · · K(θDN , θ

D
N )

 .
With KD(θ) and KD, we then define the GP predictive distribution.that is, the posterior, characterized by

a mean function µ(θ) and variance function σ2(θ) given by

µ(θ) = KD(θ)>K−1
n J(θ), (3a)

σ2(θ) = K(θ, θ)−KD(θ)>K−1
n KD(θ), (3b)

with Kn = KD + σ2
nI. The accuracy of the predicted mean and variance are strongly linked to the kernel

selection and the best (in some sense) set of its hyperparameters. The latter are internal constants such as

the length scale l, the vertical scale σ0, and the noise variance σ2
n. There are a variety of methods to optimize

these hyperparameters, but the most common one consists in maximizing the log-marginal likelihood (MLE)

function

L = −1

2
log |Kn| −

1

2
J(θ)>K−1

n J(θ)− p

2
log 2π. (3c)



This is a widely adopted statistical objective whose maximum selects the model from which the observed

data are more likely to have come. Although (3c) is non-convex, it can be solved using quasi-Newton

methods or adaptive gradient methods [22]. If available, prior knowledge can be used to bias the estimation

process towards values that the designer regards as being more sensible. This is can be easily incorporated

in the same framework, and is referred to as maximum a posteriori (MAP) estimation. At this point, one

has a GP model defined in (3a) and (3b), as well as a principled way of training it (3c).

The exploration-exploitation trade-off in BO methods is performed via an acquisition function A(·). The

acquisition function uses the predictive distribution given by the GP to compute the expected utility of

performing an evaluation of the objective at each set-point θ. The next set-point at which the objective has

to be evaluated is given by

θNθ+1 := arg maxA(θ).

In this work, we use a lower confidence bound (LCB) acquisition function given by

ALCB = µ(θ)− κσ(θ), (4)

where κ ∈ N is an integer usually ≥ 2. This acquisition function estimates the expected improvement of

the steady-state power generated by the next set-point versus the current best solution. The maximum

of this acquisition function may be computed efficiently by generating random samples on Θ, computing

ALCB for each sample, and choosing the sample maximum as the next set-point. As this function only

depends on the GP approximated function and not on the actual objective J , the maximization of A(·)

involves computing (3) rather than expensive function evaluations. After a suitable number of iterations

Nθ, the GP regressor is expected to learn the underlying function J and the best solution obtained thus

far by the acquisition function is denote the best set of parameters for the model. The selection of Nθ is a

design decision: it is usually informed by practical considerations such as the total number of simulations

achievable within a practical time budget.

3. Scalable BO for High-Dimensional Parameter Spaces

3.1. Sparse Gaussian Processes for BO (SGP-BO)

Sparse Gaussian processes require {θ′k}, k = 1, . . . ,Mθ′ as inducing points, also known as pseudo-inputs,

to compress large datasets. Typically, these are chosen to be much fewer than the initial number of samples,

that is, Mθ′ � Nθ. Moreover, let KDm be the tall matrix of kernel evaluations at the inputs θDk and

inducing points {θ′k}, and KmD be its transpose. Finally, Kmm denotes the matrix analogous to KD, but

with evaluations at the inducing points—hence, Kmm is much smaller than KD.

The high computational complexity of classical GPs is due to computing the determinant and inverse

of the Nθ × Nθ kernel matrix KD in the likelihood loss (3c), which are needed both in the training and



prediction phases (see the expressions in (3)). To circumvent this problem, sparse techniques make use of a

low-rank matrix

K̃D = KDmKmmKmD, K̃D ≈ KD (5)

along with the Woodbury inversion lemma and the Sylvester determinant theorem to greatly reduce the

overall complexity; for more details, we refer to [23]. As an outcome of this process, the final SGP predictive

mean and variance expressions only involve the inversion and the determinant of Mθ′ ×Mθ′ matrices, which

is much easier to compute. Besides the simplified matrix algebra, SGPs have a statistical interpretation:

they are grounded in the independence of new and past data given the inducing points. For the calibration

task, the surrogate calibration-cost learned based on inducing points form a bottleneck of approximation

quality that require new candidate parameters to be sufficiently novel and informative to break through in

order to be considered for evaluation [28].

SGP with 10 inducing points SGP with 20 inducing points
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Figure 2: A comparison among sparse approximations employing an increasing number of inducing points, and the exact

Gaussian process. The data-points are depicted as gray circles, whereas the inducing points are shown as orange crosses.

Among the various SGP methodologies found in the literature, the variational free energy (VFE) method

stands out for its positive features: it is statistically consistent; it can only improve its performance when

given more flexibility, i.e., more inducing points; and it is robust against overfitting as it fits the posterior

density, never considering data directly [24]. The reader is referred to [23, 28] for two excellent reviews of

SGPs and to [29] and [30] respectively for the original VFE work and a recent reinterpretation of it. The

model itself is derived by minimizing the distance to the exact-GP posterior as measured by the Kullback-

Leibler (KL) divergence metric, a common way of quantifying the mismatch between statistical distributions.



Using tools from variational calculus, a closed-form solution for this problem can be found, resulting in a

(simplified) Gaussian process with the following predictive equations

µVFE(θ) = K̃D(θ)>(K̃D + σ2
nI)−1J(θ),

σ2
VFE(θ) = K(θ, θ)− K̃D(θ)>(K̃D + σ2

nI)−1K̃D(θ).

As explained in [24], training the VFE model is typically done through maximizing the following objective

L̃ = −1

2
log |K̃D + σ2

nI| −
1

2
J(θ)>(K̃D + σ2

nI)−1J(θ)

− 1

2σ2
n

Tr(KD − K̃D)− p

2
log 2π; (6)

where Tr(·) denotes the trace of a matrix. The maximization of L̃ not only identifies the best kernel

hyperparameters, but also optimizes the inducing point locations, hence completely specifying the sparse

model. We chose VFE as our default sparse Gaussian process in this paper due to its superior performance

in our numerical experiments along with a substantial computational speed-up.

The benefits of sparse GPs, specifically VFE, can be seen in Fig. 2 using a benchmark 1D function. The

function is replicated using exact GP using 300 points. VFE approximations with an increasing number of

inducing points are also presented for comparison. As can be seen from the plots, 10 inducing points did

not suffice to learn a reasonable nominal model as most of the data fluctuations were neglected. With 20

inducing points, the SGP yielded better results, but certain regions of the domain between x = 1.5 and

x = 2.5 presented low-quality predictions and a large uncertainty envelope. Finally, excellent results were

obtained with 30 inducing points, being essentially indistinguishable from the exact GP with only one tenth

of the number of effective inputs.

Pseudocode for the resulting SGP-BO algorithm is provided in Algorithm 1.

3.2. Incorporating Sensitivity Information

Most calibration mechanisms in the literature start with a sensitivity analysis on the parameter space

to identify which parameters directly affect the model outputs, and how strongly. This sensitivity analysis

is performed offline and typically requires access to an analytical mathematical model so that one can

compute gradients and calculate sensitivity matrices [31]. In the absence of such an analytical model, one

can generate sensitivity-like indices via sampling, but this requires a large number of offline samples, i.e.,

queries to the mathematical model [32]. Since BO methods explicitly construct GP models of the cost with

uncertainty quantification, we can use these surrogates to learn the sensitivity (also called relevance) of each

parameter, online, for free [33]. In this subsection, we propose two modifications to the SGP-BO algorithm

that take parameter relevances into account to restrict the search domain (domain tightening) and slice

the high-dimensional parameter space into tractable clusters of parameters, to promote scalability (domain

slicing).



Algorithm 1 SGP-BO Algorithm

Require: Model,MT (θ)

Require: Initial dataset D1 = {θ, J}0:NDT

Require: Acquisition Function, A

Require: Inducing points, θ′

for k = 1, 2, · · · do

Perform min-max scaling of θ

Update the sparse Gaussian process model with Dk
θk+1 ← Find next best candidate, arg maxA(θ)

J(θk+1)← Compute cost by simulating model

Dk+1 ← Augment dataset Dk ∪ {θk+1, J(θk+1)}

end for

3.2.1. Domain Tightening

Algorithm 2 Domain Tightening
Require: Initial parameter space, Θ

Require: Top-`DT number, `DT

Require: Dataset so far, {θ, J}0:NDT

θ`DT
← Find best `DT solutions by sorting J

ΘDT ← Compute range of each θ`DT

return Tightened parameter space, ΘDT

Continue SGP-BO with tightened domain Θ← ΘDT

The intuition behind domain tightening stems from the fact that after an initial exploration phase, the

SGP-BO algorithm starts to exploit locations where good parameter sets likely reside, by sampling more

densely in those subregions of the parameter space. After sufficient BO iterations, say a user-defined NDT,

we expect that the data {θDk , JDk }
NDT

k=0 obtained thus far contain a few parameter sets that generate low

calibration costs. We can therefore use sorting to collect the top-`DT samples from the dataset that result in

the `DT lowest calibration cost values, since calibration-costs are scalar-valued. Parameters associated with

these top-`DT (top = smallest) cost values contain information about a subregion of the parameter space

within which the optimizer most likely resides, and we can thus take the range of these top-`DT samples as

the new parameter space. Since the simple regret of SGP-BO asymptotically decays to zero with increasing

data [34], we expect that the range of the top-`DT samples will be subsets of the initial parameter space.

This is why we refer to this method as ‘domain tightening’, which can be performed periodically to focus

the search region of the parameters based on prior solutions. Note that if the calibration cost is locally



convex in a region around the optimal parameter set, then the range of the top-`DT parameters provides an

indirect measure of sensitivity: indeed, the tighter the range is, the more sensitive the parameter. If not,

then solutions in a wider range would admit the same low calibration cost values. A pseudocode for domain

tightening is presented in Algorithm 2.

3.2.2. Domain Slicing

After a pre-defined number of BO iterations (equivalently, SGP-BO iterations) have been completed, one

has a dataset with which to construct a surrogate GP (or SGP) model from the parameters to the calibration

cost. We propose a method called domain slicing which leverages this surrogate model to perform sensitivity

analysis/relevance determination on the parameter space of interest2. Specifically, one can slice the original

nθ-dimensional calibration problem into smaller chunks nθ1 , nθ2 , . . . , such that they sum to nθ by ranking

and clustering the parameters by relevance. We expect that performing domain slicing will provide additional

scalability by generating subproblems that are computationally tractable since they only calibrate a subset

of the parameters that are most sensitive to the cost.

Algorithm 3 Domain Slicing
Require: Initial search domain, Θ

Require: Number of clusters, Ncl

Require: Dataset so far, D = {θ, J}

χ← Perform relevance determination of all parameters

Cluster relevances into Ncl clusters

Select clusters whose centroids are highest relevance

Select parameters in high-relevance clusters

Generate new dataset with high-relevance parameters

Fix low-relevance parameters using optimizer in D

Perform SGP-BO on high-relevance parameters

We begin by performing sensitivity analysis by following the algorithm described in [35], which ranks

the parameters based on the variability of the SGP mean function in the direction of each parameter.

Additionally, recall that {θ′} is the set of inducing points for the SGP, and let Ĵ denote the calibration

cost estimates at these inducing points. Let µ = µ(θ′) and Σ = σ2(θ′) denote the mean and variance

functions, respectively, of the SGP model. At the k-th inducing point, the conditional distribution of the

j-th parameter is given by

p(θj |θ′k| − j) ∼ N (µ̃j , σ̃
2
j ),

2If domain tightening has been performed, this parameter space is ΘDT, otherwise Θ.



where

µ̃j = µj + Σj,−jΣ
−1
−j,−j(θ−j − µ−j),

σ̃2
j = Σj,j − Σj,−jΣ

−1
−j,−jΣj,−j .

Here, the subscript notation j indicates the j-th row/column of the matrix is selected, and −j indicates

that the j-th row/column is excluded. For instance, Σj,−j indicates the vector of Σ where all elements of

the j-th row are taken except the j-th column element. Additionally, Σ−j,−j is the submatrix containing

all elements of Σ except the j-th row and column. In order to derive a sensitivity measure, we compute the

variance of the posterior mean along the j-th dimension, which is obtained by computing first and second

moments of the conditional distribution p(θj |θ′k| − j), given by

Var[Ĵkj ] = I1 − I2
2 ,

where

I1 =

∫
ΘDT

(Ĵkj )2(θj)N (θj |µ̃j , σ̃2
j ) dθj ,

I2 =

∫
ΘDT

(Ĵkj )(θj)N (θj |µ̃j , σ̃2
j ) dθj .

As in classical sensitivity analysis [33], these integrations are typically done via gridding methods, and it

is well-known that Gaussian integration is best approximated with Hermite polynomials/Gauss-Hermite

quadrature. In particular, if we select Nh to be the order of the Hermite polynomials used for function

approximation, we can rewrite I1 and I2 as

I1 ≈
1√
π

Nh∑
i=1

ωi(Ĵ
k
j )2(
√

2σ̃jϕi + µ̃j),

I2 ≈
1√
π

Nh∑
i=1

ωi(Ĵ
k
j )(
√

2σ̃jϕi + µ̃j),

where ϕi are the roots of the physicists’ version of the Hermite polynomial, and ωi are the corresponding

weights. Once these summations have been evaluated for all dimensions and all Mθ′ inducing points, we can

compute the relevance using the average

χj =
1

Mθ′

Mθ′∑
k=1

Var[Ĵkj ].

The computational complexity of this method is O(nθ(Mθ′ + n2
θ)) [35].

Upon computing the relevances/sensitivities {χ}nθ1 of all parameters, we perform clustering (e.g., via

K-means) and rank the clusters in the order of decreasing relevance. Since the least sensitive parameters

do not strongly affect the calibration cost, we can fix these using the optimal solution found so far. We can



then perform SGP-BO for the parameters in the cluster or clusters that have high relevance. Since the most

sensitive parameters will be a subset of the total parameter set, the corresponding calibration problem will

require searching a lower-dimensional, or sliced, search domain. Pseudocode for domain slicing is provided

in Algorithm 3.

4. Results and Discussions

4.1. Building and Equipment Model Description

The temporal behavior of the vapor-compression cycle is dominated by the heat exchangers over the time

scales of seconds to hours, so the system models in this work used dynamic models of the heat exchangers and

static (algebraic) models of the compressor and expansion valve. We assumed 1-D flow for the refrigerant so

that properties only vary along the length of the pipes; we also assume that the refrigerant can be described

as a Newtonian fluid, negligible viscous dissipation and axial heat conduction in the direction of flow, and

negligible contributions to the energy equation from the kinetic and potential energy of the refrigerant. For

the sake of simplicity, a lumped parameter method was used to characterize the dynamics of refrigerant flow

in the heat exchangers. A multicomponent moist-air model was used for the air-side of this work, in which

both dry air and water vapor were described by ideal gas equations.

A simple isenthalpic model was used for the electronic expansion valve, in which the mass flow rate is

regularized in the neighborhood of zero flow to prevent the derivative of the mass flow rate from tending

toward infinity. The flow coefficient is generally determined via calibration against experimental data [36].

The cycle models in this work included a variable-speed low-side scroll compressor, in which the motor

is cooled by the low-pressure refrigerant entering the compressor. Due to the complex nature of the heat

transfer and fluid flow through the compressor, we also used simplified 1-D models of this component to

parsimoniously describe the system. The behavior of the compressor was described by relating the volumetric

efficiency and isentropic efficiency to the suction pressure, discharge pressure, and compressor frequency. The

compressor power consumption was also related to the compressor speed and the ratio of inlet and outlet

pressures. The coefficients used for the functional forms of the volumetric efficiency and isentropic efficiency

were also derived from experimental data [36].

Standard fan laws were used to describe the behavior of the heat exchanger fans. According to such

models, the volumetric flow rate was assumed to be directly proportional to the fan speed, while the power

consumed by the fan was assumed to be proportional to the cube of the fan speed. These simple algebraic

models were scaled by experimentally measured values of fan speed, flow rate, and power; to minimize the

error in these fits, linear and quadratic terms were also included in the power model to account for observed

variations in the data.



The building models were based upon the open-source Modelica Buildings library [37], an extensive and

well-tested library of components for the construction of dynamic building and building system models. The

room model from the Buildings library is based on the physics-based behavior of the fundamental materials

and components commonly used in the building construction industry. The zone air model incorporated

into the room model is a mixed air single-node model with one bulk air temperature that interacts with

all of the radiative surfaces and thermal loads in the room. The individual materials are parameterized by

fundamental properties like thickness, thermal conductivity, and density, and can be combined and assembled

into multi-layer constructions.

The building model consists of a one-story residence with nominal 2009 IECC-based construction, based

on the model used in [38]. This residence has a floor area of 112.24 m2 and is 2.6 m tall, and is oriented along

the cardinal directions with a peak occupancy of 3 people per floor. Each exterior wall also has a window

of 1.52 m by 2.72 m that admits solar heat gains into the spaces. A 10 cm thick concrete slab and 2 meters

of soil below the house was also included to characterize interactions with the thermal boundary condition

under the house, which was set to a constant 21°C. A peaked attic was also included with a maximum height

of 1.5 meters, so that the building model includes two thermal zones.

Table 1 lists the parameters of the building and the heat pump selected to evaluate the efficacy of this

new calibration method. Approximately equal numbers of parameters were selected from the envelope model

and the cycle model to study the accuracy for each subsystem. These particular parameters were chosen

because they are often difficult to measure in practice or to estimate from other physical quantities. For

example, the refrigerant-side heat transfer coefficients (HTCs) depend on the amount of oil circulating in

the pipe, the detailed configuration of tubes in the heat exchanger, and many other system and site-specific

quantities. On the envelope side, the radiative emissivities in the IR and solar spectra were similarly selected

because of their potential experimental variability. We then bounded the ranges of the parametric variation

based on our field experience, though other ranges could be easily used.

To elucidate upon the complexity arising from integrating building and equipment, we linearize the

Modelica model about an equilibrium state and analyse the resulting system state transition matrix. In

Fig. 3, we show the sparsity pattern of the linearized system state transition matrix containing the states

of the HVAC system dynamics (red), the building envelope dynamics (green), and the coupling between

them (blue). The white space indicates zero values; it is clear that the state matrix is sparse. The 2-

norm of the coupled state elements is 310.677, indicating that the elements are not trivially small: this

indicates that removing the equipment model from the building and using a static/simplified proxy removes

critical dynamics from the overall building system. From the eigenvalues, we can infer that the system is

extremely stiff: the building eigenvalues (green stars) range within [10−5, 1] sec−1, which implies that there

are dynamics that act in the order of seconds to 105 seconds, which is approximately 1.15 days, which are

reasonable time-spans for thermal dynamics in the building envelope e.g. wall temperatures. Conversely,



the HVAC dynamics are much faster and can range, using similar analysis, from the order of micro-seconds

to the order of minutes. This is also expected since the pressure dynamics are extremely fast, but tube

wall temperatures of the heat exchanger walls exhibit slower dynamics. Since the dynamics vary from milli-

seconds to days, ODE solvers require very small step sizes for numerical integration, and simulations are

performed over long time horizons to enable the observation of slow dynamics. The building dynamics alone

are relatively better conditioned.

Figure 3: Sparsity pattern and eigenvalue spectrum of linearized HVAC and building dynamics.

4.2. Implementation Details

Modelica

This envelope model was connected to the cycle model, and a controller was implemented on the heat

pump which used the compressor frequency to regulate the room temperature and the expansion valve

position to regulate the evaporator superheat temperature. The controller also implemented anti-windup

to maintain stability while enforcing minimum and maximum actuator limits. The resulting joint building

envelope/HVAC model was simulated using the Atlanta-Hartsfield TMY3 file, and included convective and

radiative heat loads of 2 W/m2 and a latent load of 0.6 W/m2 between the hours of 8 AM and 6 PM,

with weather-driven disturbances outside of these hours. This model was exported from Modelica using

the Functional Mockup Interface [39], and the resulting functional mockup unit (FMU) was imported into



Parameter Variable True Value UB [%] SGP-BO-DT ACC [%] SGP-BO-DTS ACC [%]

Building Parameters

Airflow infiltration rate VFlowExt 3.368× 10−2 ±15 3.269× 10−2 97.1 - -

Thickness of the floor xFloor 1.016× 10−1 ±10 1.002× 10−1 98.6 - -

Infrared emissivity of roof (out) IR-Roof-a 9.000× 10−1 ±15 8.625× 10−1 95.8 8.863× 10−1 98.5

Solar emissivity of roof (out) Sol-Roof-a 9.000× 10−1 ±15 9.352× 10−1 96.1 9.111× 10−1 98.8

Infrared emissivity of roof (in) IR-Roof-b 7.000× 10−1 ±15 6.864× 10−1 98.1 - -

Solar emissivity of roof (in) Sol-Roof-b 7.000× 10−1 ±15 6.714× 10−1 95.9 - -

Interior room air HTC hInt 3.000 ±5 3.134 95.6 - -

Exterior air HTC hExt 1.000× 101 ±5 9.678 96.8 - -

HVAC Parameters

Outdoor HEX HTC AF pfHTC-a 1.000 ±15 9.374× 10−1 93.7 9.342× 10−1 94.3

Indoor HEX HTC AF pfHTC-b 1.000 ±15 1.110 88.9 1.033 96.7

Indoor HEX Lewis number Le-a 8.540× 10−1 ±5 8.625× 10−1 99.0 - -

Outdoor HEX vapor HTC HTC-vap-a 5.000× 102 ±10 5.186× 102 96.3 - -

Outdoor HEX 2-phase HTC HTC-2ph-a 3.000× 103 ±10 3.251× 103 91.6 - -

Outdoor HEX liquid HTC HTC-liq-a 7.000× 102 ±10 7.380× 102 94.6 - -

Indoor HEX vapor HTC HTC-vap-b 5.000× 102 ±10 4.562× 102 91.2 - -

Indoor HEX 2-phase HTC HTC-2ph-b 2.000× 103 ±10 1.958× 103 97.9 1.822× 103 91.1

Indoor HEX liquid HTC-liq-b 7.000× 102 ±10 7.118× 102 98.3 - -

Table 1: Description of parameters, true values, and uncertainty expressed as a percentage from the true value after 1500

iterations of SGP-BO-DT and 500 subsequent iterations of SGP-BO-DTS. (HTC = heat transfer coefficient, HEX = heat

exchanger, AF = adjustment factor, UB = uncertainty bound, ACC = accuracy)

Python using the FMPy package3 to enable the application of the variety of machine learning tools available

in that language. The inputs and outputs of this model were chosen to be similar to those which may be

observed in an experimental setting. The inputs of the heat pump include the room temperature setpoint,

the evaporator superheat setpoint, and the indoor and outdoor fan speeds. The inputs for the building

envelope model include the convective, radiative, and latent heat loads as well as the weather variables

provided in the TMY3 standard. These heat loads may be estimated to reasonable accuracy via occupancy

detection, load surveys, or other similar methods.

In order to provide a meaningful testing environment for the proposed SGP-BO method, we constructed

a testing model in Modelica that has the same envelope and HVAC system as the training model with the

following key changes to produce non-trivially different dynamics. We changed the radiative and convective

heat loads from 2 W/m2 to 3 W/m2 and the latent head loads from from 0.6 W/m2 to 0.9 W/m2. We

also altered the occupancy start and end times of the building from 8AM–6PM to 6:30AM–3:30PM. The

weather profile is changed from the Hartsfield Jackson, GA, USA airport to Charlotte Douglas, NC, USA

airport via a change in the TMY3 weather file to generate different ambient temperatures and humidities.

We also tested the proposed method for a longer simulation time, from 2 weeks of data for training to 4

weeks for testing, and in the month of August (testing) rather than July (training).

3https://github.com/CATIA-Systems/FMPy



GPyTorch

We implemented our sparse GP model in GPyTorch4 in Python 3.8 (requires PyTorch) with a CPU [40],

and chose the Inducing and Matern kernels with automatic relevance determination (ARD) so that each

kernel hyperparameter is dimension-dependent. For training, the dataset was min-max scaled, so that each

parameter is scaled to [0, 1]: this greatly improved matrix conditioning. Furthermore, we used an Adam

optimizer for 2000 epochs per training of SGP hyperparameters, with a learning rate between 0.01 and 0.05.

Model Stiffness

We used a timeout in the simulator to stop the simulation after 300 s of CPU time, and excluded that

parameter combination from the training set of the learner and the admissible parameter space. We chose

300 s as our time-out because we noticed that only certain poor choices of parameters resulted in increased

stiffness of the underlying dynamical equations and required over 2000 s to simulate, eventually ending in

oscillatory outputs. We implemented a time-out at 300 sec to reduce the amount of wasted simulation time,

since good choices of parameters resulted in simulations that terminated successfully within 200 s. Of course,

if we simulated for longer, or for other models, one would have to carefully select this time-out based on

empirical evidence regarding the duration of good simulations.

4.3. Parameter Estimation Performance

We simulated the Modelica model for 14 days of July with the parameters of the model set to their true

values (see Table 1) to collect ground-truth data for calibration. The 8 measured output sequences y?0:T of

the model were collected at 5 minute intervals, and, unlike other methods [14], we do not require splitting

the data into categories like weekdays or weekends.

Hereafter, we use GP and SGP interchangeably, since we used SGP as our learner. We initialized the

SGP by choosing 100 randomly selected parameter samples from within the bounds Θ associated with each

parameter (see Table 1). With each of these initial parameter samples, we simulated the Modelica model for

the same time interval as the ground truth and obtained the estimated output sequence y0:T . Subsequently,

we evaluated the cost function (2) for each of the initial samples with y0:T and true outputs y?0:T . This

initial collection of parameters and calibration-cost values was used to construct the initial training set

of the SGP. We used Matérn 3/2 kernels with dimension-wise separate length-scales, since the admissible

parameter space is not normalized. We constructed the GP using the Python library GPyTorch, and used

500 epochs of an Adam solver to obtain the optimal hyperparameters for training. Unlike MCMC methods

that require tens of thousands of iterations to converge, we set our BO method to run for 750 iterations,

that is, the Modelica model is simulated 750 (BO iterations) + 100 (initial) = 850 times from [0, T ]. We

4https://gpytorch.ai/



selected the acquisition function to be a lower-confidence-bound (4) with κ = 1.96. For acquisition function

maximization, we adopted a uniform random sampling approach with 10,000 samples. This sampling is

cheap since it only requires evaluation of the SGP, rather than the simulation model. The specific SGP

framework used is the VFE method with 100 inducing points.

Table 1 shows that the best estimates of the parameters after 750 iterations are quite close to the true

parameter values. Indeed, 13 of the 17 parameters (6/8 building and 7/9 equipment) are captured at >

90% accuracy5, despite using only one 2-week dataset and no additional pre-processing such as sensitivity

analysis or data splitting. It is noteworthy that the 4 parameters with the lowest fits, highlighted in gray in

this table, were all > 85%. Given the lack of heat transfer from the surfaces affected by these parameters,

the relatively poor quality of these fits matches our intuition for the low sensitivity of the measured outputs

to these parameters.

Recall that an advantage of our proposed approach is that a good guess for initialization or a burn-in

period to obtain a good prior distribution on the parameters is not required to acquire good parameter

candidates. Instead the BO framework requires knowledge of the parameter ranges, which implies that the

prior distribution over parameters is uniform (initially, no parameter set is assumed to be more likely than any

other). Despite the lack of prior knowledge, due to the sequential nature of BO, the calibration performance

is correlated with the initial SGP model. We therefore tested our proposed approach for robustness to

initial conditions by running the calibration mechanism 50 times with different initial random seeds, so that

different samples were extracted for the initial GP construction. The results of these simulation studies are

shown in Fig. 4. The median (horizontal orange line), quartiles (horizontal box lines), and range (whisker

ends) for the best parameter set obtained over 50 runs are shown using boxplots, with the true parameter

value shown with a ‘?’. We deduce from these plots that the best parameter estimates are close to their

true values, with (predictably) the worst calibration performance exhibited by the inner roof parameters.

Interestingly, the liquid heat transfer coefficients do not exhibit significant decline over runs, but the Lewis

number does. It is likely that this variation can be attributed to the time varying moisture removal rate

of the evaporating heat exchanger and the dependence of the indoor relative humidity on both ambient

conditions and internal latent loads.

4.4. Effect of Domain Tightening and Comparison with An Existing Method

In Fig. 4, we show that our proposed SGP-BO-DT algorithm with domain tightening outperforms (over

20 runs, with DT every NDT = 50 iterations, `DT = 50 top candidates) the SGP-BO algorithm despite the

same number of BO iterations and all GP hyperparameters remaining equal at the initial iteration. While

the SGP- BO shows an initial decay of the calibration cost, the mean and 95% confidence intervals in this

5Accuracy of the k-th parameter θk is computed by 100× (1− |θtruek − θ?k|/θ
true
k ).



Figure 4: Illustration of robustness of SGP-BO-DT to random initialization. Boxplots of median (red line) and interquartile

range (boxes) of all SGP-BO-DT computed parameters along with true values (star).

figure illustrate the fact that the domain tightening effect quickly reduces the relevant search space and

promotes the generation of candidates that are more likely to reside in regions containing an extremal point.

This results in both a faster decay of calibration cost and a better final set of candidates.

We also make a comparison against a version of the existing Bayesian calibration (BC) methodology,

similar to the approach of [41]. BC approaches the calibration problem from a different set of modeling

assumptions, and therefore, it does not make a fair comparison to compare the two approaches. In our case

study, we have hundreds of states, which is beyond the state-size considered by BC algorithms which leverage

MCMC sampling in much lower-dimensional spaces. We also provide references from which it is evident

that our BO approach is much more sample efficient. For example, in [16], two case studies were carried

out with 2 and 5 calibration parameters, requiring respectively a total of 791 and 503 training samples;

our case study comprises 17 parameters and required 750 samples. BC and BO are not direct competitors,

but calibrate quantities starting from a different set of assumptions and thus have also different sampling



requirements. To this end, we make some modifications to BC to ensure a fair comparison; we try to follow

the key steps of the BC algorithm. Instead of iteratively re-learning the surrogate model as in BO, we adopt

the BC method of constructing one GP model after acquiring an initial set of samples. After this GP is

learned, we sample via MCMC methods from its posterior distribution to obtain a set of likely optimizers.

We ensure that the total number of initial samples and MCMC samples is 850, the same as that of BO,

to make the comparison fair. As expected, from Fig. 5, we observe that allowing the SGP to update as in

BO, rather than keeping it constant as in BC, results in BO outperforming BC over most of the 20 runs.

SGP-BO-DT comprehensively outperforms BC.

Figure 5: Comparison of SGP-BO with and without domain tightening against traditional MCMC-based Bayesian calibration.

4.5. Sensitivity Analysis and Domain Slicing

At the end of 1000 SGP-BO-DT iterations, we perform sensitivity analysis of the parameter set, as

described in Section 3.2.2. The purpose of adding this step is to illustrate that the calibration procedure can

be further improved by leaving out insensitive parameters, thereby reducing the effective search dimension.

From the χ values shown in Fig. 6, we determine that the top-4 sensitive clusters include the solar and

infrared emissivities of the outer roof, the adjustment factors for the heat transfer coefficients of the indoor



and outdoor heat exchangers, and the heat transfer coefficient of the two-phase indoor heat exchanger. The

results can be justified from a physical point of view. IR-Roof-a affects the infrared radiation exchanged

between the exterior surface of roof and the environment, whereas Sol-Roof-a affects the amount of solar

radiation absorbed by the roof. For a given surface emissivity, a roof is more effective in losing or gaining

heat radiation than a wall because the roof sees more of the sky than the wall. In this sense, these two

parameters are the most crucial ones that determine the heat gains of the indoor air from the sun and

the environment through the building envelope. On the other hand, the other three parameters (pfHTC-b,

pfHTC-a and HTC-2ph-b) are among the most critical ones that determine the cooling performance of the

HVAC equipment. In other words, the combination of these five parameters largely determine the net heat

gain or loss of the indoor air and hence the room temperature.

Keeping only these 5 parameters as decision variables, and fixing the others according to the best

candidates obtained so far (see Table 1 SGP-BO-DT column), we perform SGP-BO-DTS to obtain much

tighter estimates of the emissivities. Of the five coefficients that are re-calibrated, we note that pfHTC-b

improves in accuracy from 89% to over 96%, whereas the accuracy of the least sensitive parameter amongst

the five, HTC-2ph-b, decreases from 98% to 91%. This is to be expected since the SGP-BO-DTS algorithm

does not necessarily guarantee improvement parameter-wise, but only in the cost function decay. The new

set of parameters obtained using SGP-BO-DTS results in a lower calibration cost compared to SGP-BO-DT

by searching over a lower-dimensional subspace of Θ.

4.6. Predictive Performance

As per ASHRAE Guideline 14, a CVRMSE of< 15% indicates a good model fit with acceptable predictive

capabilities [42]. In order to illustrate our calibration performance, we report the CVRMSE and the NMBE6

metrics [43] in Table 2 for each of the model outputs. All of the parameters respect the ASHRAE guidelines

in terms of the CVRMSE metric, showing the potential of our calibration mechanism and modeling approach.

The highest CVRMSE is exhibited by the suction superheat, which can likely be attributed to sharp peaks

produced in the signal related to large changes in the compressor speed and valve position during the rapid

increase in the load caused by the morning solar load and the presence of occupants. Both training and

testing scenarios are shown with noisy true data and model predictions in Fig. 7 and 8, respectively.

An additional benefit of this physics-informed approach to model calibration can be seen in Figure 9,

as the calibrated model characterizes the building power consumption from July 16 to September 14 quite

accurately, despite the fact that the building power signal is not used explicitly for calibration. The model

error metrics for this scenario are provided in Table 2, which indicate that the error of the power signal is

6CVRMSE (Coefficient of Variation of the Root Mean Square Error) measures the variability of the errors between measured

and simulated values. NMBE (Normalized Mean Bias Error) is the normalized average of the error sequence. We refer the

reader to [43] for their mathematical definitions.



Figure 6: Relevance of parameters. The different symbols indicate clusters of varying relevance. The vertical axis is logarithmic.

within ASHRAE guidelines, and this level of accuracy is further corroborated by the low errors between the

true and estimated power over most days in this study. While the absolute error is below 10% for most of this

simulation, there are few days in which this error exceeds 20% due to the fact that the ambient temperature

is near the limits of the range seen during training: either near 290 K or 310 K. Due to the scarcity of

training data at these temperatures, as well as a jump in the room temperature due to actuators in the

HVAC equipment reaching their limits, the quality of the model predictions at these points in time is lower

than the average. Nevertheless, the calibrated model generally exhibits excellent predictive performance in

conditions not seen during training.

5. Conclusions and Future Work

In this paper, we developed a Bayesian optimization methodology for calibrating physics-based models

with fewer simulations than would be required for existing methods by learning the calibration-cost map



Figure 7: Performance of proposed algorithm on training data.

rather than the larger and more complex underlying dynamics. We demonstrated that the use of Gaussian

processes as meta-models for the calibration-cost function is impractical in higher dimensions, and proposed

the use of sparse GP approximations to address this issue. We also demonstrated the accuracy and efficacy

of our proposed approach on a Modelica model of a building conditioned by vapor-compression equipment

with 17 tunable parameters: indeed, we show that the parameters we estimate adhere to the ASHRAE

guidelines. We also perform further testing on our proposed method and demonstrate that the method is

robust to the initial set of samples used to construct the initial GP model.



Figure 8: Performance of proposed algorithm on testing data.

Output Variable Name CVRMSE |NMBE| |MBE|

Room Temp. TRoom < 0.1% < 0.1% < 0.1 K

Room Humidity HumRoom < 0.1% < 0.1% 2.2 %

Ceiling Temp. TCeiling < 0.1% < 0.1% < 0.1 K

Attic Temp. TAttic < 0.1% < 0.1% < 0.1K

Suction Superheat SHSuction < 0.1% < 0.1% 0.12 K

Ambient Temp. TAmbient < 0.1% < 0.1% < 0.1 K

Compressor Freq. CF 0.7% < 0.1% < 0.1 Hz

Exp. Valve Pos. EEV < 0.1% < 0.1% < 0.1 count

Power (×) Power 6.87% 2.56 0.03 kW

Table 2: Output calibration performance metrics. × = not used for calibration.



Figure 9: Comparison of power data and calibrated model power outputs.

The case study undertaken in this paper does reflect an idealized scenario in which the structure of the

Modelica model is identical to the system that generates the data, so that the theoretical optimal error

without noise could be zero. Because this is rarely true in practice, model calibration using real-world

building data is more challenging because building models constructed in software will always have a non-

zero ‘sim-to-real’ gap. However, the current work has demonstrated encouraging results, and the SGP-BO

method described in this paper is robust to reasonable levels of measurement noise due to its probabilistic

nature. For the scenario when the data has been corrupted by measurement noise or there is a small amount

of model uncertainty, the cost function cannot be driven to zero, but SGP-BO still enables robust and

efficient minimization with much fewer model simulations than existing calibration methods. As the level

of this noise increases, the performance of SGP-BO or any other calibration method will degrade as the

amount of useful information decreases. In other scenarios in which there are significant differences between

the structures of the true physical system and the model, adaptations to the model structure are needed,

either by redesigning sub-components of the simulation model or by appending to the existing model directly

using data-driven methods, e.g., [44]. The use of SGP-BO for parameter estimation in simulation models



while concurrently optimizing hyperparameters for learning data-driven models for residual dynamics has

not been studied in the current paper, but opens an interesting avenue for future research.
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Appendix A. Correlation Analysis

In Fig. A.10, we also demonstrate the correlation amongst the measured outputs and parameters via

a matrix of Pearson’s correlation coefficients (only the triangular form is shown since the matrices are

symmetric). From subplot (a), we deduce that the parameters obtained during the calibration task are not

strongly cross-correlated. The reason is that, during calibration, the parameters are not sampled according

a particular ‘prior’ distribution which could induce correlations by design, but rather chosen by SGP-BO

iteratively, by exploiting the information contained in the surrogate model via the acquisition function.

Conversely, from subplot (b), we observe that the measured outputs are highly (positively and negatively)

correlated. In fact, other than suction superheat, all the other outputs are correlated: this is expected and

corroborates the effect of the coupling between HVAC and building dynamics, since the measured outputs

contain both HVAC and building quantities.



Figure A.10: Correlation matrices of the chosen outputs and parameters, obtained from data obtained during the calibration

task. Variable descriptions are in Tables 1 and 2.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-030.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31


