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Abstract
Existing systems for sound event localization and detection (SELD) typically operate by
estimating a source location for all classes at every time instant. In this paper, we propose
an alternative class-conditioned SELD model for situations where we may not be interested
in localizing all classes all of the time. This class-conditioned SELD model takes as input
the spatial and spectral features from the sound file, and also a one-hot vector indicating
the class we are currently interested in localizing. We inject the conditioning information
at several points in our model using feature-wise linear modulation (FiLM) layers. Through
experiments on the DCASE 2020 Task 3 dataset, we show that the proposed class-conditioned
SELD model performs better in terms of common SELD metrics than the baseline model that
locates all classes simultaneously, and also outperforms specialist models that are trained to
locate only a single class of interest. We also evaluate performance on the DCASE 2021
Task 3 dataset, which includes directional interference (sound events from classes we are not
interested in localizing) and notice especially strong improvement from the class-conditioned
model.
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ABSTRACT

Existing systems for sound event localization and detec-
tion (SELD) typically operate by estimating a source location
for all classes at every time instant. In this paper, we propose
an alternative class-conditioned SELD model for situations
where we may not be interested in localizing all classes all of
the time. This class-conditioned SELD model takes as input
the spatial and spectral features from the sound file, and also a
one-hot vector indicating the class we are currently interested
in localizing. We inject the conditioning information at sev-
eral points in our model using feature-wise linear modulation
(FiLM) layers. Through experiments on the DCASE 2020
Task 3 dataset, we show that the proposed class-conditioned
SELD model performs better in terms of common SELD met-
rics than the baseline model that locates all classes simultane-
ously, and also outperforms specialist models that are trained
to locate only a single class of interest. We also evaluate per-
formance on the DCASE 2021 Task 3 dataset, which includes
directional interference (sound events from classes we are not
interested in localizing) and notice especially strong improve-
ment from the class-conditioned model.

Index Terms— Sound event localization and detection,
conditioned neural networks, class-conditioned embeddings

1. INTRODUCTION

Estimating the direction of arrival (DOA) of a sound while
also classifying the type of event is an important type of front-
end processing for a wide variety of monitoring and robotic
applications. Due to its wide applicability, this task, often
referred to in the literature as sound event localization and
detection (SELD), has recently seen a surge of interest [1–4].
However, SELD remains challenging because sound sources
can move, cease to produce sound, have their positions ob-
scured by room reverberation, and are often mixed with in-
terfering sounds. Furthermore, many sound events are easily
confused, further complicating the SELD task.

A typical SELD pipeline consists of two main stages. The
first stage extracts spectral and spatial features from the mi-
crophone array input. In the second stage, a deep neural
network (DNN) is used to learn a mapping from the multi-
channel input features to two output targets: (1) a vector of
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Fig. 1. Task illustration. Given a target-class identifier and
a multi-channel signal recorded in conditions with multiple
simultaneously active target sources, stationary noises, and
directional interferences, we aim at estimating the DOA of
the source of interest. Example taken from the training split
of TAU-NIGENS SSE 2021 dataset.

class probabilities indicating the presence of each class in
each time instance; and (2) a DOA vector containing location
information for each class. In this case, DNN training can be
challenging as the contributions from the two output branches
must be balanced. To overcome this difficulty, Shimada et
al. [5] recently proposed the activity coupled Cartesian direc-
tion of arrival (ACCDOA) representation. ACCDOA repre-
sents the DOA information for each class as a vector of Carte-
sian coordinates, where the class activity probability is en-
coded by the length of the vector, i.e., it should be one when
that class is active and zero otherwise.

Existing SELD systems, including those based on the AC-
CDOA representation, typically assume a small, fixed set of
sound event classes to be detected and localized. In practice,
if there are 12 classes in the vocabulary, this means a DNN
will output 12 ACCDOA representations at each time instant.
This approach may become impractical for large class vocab-
ularies, and, in certain situations, we may not be interested in
localizing all classes all of the time. Training a class-specific
system to localize only sound events from a single class would
allow focusing on specific classes. However, this will then re-
quire C class-specific models as opposed to a single one, if
we are interested in localizing C class types, and all models
will also need to be run at inference time in order to detect all
classes. Furthermore, it may be difficult to train class-specific



models, as we may not have enough data for each class of
interest to properly train each model.

Inspired by the concepts of auditory attention [6,7], where
the human auditory system tunes its internal models based on
the sound sources it wants to listen to, in this paper we pro-
pose a class-conditioned approach for sound event DOA es-
timation, illustrated in Fig. 1. In our system, there is only
a single ACCDOA vector output at each time instant, and
the class represented by this output is determined based on
an input describing the type of sound event we want to lo-
cate. Such conditioning-based approaches are often used in
audio source separation [8] to isolate the sound from a spe-
cific musical instrument [9, 10], speaker [11, 12], or sound
event [13]. Compared to a system that outputs all classes si-
multaneously, conditioning-based approaches require multi-
ple passes at inference-time (one per class) in order to detect
all classes, similarly to the class-specific models, although
they do not require training multiple separate models. How-
ever, in situations where we may not want to detect all classes
all of the time, they present several advantages. First, they
can easily scale up to large numbers of classes without hav-
ing to add more parameters (i.e., additional output layers), and
they also lend themselves to query-by-example [14] or few-
shot [15] settings where the conditioning input is not based
on a class label embedding, but rather on an example of the
type of sound we want to localize.

One other benefit of class-conditioned localization, which
we demonstrate experimentally, is increased robustness to
directional interference, i.e., sound events from classes we
are not interested in localizing. We hypothesize that this in-
creased robustness is a consequence of the class-conditioned
training scheme, where all classes besides the one we are
currently conditioning on are essentially treated as interfering
sources, and this increased exposure allows the network to
become better at ignoring directional interference. Through
experiments on the DCASE 2020 Task 3 dataset [16], which
does not contain directional interference, we demonstrate
that our proposed class-conditioned model performs better in
terms of a set of common SELD metrics than a model that
outputs all classes, and a set of class-specific models. On the
DCASE 2021 Task 3 dataset [17], which does contain direc-
tional interference, the class-conditioned model outperforms
more clearly the all-class model, while the class-specific
models fail dramatically.

The rest of this paper is organized as follows. Section 2
describes the baseline system, the class-specific SELD mod-
els, and our proposed class-conditioned SELD model. Ex-
perimental setup and evaluation results are presented and dis-
cussed in Section 3, followed by conclusions in Section 4.

2. METHOD

We first review the baseline SELD architecture with ACC-
DOA output representation, and then describe the proposed

class-conditioned modification.

2.1. Baseline: All-class and Class-specific SELD models

The ACCDOA representation [5] uses Cartesian coordinates
for the class-dependent azimuth and elevation angles, which
are the estimation targets. Formally, let dt,c = [xt,c, yt,c, zt,c]
represent the DOA for sound event class c at frame t. If no
sound events from class c are active at frame t, ‖dt,c‖2 = 0,
whereas if class c is active, ||dt,c||2 = 1. In the all-class base-
line model with C classes of interest for a T -frame sound file,
the tensor D ∈ RT×C×3 represents all ACCDOA vectors,
and the goal is to estimate DNN parameters θ to estimate D,
i.e., D̂ = Fac

θ(X), where X ∈ RM×F×T represents the
M -microphone, F -dimensional input features. Parameters θ
are estimated by minimizing the mean squared error (MSE)
between D and D̂. At inference time, class c is declared ac-
tive at time t if ||d̂t,c||2 > τ , where τ is a threshold typically
chosen to optimize performance on the validation set.

For the class-specific SELD models, the goal is to learn,
for each class c, model parameters θc in order to obtain DOA
estimates D̂c = Fcs

θc(X) ∈ RT×3 for class c. Each θc is
learned by minimizing the MSE between Dc =D[:, c, :] and
D̂c. At inference time, we use the same threshold for all mod-
els.

2.2. Class-conditioned SELD model

One potential weakness of the baseline all-class SELD
scheme is a high sparsity of the target representation ten-
sor D and the need to predict all DOAs at once. In this case,
we ask the network to not only focus on all locations but
also identify all classes of interest, solving two different but
interconnected problems. Instead, to solve the simpler task of
predicting a DOA of a particular target class, it may be bene-
ficial to focus the network on that class through an auxiliary
conditioning input. Formally, we first define a C-dimensional
one-hot vector oc = [o1, . . . , oC ], where oc = 1 for the class
c we are interested in localizing, and oi = 0,∀i 6= c. Our
goal is now to learn model parameters θ in order to esti-
mate D̂c = Fcc

θ(X,oc), where D̂c ∈ RT×3 represents the
DOA estimates for class c only. Contrary to the class-specific
models which each have their own parameter space, the class-
conditioned model shares the same set of parameters for all
classes. During training, we concatenate the outputs from
evaluating Fcc

θ(X,oc) for all C classes, such that we can
obtain the full D̂ ∈ RT×C×3, and as in the all-class system
we can learn θ by minimizing the mean squared error between
D and D̂. Note that we have here C training examples for
each multi-channel signal instead of just one, i.e., a training
example is now a pair (X,oc).

Conditioning mechanisms, in particular feature-wise
transformations, have proven to be a simple and effective
technique for providing a model with context information.
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Fig. 2. Illustration of class-conditioned SELD architec-
ture. Feature maps x′

[bs,chan′ ,time′ ,bins′ ]
of each convolu-

tional block of the baseline SELD model are shifted and
scaled using a set of parameters (γ, β) learned from a con-
ditioning one-hot vector.

For our class-conditioned SELD model, we employ the
feature-wise linear modulation (FiLM) [18] scheme. We
first pass the one-hot vector oc through a learned embedding
layer, to obtain a class embedding e ∈ RN that encodes
the target class information. A FiLM layer f outputs a set
of parameters (γ, β) = f(e) that are used for scaling and
shifting the learned feature maps M of the baseline network:
FiLM(Mi|γi, βi) = γiMi + βi, where i refers to a channel
index. As shown in Fig. 2, we apply the FiLM operation to
the feature maps of each convolutional block in the baseline
SELD network. While a FiLM transformation can consist of
any arbitrary function, in practice, we use a combination of
an embedding, linear, and dropout layers as shown in Fig. 2.

3. EXPERIMENTAL VALIDATION

3.1. Experimental Setup

We evaluate our method on two official development datasets
for the DCASE SELD task: TAU-NIGENS Spatial Sound
Events 2020 [16] and TAU-NIGENS Spatial Sound Events
2021 [17]. For both datasets, we follow the official split
into training (400 minutes), validation (100 minutes), and
test (100 minutes) sets. The two key differences between the
datasets are a reduced number of classes and the presence
of directional interferences in the 2021 edition. The TAU-
NIGENS 2021 dataset consists of mixtures of sound events
belonging to 12 different classes, while the TAU-NIGENS
2020 dataset includes two more target classes, namely “en-
gine” and “fire.” As reported in [19], the 2021 edition has
more simultaneously active events (up to three parallel tracks
of different or same categories), and additional directional

interferences from non-target classes. In all experiments,
we use a recommended set of features extracted from the
first-order ambisonic (FOA) data split that includes 4-channel
64-dimensional mel-spectrograms and 3-channel FOA inten-
sity vectors.

Our network architecture follows the convolutional re-
current architecture used as the DCASE SELD baseline [19]
and shown in Fig. 2, but the FiLM layers are only included
in the class-conditioned models. Both the class-conditioned
and class-specific models have only a single ACCDOA out-
put, while the all-class baseline has C ACCDOA outputs.
We train all models for 50 epochs (note that an epoch is C
times larger for the class-conditioned model, because each
class and sound file pair counts as a data sample as discussed
in Section 2.2) using the ADAM optimizer with a learning
rate of 1e−3. We note that our goal for the experiments in
this section is not to explore the data augmentation [20] and
model ensembles [21] necessary to obtain the best scores on
the DCASE SELD datasets, but rather explore the impact of
class-conditioned SELD models in a controlled manner.

Following the DCASE SELD setup, we use four metrics
and an aggregated score to evaluate different aspects of each
SELD system. The four metrics are (1) the location-sensitive
error rate ER20◦ that only accepts the predicted event as true
positive if its location is at most 20◦ away from the ground
truth and accounts for substitutions, deletions, and insertions
from other classes, (2) the location-sensitive F -measure F20◦ ,
(3) the class-sensitive localization error LECD that is com-
puted separately for each class, and (4) the class-sensitive lo-
calization recall LRCD. The aggregated SELD score [22]
provides a simplified metric for the overall evaluation and is
computed as follows:

SELD =
ER20◦

4
+
1− F20◦

4
+
LECD
4× 180

+
1− LRCD

4
. (1)

The ACCDOA format uses a norm of the DOA vector
‖dt,c‖2 to decide if class c is active at frame t or not. The
default threshold τ on the norm is set to 0.5. However, the op-
timal choice of the threshold is a practical issue that is raised
in [21]. Our empirical evaluation shows that the difference in
SELD scores can be as large as 0.04 points depending on the
threshold. For a fair comparison, we select an optimal thresh-
old in terms of the SELD score for each experiment based on
the validation set, and report the best results that a system can
achieve together with the chosen threshold.

3.2. Results

Results for the baseline all-class SELD network, the class-
specific models, and the proposed class-conditioned SELD
model are presented in Table 1. As the original baseline is
allegedly not fully reproducible, we ran it six times with dif-
ferent random seeds for the DCASE 2021 dataset to make
sure there was not too much variance in the results, and re-
port averaged performance. As we found that the measured



Table 1. Experimental results for baselines and the proposed system evaluated on the testing fold of the development datasets
for DCASE 2021 Task 3 and DCASE 2020 Task 3.

DCASE 2020 DCASE 2021

System τ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ SELD↓ τ ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ SELD↓
Baseline FOA [17] 0.4 0.75 37.50 23.30 53.00 0.49 0.3 0.71 36.24 23.20 47.34 0.50
Specialized models 0.5 0.79 35.10 22.30 46.90 0.52 0.5 2.22 21.70 23.20 54.40 0.90
Class-conditioned SELD 0.3 0.72 47.90 17.80 55.90 0.45 0.3 0.64 49.72 19.16 56.60 0.42
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Fig. 3. Comparison of per-class performance for different
models on TAU-NIGENS 2021 data.

standard deviation on the DCASE 2021 data was in fact low,
we only report the results from a single run for the DCASE
2020 dataset. For the class-specific models, to obtain the ag-
gregated scores shown in Table 1, we collect predictions from
the model for each class and compare them against the ground
truth. Similarly, we collect predictions of the proposed class-
conditioned SELD model ran with class-conditionings for
each class.

When comparing performance between the two baselines
and the proposed class-conditioned SELD model, we observe
that the class-conditioned model outperforms both baselines
in terms of the SELD score and all individual metrics on both
the DCASE 2021 Task 3 and DCASE 2020 Task 3 datasets.
The relative reduction in terms of the SELD score is 16%
for the DCASE 2021 dataset and 8.2% for the DCASE 2020
dataset compared to the baseline. We attribute a higher gain
obtained for the DCASE 2021 data to the fact that the class-
conditioned model is more robust to directional interferences
which are present in the TAU-NIGENS 2021 dataset but not
present in the TAU-NIGENS 2020 dataset.

Figure 3 illustrates per-class performance in terms of the
SELD score for different systems on the DCASE 2021 Task
3 dataset. Interestingly, despite the fact that the aggregated
SELD metrics for the specialized models demonstrate worse
results, we still observe that class-specific systems can yield
better scores than both the baseline and class-conditioned
models for “dog,” “female speech,” and “male speech” cat-
egories. To further investigate this issue, we consider indi-
vidual substitution, deletion, and insertion scores for each
system and class. Figure 4 shows that the specialized models
have a significantly higher number of insertions compared to
the baseline and class-conditioned systems. While the effect
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Fig. 4. Per-class comparison of the number of frames esti-
mated as substitutions, deletions, and insertions for the base-
line (B), class-conditioned (C) and specialized (S) systems on
the DCASE 2021 Task 3 dataset.

of insertions on individual per-class SELD scores is less no-
ticeable in Fig. 3 (with the only distinct exception being the
“female scream” class), the accumulated effect of all inser-
tions makes the location-sensitive error rate three times worse
compared to the baseline. We also note that the specialized
model performance in Table 1 for the DCASE 2020 dataset
does not exhibit the same large drop observed for the DCASE
2021 dataset. Since the DCASE 2021 dataset contains more
overlapping sources, training a model that only uses labels for
a single-class may be difficult if that class is rarely observed
in isolation.

4. CONCLUSION

In this study, we focus on sound event detection and localiza-
tion in the presence of directional interferences. We propose
a class-conditioned SELD network that outperforms the base-
line on the DCASE 2020 Task 3 and DCASE 2021 Task 3
datasets. The proposed system demonstrates greater improve-
ment for the DCASE 2021 Task 3 dataset, supporting our hy-
pothesis that a conditioned network is more robust against di-
rectional interferences such as those included in this dataset.
The class-conditioned SELD network can be easily extended
to accommodate a larger number of target categories which
is one of the possible directions for future research. Other
possible extensions of this work include incorporation of data
augmentation techniques as proposed in [20], zero-shot sound
event localization with pre-trained class-specific embeddings,
as well as integration of a source separation module as pro-
posed in [23] or a source counting module.
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