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Convolutive Prediction
for Monaural Speech Dereverberation
and Noisy-Reverberant Speaker Separation

Zhong-Qiu Wang, Gordon Wichern, and Jonathan Le Roux

Abstract—A promising approach for speech dereverberation
is based on supervised learning, where a deep neural network
(DNN) is trained to predict the direct sound from noisy-
reverberant speech. This data-driven approach is based on
leveraging prior knowledge of clean speech patterns, and seldom
explicitly exploits the linear-filter structure in reverberation, i.e.,
that reverberation results from a linear convolution between a
room impulse response (RIR) and a dry source signal. In this
work, we propose to exploit this linear-filter structure within
a deep learning based monaural speech dereverberation frame-
work. The key idea is to first estimate the direct-path signal of
the target speaker using a DNN and then identify signals that are
decayed and delayed copies of the estimated direct-path signal,
as these can be reliably considered as reverberation. They can
be either directly removed for dereverberation, or used as extra
features for another DNN to perform better dereverberation. To
identify the copies, we estimate the underlying filter (or RIR)
by efficiently solving a linear regression problem per frequency
in the time-frequency domain. We then modify the proposed
algorithm for speaker separation in reverberant and noisy-
reverberant conditions. State-of-the-art speech dereverberation
and speaker separation results are obtained on the REVERB,
SMS-WSJ, and WHAMR! datasets.

Index Terms—speech dereverberation, speech separation, RIR
estimation, blind deconvolution, deep learning.

I. INTRODUCTION

OOM reverberation is pervasive in modern hands-free

speech communication such as teleconferencing and
interaction with smart speakers. In reverberant rooms, speech
signals propagate in the air and are inevitably reflected by
the walls, floor, ceiling, and any other objects in the room
before being captured by far-field microphones. Reverberation
can be considered as a summation of an infinite number of
decayed and delayed copies of source signals. It degrades
speech intelligibility and quality and is harmful to modern
automatic speech recognition (ASR) systems. Dereverberation
is a challenging task, as it is hard to pinpoint the direct-
path signal and differentiate it from its copies, especially
when reverberation is strong and non-stationary noises are
also present. Different from blind deconvolution, which is
not solvable without making assumptions on input signals or
impulse responses [1], [2], speech dereverberation is simpler,
as in the time-frequency (T-F) domain speech exhibits unique
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patterns, which provide an informative cue for reverberation
reduction.

The most popular dereverberation algorithm is weighted
prediction error (WPE) [3]. It computes a filter based on
variance-normalized delayed linear prediction to estimate late
reverberation from past observations, which is then subtracted
from the mixture to estimate target speech. It iteratively
estimates the time-varying power spectral density (PSD) of
the target speech and the linear filter in an unsupervised
manner. WPE is found to introduce little distortion to target
speech and leads to consistent improvements in many robust
ASR tasks [4], [5]. Other conventional approaches for dere-
verberation include estimating a Wiener-like filter based on
estimated reverberation time [6], on the estimated PSD of late
reverberation [7], or on a relative convolutive transfer function
model [8].

Another popular approach is based on supervised learning,
where DNNs are trained to directly predict target speech
from reverberant speech [9]. This approach is flexible at
dealing with many related tasks. For example, it can use
noisy-reverberant speech as input for noisy-reverberant speech
enhancement or multi-speaker separation, depending on the
targets and loss functions used for model training. In monaural
dereverberation, a DNN was initially used in the magnitude
domain [10] to predict T-F masks or target magnitudes with
or without additional magnitude-based phase reconstruction.
In the DNN-WPE algorithm [11], DNN-estimated magnitudes
are used to compute the target PSD in WPE so that WPE’s
iterative procedure is avoided. Subsequently, DNNs have been
utilized to estimate complex T-F domain [12]-[14] and time
domain [15]-[17] signals that model phase and magnitude at
the same time. Riding on the development of deep learning,
many recent studies along this line [12], [17]-[19] focus on
adapting novel neural network architectures such as dilated
convolution, self-attention, and recurrent networks for more
end-to-end modeling. Such deep learning based approaches
[9], despite often using neural networks as a black box and not
heavily relying on conventional signal processing algorithms,
can model speech patterns very well. They have been firmly
established as the state-of-the-art technique in speech enhance-
ment and speaker separation. However, one largely missing
part is that many speech dereverberation studies do not explic-
itly exploit the linear convolutional structure of reverberation.
DNN-WPE [11] is one exception, but it suffers from some
shortcomings. First, to avoid cancellation in target speech,
WPE uses a prediction delay [3], which is likely to limit



its capability at removing early reflections. Second, DNN-
WPE is designed to only leverage the estimated magnitude
produced by DNNs [11]. It lacks a mechanism to leverage
DNN-estimated phase, which could be utilized to design a
new form of linear prediction for better dereverberation. Third,
as competing speakers or noises become stronger, monaural
DNN-WPE becomes gradually biased towards reducing the
reverberation of these sources rather than that of the target
source. We will give a detailed analysis of this biasing problem
in Section V-C.

In this context, our study investigates the combination
of linear prediction and deep learning for monaural speech
dereverberation, where we first use a DNN to estimate target
anechoic speech and then find delayed and decayed copies of
the estimated anechoic speech by solving a linear regression
problem. Such copies can be safely removed for dereverbera-
tion as they are repetitive patterns likely due to reverberation.
They can also be used as extra features to train another DNN
for better dereverberation. We extend this approach to monau-
ral talker-independent multi-speaker separation in reverberant
as well as noisy-reverberant conditions, where we find delayed
and decayed copies of each speaker for dereverberation.

We make two major contributions on monaural derever-
beration. First, we propose convolutive prediction, a novel
formulation of linear prediction that can utilize DNN-provided
target statistics for speech dereverberation. Compared with
WPE and DNN-WPE [11], convolutive prediction, in the
forward-filtering case, can better reduce early reflections, can
use estimates of both target magnitude and phase obtained by
DNNss for linear prediction, and can better estimate a derever-
beration filter for each source when there are multiple target
sources. Second, we use convolutive prediction outputs to train
another DNN for better dereverberation. We find that such
outputs contain complementary information to deep learning
based end-to-end approaches. As a more minor contribution,
we propose a new loss function that can improve typical
permutation-free objective functions (also known as permu-
tation invariant training (PIT)) [20]-[22] for noisy-reverberant
speaker separation. The proposed system obtains state-of-the-
art performance on three datasets including REVERB [4],
SMS-WSIJ [23], and WHAMR! [24].

In the rest of this paper, we describe the hypothesized
physical model in Section II, give an overview of our system
in Section III, review WPE and DNN-WPE in Section IV,
and detail the proposed convolutive prediction in Section V
and DNN configurations in Section VI. Experimental setup
is presented in Section VII, followed by evaluation results in
Section VIII and conclusions in Section IX.

II. PHYSICAL MODEL AND OBJECTIVES

Given a monaural signal recorded in a noisy-reverberant
setting, the physical model describing the relationships be-
tween the mixture y, reverberant target speech x, and non-
target sources v including reverberant noises and reverberant
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Fig. 1. Illustration of the proposed speech dereverberation system.
competing speakers can be formulated in the time domain as

= z[n] +v[n] = (a *7)[n] + v[n]
= (a*xrg)[n]+ (axre +axr)[n] +v[n]
= s[n| + h[n] + v[n], (1)

y[n]

where n indexes discrete time, x denotes the convolution
operator, and x results from a linear convolution between a
dry source signal @ and an RIR r. We use 74, 1., and 7;
to respectively denote the direct, early, and late parts of the
RIR. The direct-path signal (or direct sound) s is defined as
s = a*rq, while the non-direct-path signal A is defined as the
summation of the early reflections a*r. and late reverberation
a*ry, i.e., h = a*r.+a=*r;. Note that we define impulses up
to 50 ms [25] after the direct-path peak of r as r44., and 7
as re = r'g4e — rq. In the short-time Fourier transform (STFT)
domain, the physical model is formulated as

Y(t, f) =Xt f)+V(t,[)
=S(t, f)+ H(t, [)+ V(t, f), 2)

where Y (¢, f), X(t, f), S(t, f), H(t, f), and V (¢, f) respec-
tively denote the STFT coefficients of the captured mixture,
reverberant target speech, direct-path signal, early reflections
plus late reverberation, and non-target sources at time ¢ and
frequency f. The corresponding spectrograms are denoted by
Y, X, S, H,and V.

We aim at recovering S from Y, and use s as the refer-
ence signal for metric computation. We emphasize that early
reflections are not considered as part of target speech.

Our study considers three tasks: speech dereverberation,
reverberant speaker separation, and noisy-reverberant speaker
separation. These three tasks are progressively more difficult,
as we include competing speakers and non-stationary noises,
which are known to be very detrimental to linear prediction.

Since this work mainly focuses on suppressing reverbera-
tion, most equations in this paper are designed for speech dere-
verberation, where we assume that there is only one speaker
active. For multi-speaker separation, we do not explicitly
write out multiple speakers in the above formulations as well
as in later proposed algorithms, in order to make equations
less cluttered. However, readers should be aware that for the
convolutive prediction in multi-speaker scenarios, we consider
each speaker as the target speaker in turn, with the remaining
speakers considered as competing speakers and absorbed into
v. We will introduce a speaker index in our notations when
dealing with speaker separation in Section VI.



III. SYSTEM OVERVIEW

Fig. 1 illustrates our system for speech dereverberation. It
contains two DNNSs and a linear-prediction module in between.
The first DNN estimates target anechoic speech, which is then
used to estimate the reverberation of the target speaker based
on convolutive prediction. We then combine the mixture and
the outputs from the first DNN and from convolutive prediction
as inputs for a second DNN to further estimate target anechoic
speech. The output from the second DNN is expected to be
better than that from the first one, so we can use it to do
convolutive prediction again and run the second DNN for one
more time. This process can be iterated to gradually refine
target estimation.

Both networks are trained using complex spectral mapping,
where we predict the real and imaginary (RI) components of
target speech from the mixture RI components [12]-[14]. For
speech dereverberation, we define the loss based on the pre-
dicted RI components and target RI components. For speaker
separation, we additionally use PIT [20]-[22] to resolve the
label-permutation problem. More details on the DNNs will
be provided in Section VI. At this point, readers can assume
that each DNN in our system can provide an estimate of
target anechoic speech in the complex T-F domain, denoted
as S‘DNNM where b € {1,2} as our system has two DNNs.

There are multiple options for the convolutive- or linear-
prediction module. In Section IV, we review WPE and DNN-
WPE, which are based on linear prediction and considered
as the most popular dereverberation algorithms to date. We
propose convolutive prediction in Section V.

IV. WPE AND DNN-WPE

This section reviews WPE and DNN-WPE, and analyzes
their strengths and weaknesses, which motivated the design of
our algorithms for dereverberation.

WPE [3] computes an inverse linear filter per frequency to
estimate the late reverberation at the current frame from past
noisy-reverberant observations. The estimated late reverbera-
tion is then subtracted from the mixture for dereverberation.
Mathematically, the dereverberation result is obtained as

Swee(t, f) =Y (t, f) — ()Yt -Af), 3

where g(f) € CKX denotes a K-tap complex-valued filter,
Yt f)=[Y(t[f),Y(t—1,f),....Y(t—K+1,£)]", and
A (> 1) is a prediction delay. Assuming that the estimated
target speech follows a complex Gaussian distribution with
zero mean and a time-varying PSD A(¢, f), i.e., Sweg(t, f) ~
N(0,\(t, f)), and based on maximum likelihood estimation,
WPE estimates the filter through the minimization problem

: Y (t, f) —g(f)" Yt — A, f)]?
Jemin D 3 T)

+log A(t, f),

“4)

where |-| computes magnitude. Eq. (4) does not have closed-
form solutions. An iterative algorithm is proposed in [3] to
alternately estimate g(f) and (¢, f).

Note that A cannot be set to zero, because otherwise a trivial
but useless solution g(f) = [1,0,...,0]T reaches the global

optimum. Given a typical 32 ms STFT window size and an 8
ms hop size, A is usually set by default, or tuned through a
validation set, to 3 or 4. This is possibly because smaller A
makes Y (¢, f) and Y (t—A, f) share more time-domain signal
samples due to the overlap between nearby frames, and will
thus more likely result in target speech cancellation. However,
a larger delay, for example set to a value greater than 3, will
likely limit WPE’s capability at reducing early reflections.
Note that early reflections can smear spectral patterns, albeit
not as severely as late reverberation, and they are found to
degrade ASR performance in [14]. Our proposed convolutive
prediction algorithm aims at removing both early reflections
and late reverberation.

In the subsequent DNN-WPE algorithm [11], A is no longer
jointly estimated via WPE’s iterative optimization procedure,
but replaced by an estimate )\ obtained by a DNN, and Eq. (4)
is simplified to

wgmin 3™ VD) =80 V=20

g 3 AL, f)
which has a closed-form solution. The dereverberation result
S’DNN_WPE is computed in the same way as in Eq. (3).

In WPE, ) is initialized based on mixture energy, and then
iteratively updated. In DNN-WPE, there are multiple options
for A. Depending on the DNN training target, A can be the
estimated PSD of (a) the summation of the direct sound, early
reflections, and noise, following [11]; (b) the direct sound plus
early reflections, following [26], [27]; or (c) the direct sound
only. Let us denote by Z the magnitude spectrogram computed
from DNN outputs'. For all three options, A is computed as

;\(t’ f) = max(smax(Zz), Z(tv f)Q)a (6)

where max(-) extracts the maximum value of a spectrogram,
max(-,-) returns the larger of two values, and ¢ is a floor
value to avoid putting too much weight on silent T-F units.
Setting ¢ to one essentially means no weighting is used. We
will compare these options in our experiments.

DNN-WPE cleverly utilizes target statistics estimated by a
DNN to avoid iterative optimization, paving the way towards
online dereverberation [28] and joint training of WPE with
other DNN modules [26], [29]. Compared with WPE, which
is unsupervised in nature, DNN-WPE can leverage the mod-
eling power of DNN on magnitude-domain speech patterns
to improve PSD estimation. Motivated by and building upon
DNN-WPE, we explore other ways of using statistics provided
by a DNN for linear prediction.

Our first insight for potential improvement is that DNN-
WPE only utilizes the estimated target magnitude produced by
the DNN (i.e., by using it to compute 5\), partly because only
magnitude could be estimated reasonably well at that time,
but not phase. Recent deep learning studies have shown that
phase estimation can also be improved by using deep learning
[12], [16], [17], [30]-[32]. An interesting question is whether
we can design a new linear prediction algorithm that can
leverage both magnitude and phase estimated by a DNN for

'Our DNNs estimate the complex spectrogram of the target during training.
We then compute Z based on the complex-domain estimate.



dereverberation, and whether the new linear-prediction result
can have less reverberation, or can be utilized as a better
feature than the WPE result for the second DNN in Fig. 1.

Another insight for potential improvement is that the linear
filtering in WPE is applied to the mixture. This means that
WPE essentially estimates a single filter to reduce the rever-
beration of all sources. Indeed, in the literature, WPE and
DNN-WPE are typically used as a pre-processing before later
enhancement/separation algorithms [29], [33]. The rationale
is that if the input mixture is overall less reverberant, later
processing becomes easier. However, in the monaural case
which we consider in this study, computing a single filter to
dereverberate the mixture is not good enough when noise or
competing speakers are very strong, because the filter would
be biased towards suppressing the reverberation of higher-
energy sources (see our discussion later in Section V-C and
Eq. (16) for detailed analysis). We point out that in multi-
microphone scenarios, a single multi-microphone input multi-
microphone output filter could theoretically dereverberate all
the sources [27], [34], but one key constraint is that the
number of microphones should be no fewer than the number
of sources. However, when there is only one microphone but
multiple sources, this constraint is not satisfied. In such cases,
it seems more promising to estimate a dereverberation filter for
each source, as each source is convolved with a different RIR.
In DNN-WPE, it is indeed possible to compute a different filter
for each source, by using the estimated PSD of each source in
turn in Eq. (5). However, in the optimization problem the linear
filter is estimated by multiplying it with the mixture, which
consists of multiple sources, and the estimated filter could still
be biased towards dereverberating higher-energy sources.

We tackle these problems in the following section.

V. CONVOLUTIVE PREDICTION

To address the aforementioned issues in DNN-WPE, we
propose a new DNN-supported method to estimate a dere-
verberation filter which we refer to as forward convolutive
prediction (FCP). Based on a target speech estimate S'DNNb
produced by the DNN, FCP estimates a dereverberation filter
by forwardly filtering S'DNNb to approximate the mixture. As
a bridge between WPE and FCP, we also present inverse con-
volutive prediction (ICP), which estimates a dereverberation
filter by inversely filtering the mixture to approximate S’DNNb.
In Sections V-A and V-B, we assume V is weak, meaning that
Y =~ X. In Section V-C, we will discuss the cases where V'
is strong and non-negligible.

A. Inverse Convolutive Prediction

In WPE, a linear time-invariant inverse filter is computed
to approximate the late reverberation contained in Y(t, f)
based on the delayed mixture Y(t — A, f). In ICP, we
linearly filter Y (¢, f) to approximate Y (¢, f) — Spx, (, f),
which can be considered as the estimated reverberation if
the interference V (¢, f) is weak. Similarly to our DNN-WPE
setup, we compute 5\(15, f) based on the target speech estimated

by a DNN, but we consider a slightly different minimization
problem

3 V) = Sown (1) — g () V(4 1)
) T Alt, f)

and obtain the dereverberation result as Y(t,f) —
g (HNY(t, f). As Y(t,f) also appears in Y (¢, f), we

can equivalently absorb Y (¢, f) into Y (¢, f) and reformulate
the minimization problem of Eq. (7) as

|SDNN1; (t7 f) - g(f)H ?(tv f)|2

argm
g'(f

(D

argmin = ) ®)
g(f) 7 At f)
from which we obtain the dereverberation result as
SICP(t» )= g(f)H?(t, f)- )

Note that we use a prime symbol to differentiate g’(f) in
Eq. (7) with g(f) in (8). The estimated filter g(f) acts as
an inverse filter that seeks to undo the (forward) reverberation
process in order to get from the reverberated mixture Y back to
the target direct-path speech S (in lieu of the dry source signal,
whose estimation is ill-defined). The objective to minimize is
quadratic, similar to that of DNN-WPE, and a closed-form
solution is readily available. Section V-D will discuss how to
set A(t, f).

Eq. (8) essentially applies a time-invariant filter to the
mixture to approximate the target speech estimated by the
DNN. This is in spirit similar to the classic multi-channel
Wiener filter in microphone array processing [35], where a
linear filter per T-F unit is computed to estimate target speech
from the multi-channel mixture mainly based on linear spatial
cues. The difference here is that we apply this strategy for
monaural processing and to exploit the linear-filter structure
in reverberation.

B. Forward Convolutive Prediction

In FCP, we approximate Y (t, f) — Spx, (£, f), which again
can be considered as the estimated reverberation of the target
speaker if we assume that V' (¢, f) is weak, by forwardly
filtering the target speech estimate SDNNb obtained by the
DNN. The filter is obtained by solving the problem

argmin' 3 V(1) = Sowva (0.) = /()" S (1 )P
g 7 At f

(10)

where  Spww, (¢, f) = [Sonw, (t, ), Sonn, (8 — 1, f), -,
Spnn, (t—K+1, f)]T. The dereverberation result is computed
as Y(t, f) — &' (f)"Span, (t, f), where the subtracted term is
considered as the reverberation estimated by FCP. Essentially,
Eq. (10) reverberates the target speech S’DNNb estimated by
the DNN using a filter per frequency to find its delayed
and decayed copies. Such copies can be reliably considered
as reverberation because they are repeated signals of S’DNNb.



By absorbing S'DNNb (t, f) into QDNNb(t,f), Eq. (10) can be
equivalently reformulated as

Yt f)— H§ t, f)I?
argmin ‘ ( ’f) ggf) DNNb( ’f)|
g(f) t )‘(tv f)
whose goal is to filter the DNN-estimated target speech to

approximate reverberant target speech X, assuming V' is weak
enough. The dereverberation result is obtained as

Skep(t, f) =Y (t, f) — (g(f)HgDNNb (t, f) — Sonn, (¢, .f))a
(12)

;1D

where &(f)"Spa, (t, f) is an estimate of reverberant target

speech X (¢, f), and g(f)HSDNNb (t, f)— S’DNNb (t, f) the esti-
mated reverberation of the target speaker. Note that Eq. (12)
can be rewritten as

Srep(t, f) = Sonn, (t, f) + (Y(t» f)— g(f)HgDNNb (t, f))7
(13)

which can be interpreted as adding to the initial target speech
estimate S'DNNb obtained by the DNN the residual component
in Y that cannot be explained by linear-filtering of S'DNNb.
Again, the objective to be minimized is quadratic, and a
closed-form solution exists. We will discuss the choices of
A(t, f) in Section V-D.

In contrast with Eq. (5), Eq. (11) may be more effective at
reducing early reflections, as it does not have a prediction
delay. In addition, it introduces a different form of linear
prediction that can utilize both magnitude and phase produced
by DNNs for dereverberation.

C. Robustness of WPE, ICP, and FCP to Interferences

Comparing Egs. (5), (8), and (11), we can see that the first
two both do inverse filtering, while the third does forward
filtering. This leads us to think that Eq. (11) may lead to
better filter estimation for the target speaker when interference
signals are present. To see this, we equivalently reformulate
Eq. (11) in terms of X: given that Y = X + V,

X1, )+ V(E ) — 2() Soa, (& )]

argmin

gf) T A, f)
_ . |X(t7f) _g(f)H SDNNb(tvf)|2+|V(tvf)‘2
emin ) 0. 1)
. |X(t7f) _g(f)H Sl)l\n\fb(tvf)l2 14
= 2 ) )
) 37) <

where the analysis assumes that S’DNNb and X are uncorrelated
with V', such that

Ve O (X 1)~ ()" S (4. 1))
; A(t, f)

As we can see f}rom Eq. (14), FCP essentially estimates the
filter based on Spnn, and X, between which a linear-filter
structure is indeed expected to exist. This can produce a

~0. 15

good filter estimate for the target speaker, even if the mixture
contains noises or competing speakers.
A similar derivation for WPE’s Eq. (5) leads to

mgminz |X<t7.f)+V<t7.f>—g<f>A“(X(t—A,f)N(t—A,f))lz

g(f) 5 At f)
— aremin IX(t,f) —g(/)"X (- A, )P
— o (zt: At f)
V(t, f)— HV(t— A, )2
+zt:| (t, f) g(;af)( Dl ) (16)

where X(t, f) = [X(t, ), X(t—1,f),..., X(t =K +1, /)]
and V(t, f) = [V(t, ), VEt—1,f),....,V(t— K+ 1, f)]".
Eq. (16) suggests that WPE aims at dereverberating the target
speaker and non-target sources using a single filter. This
could be problematic when non-target sources are present,
because the filter would also need to reduce the reverberation
of non-target sources rather than focusing on dereverberating
the target speaker. When they are strong, the loss on non-
target sources could dominate the numerator, and the resulting
filter would be biased towards dereverberating higher-energy
sources. ICP’s Eq. (8) suffers from the same issue. In contrast,
FCP’s Eq. (11) aims at only removing the reverberation related
to a target speaker. This is particularly useful in multi-speaker
separation, because each target speaker is convolved with a
different RIR and it is thus best to compute a different filter
to dereverberate each speaker. This also means that our method
does not aim at reducing the reverberation of non-target
sources such as multi-source environmental noises, as it would
require estimating each anechoic noise source, which is very
difficult [36]. We think this is fine because we will introduce in
Section V-E a second DNN to leverage convolutive-prediction
outputs for further dereverberation. Note that noises should be
relatively easier to be removed by DNNs than target-speech
reverberation, because they exhibit more different patterns to
target speech than target-speech reverberation does. This is
why we want the filter to focus on reducing the reverberation
of the target speaker rather than that of the target speaker
and non-target sources combined. In other words, as long as
FCP dereverberates the target, it should be fine if there are
interferences left, because the second DNN can likely reduce
interferences effectively.

D. Choices for \ in Convolutive Prediction

In WPE, \ is introduced because the numerator Y (¢, f) —
g(M Y (t—A, f) in Eq. (4) is an estimate of target speech,
which is assumed to follow a complex Gaussian distribution
with a time-varying PSD. Apart from its origin as the variance
of the target speech distribution, 5\(1&, f) can in practice also
be considered as a weighting term to balance the contributions
of different T-F units, typically with diverse energy levels, for
linear prediction.

Whether it is appropriate to use the estimated target-speech
PSD as A in convolutive prediction is not clear. In Eq. (8),
the numerator is not an estimate of target speech. Similarly,

in Eq. (11), the numerator Y (¢, f) — g(f)" Spwn, (£, f) =



V(t, f) + X(t, f) — g(F)" Sonn,(t, f) is a summation of
the non-target sources V (¢, f) and the part of reverber-
ant target speech X(t, f) that cannot be approximated by

g(f)"Spxw, (¢, f). For both numerators, we could assume
a Gaussian distribution, as sums of Gaussian variables are
also Gaussian for independent variables, and use iterative
optimization to find the PSD and the filter in the same way
as in the vanilla WPE algorithm [3]. However, this would
introduce time- and computation-consuming iterations. We
could avoid the iterations by estimating the PSD using another
DNN, or more economically as another output of DNN;. Both
of these approaches however increase the complexity of our
system.

Rather than focusing on such a probabilistic interpretation,
we introduce \ as a weighting term that can balance T-F units
with different energy for linear prediction. Without it, the filter
could be biased towards only producing good estimates for
higher-energy T-F units. One potential choice for such a A is
to set Z in Eq. (6) to |SDNNb|s leading to

;\(ta = maX(€maX(|SDNNb|2)a |SDNNb (t, f)\2)~
Another option is to simply use the mixture power, leading to

A(t, f) = max(emax(|Y[*), [Y (¢, f))- (18)

a7)

Although such settings for A do not follow a probabilistic
assumption, we found that they work well in our experiments.
In particular, the best results were obtained with Eq. (17) for
ICP and with Eq. (18) for FCP.

E. Combining Convolutive-Prediction Outputs with DNN

The dereverberation result produced by convolutive predic-
tion explicitly exploits the linear-filter structure in reverber-
ation. Such a linear structure is assumed time-invariant for
non-moving sources, and could be estimated reasonably well
by using all the frames in the mixture, as long as the mixture is
reasonably long. It could leverage information complementary
to, and hence improve upon, plain DNN based dereverberation,
where the DNN output at each T-F unit might not strictly
respect the linear-filter structure. Furthermore, because the
convolutive-prediction results are obtained based on a time-
invariant filter, it is likely that they are not as good as DNN
outputs in terms of speech enhancement metrics.

We hence consider using the convolutive-prediction outputs
as extra features to train another DNN for better dereverbera-
tion. The input feature is a concatenation of the RI components
of Y, the estimated target speech produced by the first DNN
S’DNNl, and a linear prediction result such as Swa, S’ICP, or
Secp. We will compare the performance of using different
convolutive-prediction features for DNN training. This second
network’s output is denoted as S’DNNQ.

As a baseline, we consider only using Y and S'DNN1 as
features to train the second DNN, i.e., not incorporating linear-
prediction results. This stacking approach was conventionally
perceived as a model ensembling technique, often used in early
deep learning based speech enhancement studies that operate
in the magnitude domain [37]-[40]. Here, we point out that it
is a very valid idea closely related to the proposed technique.

Our insight is that since our second DNN takes in the RI
components of ¥ and §DNN1 (not just their magnitudes) as
inputs to predict S, this stacking approach could implicitly
identify copies of S’DW1 contained in Y based on supervised
learning, rather than by using ¥ and SDW1 for explicit linear
regression. In other words, the DNN could learn to exploit
the linear and non-linear information in Y and SYDNN1 to
best predict target speech in a data-driven way. Although this
two-DNN stacking system produces clear improvement over
the one-DNN system, we will show in our experiments that
incorporating convolutive-prediction results to train the second
DNN leads to further improvement.

F. Run-Time Iterative Processing

As S'DNN2 is likely better than S’DNN1 and thus potentially
leads to better filter estimation, we can use it to do another
pass of convolutive prediction. We then combine SDNNz, Y,
and the new projection results as input features for the second
DNN to estimate target speech again. Note that, in this work,
we do not train the second DNN based on this second pass
output, but that could be considered in future work.

We point out that the big picture of our approach is
essentially an iterative strategy for blind deconvolution, which
is a non-convex problem in nature and is difficult to solve
without assuming any knowledge of the source signal or the
filter [1], [2]. Our approach first uses a DNN, which is known
to be good at modeling speech patterns [9], to estimate the
direct-path signal. Given an estimate of the direct-path signal,
estimating the RIR becomes an easier convex, linear regression
problem. We here estimate the RIR via FCP in the T-F domain.
Given an estimate of the RIR, estimating the direct-path signal
also becomes easier. In this work, we use the estimated RIR
to derive extra features for another DNN to better predict the
direct-path signal. We can iterate this process to gradually
improve the estimation of the RIR and the direct-path signal.

VI. DNN CONFIGURATIONS

Our DNNs operate in the complex T-F domain via complex
spectral mapping. This section provides the detailed DNN
setup for speech dereverberation and speaker separation, as
well as DNN architectures.

A. Complex Spectral Mapping

Our DNNs predict the RI components of the direct-path
signal from the mixture RI components. This approach and
the related complex ratio masking technique [30] have shown
strong performance in tasks such as speech dereverberation
[12], speech enhancement [13], [41] and speaker separation
[14], [42].

B. Speech Dereverberation
For speech dereverberation, following [12] we define the
loss function on the predicted RI components

L8 = |R® — Real(S) [+ 1® — Imag(S)[1, (19)



where R® and I(®) are the predicted RI components produced
by using linear activations in the output layer, b € {1,2}
denotes which DNN produces the estimates (as we have two
DNNs in our best performing system), Real(-) and Imag(-)
extract RI components, and ||-||; computes the L; norm.
Following [12], [13], we further add a loss on the resulting
magnitude, leading to

b b P 2
Lioh risvse = Lm0 + [V RO + 107 < 5] . 20

The enhancement result is obtained as S'DNNb = R® 4 jf (b),
where j denotes the imaginary unit. Inverse STFT is then
applied to get the estimated time-domain signal.

We point out that the trained DNN essentially does complex-
domain inverse filtering, similarly to WPE and ICP, but here
we use supervised learning to learn non-linear inverse filters
based on a large receptive field, which is possible thanks
to the use of DNNs. Note that complex-domain approaches
[12] typically achieve better dereverberation than magnitude-
domain approaches [10], [18], [43].

C. Speaker Separation

For speaker separation, we also define the loss based on the
predicted RI components, but we additionally use utterance-
wise PIT [20]-[22] to address the label-permutation problem.
Here, we introduce a speaker index ¢ € {1,...,C} to
differentiate between the C' speakers S(1), ..., S(C). The loss
function is defined as

Lor =min Y (| RV (w(c)) — Real(S(e))

+ 19 ((c)) — Imag(S())Ih),
where P is the set of permutations on {1,...,C}. The sepa-
ration result is obtained as Spnw, (¢) = RV (¢) +51M (). We
find that adding to ES% a loss on the sum of the target speech

estimates improves separation especially in noisy-reverberant
conditions. That loss is defined as

[’s(ignPlT :H Z R(l)(c) - Real(z S(C)) H1
+ ||Zf(1)(c) —Imag(ZS(c))Hl. (22)

2L

We train DNN; using either LZS% +sumPIT = L:é}% + Eijr)npl

El()%%. Note that we use superscript (1) here, as PIT is only
used for DNNj.

For DNNy, we can just use an enhancement network to en-
hance all the speakers, as DNN; has resolved the permutation
problem. The loss function on each speaker follows Egs. (19)
or (20). We think that training the second network in an en-
hancement way should produce better performance than train-
ing it with PIT, as the network already knows the right per-
mutation. We consider two ways to train the enhancement net-
work. In the “all speakers” setup, shown in Fig. 2, we predict
all C target speakers simultaneously by using a concatenation
such as [K SDNN1 (1), ey SDNN1 (C), Spcp(l), ey SFCP(C)]
as input to predict [S(1),...,.S(C)]. In our experiments, we
use the default speaker order in each mixture and do not

T Or
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Prediction
Span, (1)
Spnn, (€©)
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Fig. 2. Illustration of the “all speakers” setup of the speaker separation system,
where DNN» enhances all speakers simultaneously.
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SCP(C) DNN; SDNN2 (C)

Fig. 3. Illustration of the “per speaker” setup of the speaker separation system,
where DNN> enhances each speaker independently.

shuffle the speakers when training the second DNN. In the “per
speaker” setup, illustrated in Fig. 3, we predict target speakers
one by one by using for example [Y, §DNN1 (c),SpCp(c)] as
input to predict S(c). The downside is that the DNN needs
to run C times at run time, once for each speaker. In our
experiments, the “per speaker” setup produces clearly better
results. We think that there are three possible explanations: (1)
each speaker is convolved with a different RIR, so it is best
to do inverse filtering separately for each speaker, similarly
to the proposed convolutive prediction; (2) DNNs are better
at modeling the pattern of a single target speaker than that
of multiple target speakers combined; and (3) there is more
training data for the second network in the “per speaker” case.

D. Network Architecture

The network architecture of DNN is shown in Fig. 4.
DNN; also uses the same architecture, but only uses the RI
components of the mixture as input. It is a temporal convo-
lutional network (TCN) [44] sandwiched by a U-Net [45].
We insert DenseNet blocks [46] at multiple frequency scales
in the encoder and decoder. The motivation of this network
design is that U-Net can maintain local fine-grained structure
via its skip connections and model contextual information
along frequency through down- and up-sampling, TCN can
leverage long-range information by using dilated convolutions
along time, and DenseNet blocks encourage feature reuse
and improve discriminability. More specifically, the encoder
contains one two-dimensional (2D) convolution, and seven
convolutional blocks, each with 2D convolution, exponential
linear units (ELU) non-linearity, and instance normalization
(IN), for down-sampling. The decoder includes seven blocks
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Fig. 4. Example network architecture of DNN2 for dereverberation.
The tensor shape after each encoder-decoder block is in the format:
SfeatureMapsxtimeStepsxfrequencyChannels. Each one of Conv2D, De-
conv2D, Conv2D+ELU+IN, and Deconv2D+ELU+IN blocks is specified
in the format: kernelSizeTimexkernelSizeFreq, (stridesTime, stridesFreq),
(paddingsTime, paddingsFreq), featureMaps. Each DenseBlock(g1,g92) con-
tains five Conv2D+ELU+IN blocks with growth rate g; for the first four layers
and g2 for the last layer. Following [42], we include a frequency mapping
layer in the middle of each denseblock. The tensor shape after each TCN
block is in the format: featureMapsxtimeSteps. Each IN+ELU+dsConv1D
block is specified in the format: kernelSizeTime, stridesTime, paddingsTime,
dilationTime, featureMaps.

of 2D deconvolution, ELU, and IN, and one 2D deconvolution,
for up-sampling. The TCN contains four layers, each of
which has seven dilated convolutional blocks. We use one
one-dimensional depth-wise separable convolution, denoted as
dsConv1D, in each dilated convolutional block to reduce the
number of parameters.

We stack the RI components of different input signals
as features maps in the network input and output. Linear
activations are used in the output layer.

VII. EXPERIMENTAL SETUP

We evaluate the proposed algorithms on three tasks: speech
dereverberation with weak stationary noise, two-speaker sep-
aration in reverberant conditions with white noise, and two-
speaker separation in reverberant conditions with challenging
non-stationary noise. These three tasks are progressively more
difficult, as we consider competing speakers and challenging
noises that are known to be detrimental to linear prediction.
This section describes the dataset used for each task, the hyper-
parameter settings, the evaluation metrics, and the baseline
systems.

A. Dataset for Dereverberation

For speech dereverberation, we train our models on a sim-
ulated reverberant dataset with weak air-conditioning noise.
In addition to evaluating the trained models on our simulated
test set, we apply them directly to the REVERB corpus [4] to
show their effectiveness in dealing with real-recorded noisy-
reverberant utterances.

The clean signals for simulation are from the WSJCAMO
corpus. It contains 7861, 742, and 1088 utterances in its
training, validation, and test set, respectively. We use them to
simulate 39305 (7861 x5), 2968 (742x4), and 3264 (1088 x3)
noisy-reverberant mixtures as our training, validation, and
test sets, respectively. The data spatialization process follows
[47], where, for each utterance, we randomly sample a room
with random room characteristics and speaker and microphone
locations, using the RIR generator proposed in [48]. The
speaker-to-microphone distance is sampled from the range
[0.75,2.5] m. The reverberation time (T60) is drawn from the
range [0.2, 1.3] s. For each utterance, a diffuse air-conditioning
noise is sampled from the REVERB corpus [4] and added
to the reverberant speech. The signal-to-noise ratio between
the anechoic speech and the noise is sampled from the range
[5,25] dB. The sampling rate is 16 kHz. We denote this
simulated dataset as “Dereverb Data I”.

To show the generalizability of our trained models to realis-
tic reverberant recordings, we apply them, without retraining,
to the ASR tasks of REVERB. The test mixtures are from
real recordings made in rooms with T60 around 0.7 s and
with speaker-to-microphone distance around 1 m in the near-
field case and 2.5 m in the far-field case. The recorded noise
is diffuse air-conditioning noise and is weak.

We use the official REVERB corpus [4] and the most recent
Kaldi recipe [49] to build our ASR backend. It is trained
using the noisy-reverberant speech plus clean source signals
of REVERB. We follow a plug-and-play approach for ASR,
where enhanced time-domain signals are directly fed into the
backend for decoding.

B. Dataset for Reverberant Speaker Separation

We utilize the six-channel SMS-WSJ dataset [23], which
contains simulated two-speaker mixtures in reverberant con-
ditions. The clean speech is sampled from the WSJO and
WSJ1 datasets. The corpus contains 33561, 982, and 1332 two-
speaker mixtures for training, validation, and testing, respec-
tively. The speaker-to-array distance is sampled from the range



[1.0,2.0] m, and the T60 is drawn from the range [0.2,0.5] s. A
weak white noise is added to simulate microphone noises. The
energy level between the sum of the reverberant target speech
signals and the noise is sampled from the range [20, 30] dB.
The sampling rate is 8 kHz. We only use the first channel for
training and evaluation. We use the direct sound as the training
target and perform both dereverberation and separation. Our
study aims at removing all the reflections. This is different
from the default setup in SMS-WSJ, which does not aim at
reducing early reflections.

For ASR, we use the default Kaldi-based backend acous-
tic model provided in SMS-WSJ [23], trained using single-
speaker noisy-reverberant speech as inputs and the state align-
ment of its corresponding direct-path signal as labels. The
signals at the first, third, and fifth channels are used for training
the acoustic model. A task-standard trigram language model
is used for decoding.

C. Dataset for Noisy-Reverberant Speaker Separation

We conduct our experiments on the noisy-reverberant
WHAMR! dataset [24], originally designed for noisy-
reverberant binaural two-speaker separation. It re-uses the
clean two-speaker mixtures in the wsj0-2mix dataset [20],
but reverberates each clean signal and adds non-stationary
environmental noise recorded in WHAM! [50]. The T60 is
randomly sampled from the range [0.2,1.0] s. The signal-to-
noise ratio between the louder speaker and noise is drawn
from the range [—6,3] dB. The energy level between the
two speakers in each mixture is sampled from the range
[—5, 5] dB. The speaker-to-array distance is sampled from the
range [0.66, 2.0] m. There are 20000, 5000, and 3000 binaural
mixtures in the training, validation, and test set, respectively.
We use the min and 8 kHz version of the corpus. We only
use the first channel for training and evaluation. We aim at
joint dereverberation, denoising, and speaker separation. The
direct-path signal of each speaker is used as the reference for
metric computation.

D. Miscellaneous Configurations

For STFT, the window length is 32 ms, hop size is 8 ms, and
the analysis window is the square root of the Hann window.
For 16 kHz sampling rate, a 512-point fast Fourier transform
(FFT) is applied to extract 257-dimensional STFT features,
while a 256-point FFT is used to extract 129-dimensional
features for 8 kHz sampling rate. No sentence- or global-level
mean-variance normalization is performed on input features.
For each mixture, we normalize its sample variance to one
before any processing. Note that during training, the target
signal needs to be scaled by the same factor used for scaling
the mixture.

For WPE and DNN-WPE, the number of filter taps K is set
to 37 and the prediction delay A is set to 3, following [4], [11].
The iteration number in the vanilla WPE is set to 3. No PSD
context [51] is used. Note that, based on the validation set, we
compared setting K and A to 40 and 0, 39 and 1, 38 and 2,
37 and 3, and 36 and 4, and found that setting them to 37 and
3 works best across our datasets. For convolutive prediction,

no prediction delay is used and K is set to 40, leading to
the same amount of context as in WPE. This amounts to 344
(= (40 — 1) x 8 + 32) ms filter length in the time domain.
We increased K to up to 125, which corresponds to up to
1.0 s RIR length. This leads to an increase in the amount of
computation spent in the linear regression step, but we did not
observe significant differences in the evaluation scores. This is
possibly because the RIRs used in this study have their energy
mostly in the 0.35 s range after the peak impulse. The floor
value ¢ in Egs. (6), (17), and (18) is set to either 1.0, meaning
that no weighting is used, or 0.001, meaning that the PSD at
each T-F unit should be at most —30 dB lower than the T-F
unit with the highest energy.

E. Evaluation Metrics

For all the tasks, our major evaluation metrics include the
scale-invariant signal-to-distortion ratio (SI-SDR) [52], which
measures the quality of time-domain sample-level predictions,
extended short-time objective intelligibility (eSTOI) [53], and
perceptual evaluation of speech quality (PESQ) scores. For
PESQ, we report narrow-band MOS-LQO scores based on the
ITU P.862.1 standard [54] using the python-pesq toolkit>. We
report word error rates (WER) for ASR. In all the tasks, the
direct-path signal, which physically represents the target signal
captured by a far-field microphone in anechoic conditions, is
always used as the reference for metric computation.

In addition to SI-SDR, we also compute BSS-Eval SDR
[55], [56]. We emphasize that SDR manipulates the reference
signal using a time-invariant 512-tap filter, which is 32 ms
long for 16 kHz sampling rate and 64 ms for 8 kHz, to
best approximate the estimated signal before computing an
SNR-like score, while SI-SDR only using a one-tap filter. As
a result, SDR is limited in its ability to measure whether
early reflections are removed, as the 512-tap filter would
re-create a reverberant signal for metric computation. For
systems that are not able to, or not designed to, reduce early
reflections, SDR can still produce a relatively high score,
but our goal in this paper is to remove any reflections, and
therefore the interpretation of the SDR scores in this paper
is very tricky and requires caution. On the other hand, SI-
SDR [52] only modifies the reference by a scaling factor (or a
one-tap time-invariant filter) before computing an SNR-like
score: it tolerates a gain difference between the separated
signal and the reference, but significantly penalizes phase
errors. While this may be unfair to algorithms that do not
attempt to or are not able to preserve time alignment, this
is not an issue here as the methods considered in this study
do output a time-aligned estimate of the direct-path signal
(see our discussion in the last paragraph of Section VIII-D).
We emphasize that preserving time alignment is desired in
many application scenarios such as active noise control, spatial
cue preservation, some beamforming algorithms, and real-time
speech enhancement.

Note that, in this study, we obtain the direct-path RIR by
setting the T60 parameter of the RIR generator to zero, and
then convolve it with the dry signal to obtain the direct-path

Zhttps://github.com/ludlows/python-pesq, v0.0.2.



signal. In the literature, some studies only consider the peak
impulse of the entire RIR (i.e., a single pulse) as the direct-path
RIR [18], [57]. As is pointed out in [12], this peak impulse
approach has some issues. Because we rely on discrete-time
digital signal processing, the direct-path impulse likely does
not happen exactly at a sample instance. This is particularly
problematic in the context of microphone array processing. If
two microphones are placed very closely in space, this peak-
impulse approach may lead to the same direct-path RIR for
the two microphones. The resulting direct-path signals at the
two microphones would be exactly the same, not exhibiting
any phase difference. Even if the two direct-path RIRs differ
by, say, one sample shift in time, the phase difference between
the resulting direct-path signals would be discretized and could
lead to problems for later spatial processing.

F. Benchmark Systems

For dereverberation, we compare the proposed algorithms
with WPE, DNN-WPE, and their variants, either by using their
outputs directly for evaluation or by including their outputs to
train a second DNN.

For reverberant speaker separation, we additionally compare
our system with a popular and representative time-domain
algorithm, DPRNN-TasNet [17], which predicts the anechoic
waveform from the noisy-reverberant one.

For noisy-reverberant speaker separation, we additionally
compare our system with Wavesplit [32], a state-of-the-art
model in speaker separation. It is also a two-DNN system, but
jointly trained, with the first one trained for computing speaker
embeddings and the second performing speaker extraction
based on the computed embeddings. As a two-DNN system,
the proposed method has some similarities to Wavesplit, but
our system does not leverage any speaker embeddings. Instead,
we feed the separated speech obtained by DNN; and the
convolutive-prediction results to DNN» for speaker extraction.
The encoder of DNN» may automatically encode some speaker
information from the separated speech provided by DNNj.

The DPRNN-TasNet model contains around 3.6 million
parameters, and the WaveSplit system contains around 29
million parameters according to [58]. Each DNN model in
our system contains around 6.9 million parameters. Note that
reducing the number of parameters is not a focus of this study.

VIII. EVALUATION RESULTS

This section presents evaluation results on various tasks.
We also report results showing the effectiveness of FCP at
reducing early reflections, and its capability at reverberation
reduction.

A. Speech Dereverberation

Table I reports the results on our simulated test data for
dereverberation, and on the ASR task of REVERB. In the
literature [11], [27], [51], the DNN; model in DNN;-WPE
can be trained to predict direct sound (denoted as “d”), direct
sound plus early reflections (denoted as “d+e”), and direct
sound plus early reflections and noise (denoted as “d+e+v”).

In the case of our proposed convolutive prediction, DNNj is
always trained to predict direct sound. For all the systems,
DNNj, is always trained to predict direct sound.

Using direct sound (i.e., “d”) as the training target for DNN;
shows better performance over the other two (i.e., “d+e”
and “d+e+v”), if we consider the outputs of DNN; as the
final prediction. Comparing using different training targets for
DNN;, we do not observe a large performance difference in
DNN;-WPE, which applies DNN; outputs to improve WPE,
but we notice that using direct sound to train DNN; shows the
best performance in DNN;+DNNs, which stacks two DNNs
by using the mixture and DNN; outputs as inputs to train
DNNG,. In the subsequent experiments, DNNj is always trained
to estimate direct sound.

We then insert ICP, FCP, or WPE in between DNN; and
DNNs. We first look at the effects of using different \ for
linear prediction. For the ICP in DNN;+ICP+DNN,, setting
A to Eq. (17) and ¢ to 1.0 (i.e., no weighting) produces
the best performance. For the FCP in DNN;+FCP+DNNsy,
setting A to Eq. (18) and ¢ to 0.001 leads to the best
performance. For WPE, we can also compute A based on
Eq. (18) with ¢ set to 0.001, meaning that we run the
vanilla WPE for only one iteration (denoted as vVWPE (liter)).
DNN;+vWPE (liter)+DNNs, which is essentially the same
as DNN;+DNNs but with DNN> additionally taking vWPE
(liter) results as features, shows worse performance than
DNN;+WPE+DNN,, where A is set to Eq. (17) and € to
0.001. Among all setups for the linear predictions in between
the two DNNs, DNN;+FCP+DNN, with \ set to Eq. (18)
and € to 0.001 shows the best performance. By performing
linear prediction and DNN> for one more iteration at run time,
DNN;+(WPE+DNN3)x2 and DNN;+(ICP+DNN32)x2 show
slight improvement in SI-SDR and PESQ and slight degra-
dation in WER, while DNN;+(FCP+DNN5)x2 shows clear
improvements in all the metrics. These results indicate the
effectiveness of the proposed DNN;+FCP+DNN; approaches
over WPE and DNN;+WPE+DNNs. They also indicate that,
given the better phase and magnitude produced by the first-
pass DNNs over DNN;, FCP can better improve the second-
pass DNNs, while DNN-WPE only leverages the DNN-
estimated magnitude as a weight in the objective function and
the improvement in the second pass is relatively smaller.

As we observe better scores in DNN;+ICP+DNN; by
setting Ao Eq. (17) and € to 1.0, while setting them to Eq. (18)
and 0.001 leads to better scores in DNN;+FCP+DNNs,, we
use these respective setups for ICP and FCP in the following
experiments.

Notice that if linear prediction results are used as the final
outputs, DNN;+FCP and DNN;+ICP obtain better SI-SDR
(3.2 and 3.6 vs. —1.0 dB) and PESQ (1.78 and 1.82 vs.
1.75) than DNN;+WPE, but worse WER (18.55% and 17.55%
vs. 15.02%). The degradation in WER is possibly due to
the fact that ICP and FCP do not have a prediction delay,
while WPE does, so there could be more speech distortion.
They also show worse SDR scores (5.9 and 4.5 vs. 6.4 dB),
but some caution should be exercised when interpreting these
results. Indeed, this is possibly because the early reflections,
which are not suppressed by DNN;+WPE and could be well



TABLE I
SI-SDR (DB), SDR (DB), AND PESQ RESULTS ON TEST SET OF DEREVERB DATA I, AND WER (%) ON REAL DATA OF REVERB.

WER on val. set WER on test set

DNN;/DNN2 DNN
Approaches predicts? loss A € SI-SDR SDR PESQ Near Far  Avg. Near  Far  Avg.
Unprocessed - - - - —3.6 2.7 164 1535 16.88 16.11 17.09 17.29 17.19
VvWPE (liter) - - (18) 0.001 —-1.6 5.3 174 16.59 17.63 17.11 13.67 16.34 15.00
VvWPE (3iter) - - (18) 0.001 —-14 5.7 174 16.66 17.57 17.12 14.02 16.88 15.45
DNN; d+e/- - - —-1.6 7.1 213 1541 18.39 16.90 17.37 16.31 16.84
DNN;+DNN> d+e/d RI (6) - 8.8 10.2 277 1248 14.29 13.38 11.31 11.61 11.46
DNN;+WPE d+e/- - (6) 0.001 —-1.5 6.3 175 1578 17.70 16.74 14.31 16.04 15.18
DNN;+WPE+DNN> d+e/d RI (6) 0.001 9.6 114 295 11.67 12.78 12.22 10.19 9.76 9.97
DNN1 d+e+v/- - - - -1.8 6.3 195 14.78 17.16 1597 1827 17.15 17.71
DNN;+DNN> d+e+v/d RI (6) - 8.2 9.8 269 1291 13.53 13.22 11.56 11.99 11.78
DNN;+WPE d+e+v/- - (6) 0.001 —1.5 6.2 1.75 1553 17.98 16.75 13.80 16.04 14.92
DNN1+WPE+DNN> d+e+v/d RI (6) 0.001 9.2 11.0 293 11.67 1244 12.05 9.13 10.03 9.58
DNN; d/- - - - 8.2 9.8 265 1248 14.56 13.52 11.69 11.17 11.43
DNN; +DNN> d/d RI - - 9.1 10.7 2.82 11.85 12.58 12.21 10.80 10.84 10.82
DNN;+WPE d/- - (17) 0.001 -1.0 6.4 174 1541 1791 16.66 14.21 15.83 15.02
DNN1+WPE+DNN> did RI (17) 0.001 11.2 13.1  3.12  12.29 12.58 12.43 9.42 9.52 947
DNN;+(WPE+DNN32) x2 d/d RI (17) 0.001 11.3 13.3 3.18 11.17 12.44 11.80 9.55 9.59 9.57
DNN;+vWPE (liter)+DNN> d/d RI (18) 0.001 10.9 12.6 3.11 11.04 12.30 11.67 9.33 10.23 9.78
DNN; +ICP d/- - 17) 1.0 3.2 5.9 1.78 20.02 22.35 21.19 16.64 20.46 18.55
DNN1 +ICP+DNN> did RI a7 1.0 11.3 134 3.10 10.85 13.19 12.02 8.85 9.86 9.36
DNN +(ICP+DNN2) x2 d/d RI 17) 1.0 11.3 135 3.11 1092 13.67 12.29 9.36 10.03 9.70
DNN; +ICP d/- - (17) 0.001 0.7 5.7 1.77 17.53 20.71 19.12 15.01 18.60 16.80
DNN1 +ICP+DNN3> did RI (17) 0.001 10.7 12.7 3.03 11.17 11.83 11.50 8.46 10.40 9.43
DNN;+ICP d/- - (18) 0.001 1.9 5.2 175 17.22 20.98 19.10 14.53 18.26 16.39
DNN;+ICP+DNN> d/d RI (18) 0.001 11.1 13.1  3.07 11.10 12.99 12.04 9.39 10.03 9.71
DNN;+FCP d/- - (17) 0.001 2.8 3.9 1.80 20.27 21.46 20.87 18.81 17.22 18.02
DNN; +FCP+DNN3 did RI (17) 0.001 11.9 14.1 3.17 10.61 11.28 10.95 8.88 9.22 9.05
DNN;+FCP d/- - (18) 1.0 3.6 4.5 1.82 1822 21.19 19.70 18.14 16.95 17.55
DNN; +FCP+DNNy d/d RI (18) 1.0 11.9 14.1  3.15 9.86 12.71 11.29 891 9.62 9.27
DNN;+FCP d/- - (18) 0.001 3.0 4.3 1.82 17.34 20.23 1879 16.74 16.61 16.67
DNN; +FCP+DNNj d/d RI (18) 0.001 12.3 14.5 3.18 9.73 11.83 10.78 8.40 895 8.68
DNN1 +(FCP+DNN2)x2 did RI (18) 0.001 13.3 15.8 3.30 9.11 12.03 10.57 8.21 874 848
DNN; +FCP+DNN32 did RI+Mag (18) 0.001 11.8 13.8  3.39 8.67 9.77 9.22 7.82 8.00 7091
DNN; +(FCP+DNN2)x2 d/d RI+Mag (18) 0.001 12.7 15.0 3.46 8.36 10.39 9.38 7.63 8.17 7.90
8ch WPE+Beamformlt! (in Kaldi) - - - - - - - 10.85 9.36 10.11 8.85 874 879

approximated by using a 512-tap filter (as allowed by SDR)
to manipulate the direct-path signal, are considered as part of
the target signal and could therefore boost the target energy
when computing the SNR-like score. On the other hand, FCP
and ICP aim at reducing all reflections, but could introduce
non-linear artifacts that cannot be approximated by linearly
filtering the direct-path signal with a 512-tap filter. See also
our experiments in Section VIII-D.

Overall, for speech dereverberation we improve SI-SDR and
PESQ from the mixture’s —3.6 dB and 1.64 to 8.2 dB and 2.65
using a single-DNN system (DNNj), to 9.1 dB and 2.82 using
a plain two-DNN stacking system (DNN;+DNN3), to 12.3 dB
and 3.18 by adding an FCP module in between the two DNNs
(DNN;+FCP+DNN3), and to 13.3 dB and 3.30 by using one
extra iteration for FCP and DNNs (DNN;+(FCP+DNNsy)x2).

We can add a magnitude domain loss during the training of
DNN,, following [12], [13]. Clear improvements are obtained
on WER and PESQ, while SI-SDR drops by around 0.6 dB.
This aligns with the findings in [12], [13].

The 7.9% WER obtained by our monaural system is better
than the eight-microphone “WPE+Beamformlt” result, which
comes with the Kaldi recipe for REVERB.

B. Reverberant Speaker Separation

Table II reports the performance on SMS-WSJ as well as
oracle results obtained by using as estimate the direct sound
with or without early reflections and oracle masks such as the
spectral magnitude mask (|S]/|Y]) [59] and phase-sensitive
mask (]S|/|Y|cos(£S — £Y")) [60]. Notice that using oracle
direct sound for ASR obtains better WER over using direct
sound plus early reflections (6.40% vs. 7.04%). This indicates
the potential benefits of removing early reflections, which can
slightly smear spectral patterns.

Compared to training DNN; with £1()}%, using £1()}% +sumPIT
for training shows better performance. The plain two-DNN
stacking system, DNN;+DNNs, shows consistent improve-
ments over DNNj.

For DNN-WPE, we explore two variants for multi-speaker
scenarios. The first one uses the PSD of each estimated
target speaker produced by DNN; to compute a different
WPE filter for each speaker. We denote this algorithm as
DNN;+mfWPE+DNN,, where “mf” means multi-filter. The
other one, following [27], [29], sums up all the estimated target
speakers provided by DNN; and uses the PSD of the sum-



TABLE 11
SI-SDR (DB), SDR (DB), PESQ, ESTOI (%) AND WER (%) RESULTS ON SMS-WSIJ TEST SET.

Approaches DNN; loss DNN; loss DNN» type SI-SDR  SDR  PESQ eSTOI WER
Unprocessed - - - —5.5 —0.4 1.50 44.1 78.42
DNN;y PIT - - 5.6 7.7 2.06 72.1 42.64
DNN; PIT+sumPIT - - 6.1 8.0 2.17 73.6 38.42
DNN7+DNN> PIT+sumPIT RI allSpks 8.0 9.6 2.25 77.3 36.67
DNN;+DNN2 PIT+sumPIT RI perSpks 9.8 11.2 2.64 83.7 23.39
DNN; +sfWPE+DNN2 PIT+sumPIT RI allSpks 8.7 10.4 2.38 80.1 31.38
DNN 1 +sfWPE+DNN> PIT+sumPIT RI perSpk 11.2 12.6 2.85 86.4 18.50
DNN +(sfWPE+DNN32) x 2 PIT+sumPIT RI perSpk 11.5 12.9 2.93 88.2 17.67
DNN;+mfWPE+DNN2 PIT+sumPIT RI allSpks 8.5 10.1 2.35 79.1 32.40
DNN1+mfWPE+DNN> PIT+sumPIT RI perSpk 11.0 12.4 2.81 86.0 18.82
DNN; +(mfWPE+DNN2) x 2 PIT+sumPIT RI perSpk 11.4 12.8 2.88 87.8 18.23
DNN; +ICP+DNN2 PIT+sumPIT RI allSpks 8.2 9.9 2.30 78.0 34.49
DNN; +ICP+DNN2 PIT+sumPIT RI perSpk 10.7 12.2 2.77 85.5 20.15
DNN;+FCP+DNNy PIT+sumPIT RI allSpks 9.8 114 2.53 81.8 27.79
DNN;+FCP+DNN3> PIT+sumPIT RI perSpk 12.0 13.4 2.89 87.2 18.26
DNN;+(FCP+DNN3)x2 PIT+sumPIT RI perSpk 13.0 14.4 3.01 89.4 16.33
DNN1+FCP+DNNy PIT+sumPIT RI+Mag perSpk 11.8 13.3 3.22 88.1 13.53
DNN1 +(FCP+DNN2)x2 PIT+sumPIT RI+Mag perSpk 12.7 14.1 3.25 89.9 12.77
SISO, [14] - - - 5.1 - 2.44 74.6 28.28
DPRNN-TasNet [17] - - - 6.5 - 2.28 73.1 38.12
6-microphone SISO1-BF-SISO2 [14] - - - 11.2 - 3.34 89.5 10.99
Oracle direct sound + early reflections - - - - - - - 7.04
Oracle spectral magnitude mask - - - 1.8 7.9 3.37 90.4 6.74
Oracle phase-sensitive mask - - - 6.0 10.1 3.65 90.2 6.51
Oracle direct sound - - - - - - - 6.40

mated signal to compute a single WPE filter to dereverberate
the mixture. We denote this variant as DNN;+sfWPE+DNN,,
where “sf” means single-filter. From Table II, we notice
that DNN; +sfWPE+DNNj, obtains slightly better performance
than DNN;+mfWPE+DNN,. This suggests that computing a
separate filter for each target speaker does not bring improve-
ments over DNN-WPE that uses a single filter for all speakers.

Let us first consider the case (denoted as “allSpks” in
Table II) where DNNs is trained to enhance all the tar-
get speakers altogether as in the system in Fig. 2. Com-
pared with DNN;+sfWPE+DNNs; and DNN;+ICP+DNNy,
DNN;+FCP+DNN> shows better performance in all the met-
rics. This demonstrates the effectiveness of FCP over WPE at
dereverberation when competing speakers are present. If we
instead train DNNs to enhance target speakers one by one as
in the system in Fig. 3 (denoted as “perSpk” in Table II), we
obtain further improvement. This suggests that dereverberating
each speaker individually helps. Further iterating convolutive
prediction and DNN, for one more iteration leads to con-
sistent improvement. Again, training DNNy by including a
magnitude-level loss as in [12], [13] improves PESQ, eSTOI,
and WER, but slightly decreases SI-SDR.

Our best performing system obtains much better results over
SISO;, another complex spectral mapping system recently
proposed in [14] (13.0 vs. 5.1 dB SI-SDR), and over DPRNN-
TasNet [17] (13.0 vs. 6.5 dB SI-SDR). Surprisingly, our best
single-channel system is even comparable to a strong six-
microphone system, SISO;-BF-SISO, proposed recently in
[14], which combines monaural complex spectral mapping
with beamforming and post-filtering. These results suggest

that combining DNNs operating in the complex domain with
convolutive prediction is very effective at reverberation sup-
pression, and further integrating it with multi-microphone
processing is a promising direction for future research.

C. Noisy-Reverberant Speaker Separation

Table III reports the separation results on WHAMR!. A
similar trend as in Table II is observed. DNN;+FCP+DNN,
produces better results over DNN;+mfWPE+DNN; (7.4 vs.
6.8 dB SI-SDR). This indicates that DNN-FCP is more robust
than DNN-WPE at dereverberation when noises and compet-
ing speakers are present.

Compared with Wavesplit [32], which reports the best
results to date on WHAMR!, our system obtains clearly better
SI-SDR (7.5 vs. 5.9 dB). Wavesplit uses speaker identities as a
side information during training for target speaker extraction,
while our system does not rely on the availability of such in-
formation. Wavesplit also considers applying dynamic mixing
for data augmentation, leading to better SI-SDR (7.1 dB) [32].
Even without such data augmentation, our system still obtains
a better result than Wavesplit’s result with dynamic mixing.

D. FCP’s Effectiveness at Reducing Early Reflections

Since DNN-FCP does not require a prediction delay and
can leverage both magnitude and phase estimated by DNNs
for filter estimation, it has the potential to better reduce early
reflections than DNN-WPE. To support this claim, we design
an experiment based on the speech dereverberation task. For
each mixture in the test set of Dereverb Data I, we remove



TABLE III
SI-SDR (DB), SDR (DB), PESQ AND ESTOI (%) RESULTS ON WHAMR! TEST SET.

Approaches DNN; loss DNNj loss DNNgz type SI-SDR  SDR  PESQ eSTOI
Unprocessed - - - —6.1 —-3.5 1.41 31.7
DNN; PIT RI - 2.9 5.2 1.61 54.1
DNN; PIT+sumPIT RI - 4.2 6.2 1.79 59.4
DNN7+DNN> PIT+sumPIT RI allSpks 5.6 7.1 1.76 61.9
DNN;+DNN> PIT+sumPIT RI perSpks 6.4 7.9 1.93 68.5
DNN/ +sfWPE+DNN32 PIT+sumPIT RI allSpks 5.8 7.3 1.78 63.2
DNN1 +sfWPE+DNN2 PIT+sumPIT RI perSpk 6.7 8.2 1.95 69.4
DNN1 +(stWPE+DNN32) x 2 PIT+sumPIT RI perSpk 6.4 7.9 1.96 71.5
DNN;+mfWPE+DNN32 PIT+sumPIT RI allSpks 5.8 7.2 1.79 63.0
DNN1+mfWPE+DNN> PIT+sumPIT RI perSpk 6.8 8.3 1.96 69.5
DNN+(mfWPE+DNN2)x2  PIT+sumPIT RI perSpk 6.6 8.0 1.96 71.7
DNN+ICP+DNN3 PIT+sumPIT RI allSpks 5.8 7.5 1.82 63.4
DNN;+ICP+DNN> PIT+sumPIT RI perSpk 6.7 8.2 1.95 69.3
DNN; +FCP+DNN2 PIT+sumPIT RI allSpks 6.4 7.9 1.83 64.3
DNN;+FCP+DNN> PIT+sumPIT RI perSpk 7.4 8.8 1.97 70.1
DNN;+(FCP+DNN2)x2 PIT+sumPIT RI perSpk 7.5 9.0 2.01 72.7
DNN; +FCP+DNN» PIT+sumPIT RI+Mag perSpk 7.3 8.8 2.39 722
DNN1 +(FCP+DNN2)x2 PIT+sumPIT RI+Mag perSpk 74 8.9 2.39 74.3
Conv-TasNet [16], [24] - - - 2.2 - - -
3-Stage BLSTM-TasNet [24] - - - 4.8 - - -
Wavesplit [32] - - - 5.9 - - -

TABLE IV
SI-SDR (DB), SDR (DB), AND PESQ PERFORMANCE OF DNN-FCP AND
DNN-WPE FOR REDUCING EARLY REFLECTIONS ON DEREVERB DATA II.

Approaches DNN; predicts? A KIAle SI-SDR SDR PESQ
Unprocessed - - - —1.4 7.9 2.26
DNN;-WPE d (17) 39/1/0.001 1.3 12.1 2.51
DNN;-WPE d (17) 38/2/0.001 2.0 12.5 2.46
DNN;-WPE d (17) 37/3/0.001 1.5 11.6 2.42
DNN; -WPE d (17) 36/4/0.001 0.6 10.9 2.38
DNN; -FCP d (18) 40/0/0.001 8.2 10.8 2.96

the late reverberation and the stationary air-conditioning noise,
each mixture thus only containing the direct-path and early re-
flections (See Eq. (1) for the definition of early reflections and
late reverberation). We denote this new dataset as ‘“Dereverb
Data II”. We then feed the new mixtures directly to the well-
trained DNN; (presented in Table I), and compare the SI-SDR
scores of DNN-WPE and DNN-FCP. Note that the direct-path
signal is used as the reference signal for computing SI-SDR,
and hence the system with the higher SI-SDR indicates that
it is better at predicting the direct-path signal and suppressing
early reflections. As shown in Table IV, DNN-FCP gets clearly
better SI-SDR, as well as PESQ. The SDR result is slightly
lower, possibly because the 512-tap filter used internally by
SDR could not compensate for non-linear artifacts introduced
by FCP as discussed in the fifth paragraph of Section VIII-A
for a related experiment.

To verify that the low SI-SDR scores of WPE are not due to
WPE silently introducing a small time-invariant signal shift in
its processing results, we used the GCC-PHAT algorithm [61],
a popular algorithm for time difference of arrival estimation,
to time-align the WPE result with the direct-path reference
signal before computing SI-SDR. Our finding is that the best

time delay computed by GCC-PHAT is always zero for all
the utterances in the test set, suggesting that the low SI-SDR
scores are not because WPE incurs a signal shift.

IX. CONCLUSION

We have proposed a convolutive prediction approach for
reverberation suppression. Evaluation results on speech dere-
verberation and speaker separation show the effectiveness of
the proposed algorithm over the popular DNN-WPE algorithm.
In addition, our study delivers a message that although plain
end-to-end modeling based on advanced neural network archi-
tectures is effective at suppressing reverberation, combining
it with techniques based on domain knowledge, for example
with the proposed convolutive prediction or the DNN-WPE
algorithm, leads to large improvements. Although our DNN is
a TCN-DenseUNet model trained in the complex domain, it
can be readily replaced by magnitude- or time-domain models
and by more advanced DNN architectures. In other words, our
algorithms can ride on the development of end-to-end neural
networks, as better anechoic target speech estimated by a DNN
is likely to lead to better convolutive prediction.

Similar to DNN-WPE, the proposed convolutive prediction
has closed-form solutions. This makes our algorithm suitable
for online real-time processing and capable of being jointly
trained with other DNN modules such as acoustic models.
Our future work shall backpropagate through convolutive
prediction and train all DNNs end-to-end. In addition, we will
extend the proposed algorithms to multi-microphone scenarios
and evaluate them on real recordings such as LibriCSS [62]
and CHiME-5 [5].

In closing, we emphasize that the linear-filter structure in
reverberation provides an informative cue for dereverberation,
and explicitly leveraging it using deep learning supported



convolutive prediction could be an important step towards
solving the cocktail party problem in realistic conditions.
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