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Abstract
This paper investigates the accurate modeling of induction motor ball bearing faults using
modified winding function method (MWFM). We show that the stator current spectrum can
be calculated with the method, and the fault severity of a bearing fault can be quantified
with the amplitude of the corresponding faulty current component.
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Abstract—This paper investigates the analysis and modeling
of an induction motor with ball bearing faults based on
coupled-circuit model and modified winding function method
(MWFM). The impact of the bearing fault is reflected in the
variation of air gap profile, and the inductances terms in the
coupled-circuit model are calculated and updated for each time
step using MWFM. We show that dynamic simulation of an
induction motor with bearing fault can be performed with the
model, and the stator current spectrum can be calculated to
identify the corresponding fault signatures. The method helps
quantify bearing fault severity level by monitoring the amplitude
of corresponding faulty current components, which facilitates
condition-based monitoring of electric machines using motor
current signature analysis (MCSA).

I. INTRODUCTION

Induction motors are widely used in numerous industrial
applications and factories. Condition monitoring and
condition-based maintenance of the machines are becoming
more important and desirable in the era of internet of things
(IoT). Various mechanical and electrical faults can occur with
induction machines, as they could be operating at unfavorable
conditions such as high temperature and moisture, and
overload; it is therefore valuable to be able to detect the
fault before the breakdown of the machines [1], [2]. Among
all fault types, bearing fault accounts for about one third of
all induction machine failures [3]. Therefore, bearing fault
analysis and detection has been an active research area,
and sensing mechanisms have been proposed using various
signals such as vibration [4], acoustic noise [5], and stator
current [1]. Bearing faults impact the mechanical response
of the motor system, which is directly reflected in vibration
signals and high frequency acoustic noises as well. With
established mechanical model, it is possible to identify the
fault characteristic frequencies in vibration and acoustic
signals, and conduct frequency analysis on the monitored
signals to identify the corresponding faults. However, their
accuracy often suffers due to the influence of background
noises in factory settings, and the sensitivity is largely subject
to sensor mounting locations.

Motor current signature analysis (MCSA) is an alternative
approach to the fault detection, which collects and analyzes
the stator current signals of the motor instead [6], [7], [8].
It has the natural advantages of simple implementation and
cost savings, as no additional sensors are required for fault
detection. A bearing fault creates an offset of the rotor center,

and changes the air gap profile of the motor, which causes a
change in air gap permeance and magnetic flux, and eventually
is reflected in the stator current signal. The stator current
frequency components due to different types of bearing faults
can be identified with the bearing geometry and motor speed
information [7]. However, bearing fault detection using MCSA
method has been mostly performed qualitatively, and fault
severity level is difficult to quantify due to the complexity
of the motor model. Recently, a quantitative electrical model
was proposed aiming to quantify the bearing fault severity
level [9], [10]. The relationship of mutual inductance variation
induced by the bearing fault, which causes the air gap
variation, and corresponding changes of the stator current fault
components was theoretically identified. By monitoring the
fault components of the stator current, the inductance variation
can be identified with the proposed model and used as an
indicator for bearing fault severity level. However, the full
air gap profile due to bearing fault was not considered in the
model, and dynamic simulation of the motor performance with
bearing fault cannot be directly conducted.

On the other hand, winding function and modified winding
function based coupled-circuit models have been developed
for the rapid simulation of motor dynamics, which initially
applied to healthy and symmetric motors [11] and later
extended to describe various faulty conditions [12], [13].
For coupled-circuit models, the accurate simulation of an
induction motor requires accurate calculation of the self
and mutual inductances in these coupled circuits. Winding
function method was proposed to calculate the inductances
using the winding distribution functions and the air gap
function which describes the air gap profile for a given rotor
position [11]. The inductance calculation method was later
improved, hence called modified winding function method
(MWFM), to account for the asymmetry caused by mechanical
faults [12]. Compared with other equation based methods, such
as conventional d-q model, where the windings are assumed
to be sinusoidally distributed, MWFM describes the motor
dynamics at faulty conditions more accurately, as it considers
the actual winding distribution and calculates and updates
the time-varying inductances at each time step with the air
gap profile at that instance; compared with finite-element
simulations, MWFM can calculate the motor dynamics much
faster.

In this paper, we develop the quantitative modeling and
analysis of an induction machine with bearing faults using



MWFM. Dynamic simulations of the induction machine can
be conducted with the developed model to obtain the stator
current signals. We will quantify the bearing fault level using
faulty signal in the stator current spectrum.

II. MODELING METHOD

In this section, we first describe the basic formulation of
the coupled-circuit model and the calculation of inductances
using MWFM [12], then discuss about the modeling of the
bearing faults using air gap function.

For a three-phase squirrel-cage induction machine with rotor
bar number R, the stator voltage and flux linkage are described
by equations

Vs = RsIs +
d

dt
Λs, (1)

Λs = LssIs + LsrIr, (2)

where Vs = [vs1, vs2, vs3]> is the stator voltage, Is =
[is1, is2, is3]> is the stator current, Λs = [λs1, λs2, λs3]> is
the stator flux linkage, Ir = [ir1, ir2, ..., irR, ie]

> is a vector
of length R+1 to describe rotor loop currents and the end ring
current respectively. Rs is a 3×3 stator resistance matrix, Lss
is the 3×3 stator inductance matrix, and Lsr is the 3×(R+1)
matrix containing mutual inductances between stator phases
and rotor loops.

For the rotor side, the voltage equation and flux linkage
equation are respectively

Vr = RrIr +
d

dt
Λr, (3)

Λr = LrsIs + LrrIr, (4)

where Lrs = L>sr, and Lrr is the (R + 1) × (R + 1)
self-inductance matrix of the rotor loops. Note that for squirrel
cage rotors, the rotor voltages are zero: Vr = [0, 0, ..., 0]>.

For a three-phase IM with Y-connection, the input signals
are the line-to-line voltages. Transforming the stator voltage
equation (1) into line-to-line voltage input we have

Vsl−l =

vs1 − vs2vs2 − vs1
vs3 − vs1


=

 rs −rs 0
0 rs −rs
−rs 0 rs

 Is +
d

dt

λs1 − λs2λs2 − λs3
λs3 − λs1

 (5)

The torque equation of the induction motor is

Te =
1

2
I>s

∂Lss
∂θr

Is + I>s
∂Lsr
∂θr

Ir +
1

2
I>r

∂Lrr
∂θr

Ir, (6)

where θr is the rotor’s mechanical angle.
The mechanical dynamics of the motor is

d

dt
ωr =

1

J
(Te − TL), (7)

d

dt
θr = ωr, (8)

where ωr is the mechanical speed, TL is the load torque, and
J is the inertia of the rotor.

As we can see from the model, it is critical to calculate
the inductance components in equations (2) and (4), and the
inductance derivatives in equation (6).

The MWFM is used to calculate the motor’s inductance
matrices. The inductance between a pair of windings at each
time step can be calculated by the integration of the product
of the two winding functions and the air gap permeance
function, over all stator angles. For winding i and winding
j, the inductance is derived as

Lij(t) = µ0lr

∫ 2π

0

ni(φ, t)Mj(φ, t)g
−1(φ, t)dφ, (9)

where µ0 is the vacuum permeability, r is air gap radius, l
is the stack length, ni(φ, t) is the winding turns function for
winding i, and Mj(φ, t) is the modified winding function for
winding j, which is calculated by

M(φ, t) = n(φ, t)−
〈
M(t)

〉
, (10)

where〈
M(t)

〉
=

1

2π〈g−1(φ, t)〉

∫ 2π

0

n(φ, t)g−1(φ, t)dφ, (11)

〈
g−1(φ, t)

〉
=

1

2π

∫ 2π

0

g−1(φ, t)dφ. (12)

For dynamic simulation of the induction motor, the
inductance terms are updated at each time step. Coupled with
the voltage, flux linkage, torque, and mechanical dynamics
equations from (1) to (8), the full dynamic performance of the
induction motor can be obtained.

Next we show how the bearing faults come into play and
eventually present in the stator current signals.

(a) (b)

Fig. 1: (a) Structure of a ball bearing and (b) the cross sectional
view with geometric parameters.

For a typical ball bearing, the structure is illustrated in
Fig. 1(a), which has an outer race mounted on the motorcap,
an inner race that holds the motor shaft, rolling elements or
balls to reduce the friction between the rotating and stationary
parts, and a cage to restrain the relative locations of the rolling
elements. A side view and a top view of the ball bearing
structure is shown in Fig.Fig. 1(b). A few key parameters are
also labeled in the figure, which will be used to describe the
characteristic frequencies of bearing faults: D is the diameter
of the bearing measured between the center of raceway; d is



the diameter of each ball in the bearing; and θ describes the
contact angle between the ball and the raceway. When there
is a defect at certain locations of the bearing, the rotation will
not be smooth anymore, and periodic vibration pulses will
be generated while the motor is rotating. Depending on the
specific location of the fault, the corresponding characteristic
frequency fc can be identified based on the geometry of the
bearing and the rotation speed of the machine. With the motor
rotation frequency fr and bearing geometrical parameters
labeled in Fig. 1(b), where the point of contact between the
ball and the raceway is characterized by the contact angle θ,
the common fault types and the corresponding characteristic
frequencies are given by:

Cage defect hits outer race: fco =
fr
2

(
1− d

D
cos θ

)
Cage defect hits inner race: fci =

fr
2

(
1 +

d

D
cos θ

)
Outer race defect hits balls: fo = Nb

fr
2

(
1− d

D
cos θ

)
Inner race defect hits balls: fi = Nb

fr
2

(
1 +

d

D
cos θ

)
Ball defect hits both races: fb =

D

d
fr

(
1− d2

D2
cos2 θ

)
In general, when a point defect comes into contact with

another bearing element causes a radial displacement of the
rotor center, or eccentricity. At that instance, the air gap profile
described by g(φ, t) is changed due to the defect, hence the
permeance, which is inversely proportional to the inverse of
the air gap, is also modified. As a result, the mutual inductance
between stator winding and rotor loop is affected according to
equation (9). With the dynamic model of the induction motor,
additional frequency components in the stator current spectrum
at |fs ± n · fc| will be present due to the fault, with fs being
the fundamental electrical frequency.

Detailed description of the air gap profile caused by a
specific type of bearing fault has been given in Ref. [7]. The
periodic modification of the air gap length due to bearing
fault caused eccentricity is modeled by a series of Dirac delta
functions that is commonly used in vibration analysis. In the
presence of a bearing fault, the air gap profile of a motor at
stator angle φ and time t is described by

g(φ, t) = g0

[
Kc − e0 cos(φ+ ψ(t))

+∞∑
k=−∞

δ

(
t− k

fc

)]
,

(13)

where g0 is the nominal air gap length, Kc is the carter’s
coefficient to account for the increase of effective air gap
length due to slotting effect, e0 is the eccentricity level caused
by the bearing fault, and ψ(t) is the defect position. In
practical implementation of the model, rectangular shaped
pulses with finite width, instead of those described by Dirac
delta functions, are often used for the analysis of bearing
faults [14], [15]. Depending on the fault type, the defect
position have different time dependence. For outer race fault,
the fault position is fixed, since outer race always stays in
place, hence ψ(t) = 0 for all time instances. For inner race

fault, the fault rotates with the inner race and rotor, and the
movement is ψ(t) = 2πfrt. The time-dependence of inner
race fault is illustrated in Fig. 2. The inner race rotates with
the rotor at the same rotation frequency fr, the outer race stays
still, while each ball in the bearing rotates between inner and
outer race. At time instance t1, the fault is located at ψ(t1);
there is no contact between the inner race fault and any balls
in the bearing, and the inner race is centered. After some
time, at time instance t2, the fault rotates to a new location
at ψ(t2); a ball marked in red color came in contact with the
inner race fault, causing a shift of the rotation center, therefore
the whole air gap profile along the circumference is changed.
The maximum of the air gap variation created by the fault is
quantified as g0e0.

Fig. 2: Illustration of a bearing with inner race fault, when (a)
there is no contact between the fault and a ball, and (b) when
the fault is in contact with a ball.

III. RESULTS & DISCUSSIONS

In this paper, a 1-hp induction machine is studied, with key
parameters listed in Table I. Two 6022-ZZ bearings mounted
on the load side and the opposite side respectively, with
each bearing has 8 balls. The inner race defect characteristic
frequency is approximately fi ≈ 0.6nfr = 4.8fr, while
an outer race defect gives characteristic frequency of fo ≈
0.4nfr = 3.2fr.

TABLE I: Major Parameters of the Induction Motor

Parameter Value
Number of pole pairs 2
Number of bars 28
Number of stator slots 36
Number of turns per slot 37
Nominal air gap length g0 0.28 mm
Air gap radius r 41.6 mm
Stack length l 80 mm
Carter’s coefficient Kc 1.40

We model the induction motor with an inner race fault,
in which case the air gap profile is described by equation
(13), with fault angular position rotates as function of time:
ψ(t) = 2πfrt. Assume the fault causes a eccentricity level
e0 = 0.3, the air gap length as function of the stator angle
is plotted in Fig. 3. When there is no contact between the
fault and any ball in the bearing, the air gap is constant; when



there is contact, a static eccentricity effect is created. Here the
air gap is normalized to its nominal length, and the Carter’s
coefficient, with value listed in Table I, is included to account
for the slotting effect.

Note that the exact shape and width of the pulses created
by a specific bearing fault to the change of air gap profile are
often difficult to predict with mechanical model of the motor
as there are many degrees of freedom involved, or verify with
experimental measurements. Therefore, the MWFM based
simulation model offers a way to connect the air gap profile
to the specific fault features in the obtained stator current
spectrum for each type and severity level of bearing fault,
which can be compared with experimental results to identify
the fault type exists in the bearings, and quantify the severity
of each fault. In the following simulations, we assume an inner
race fault creates rectangular pulses to the air gap profile, with
duty cycle of 0.5.
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Fig. 3: Normalized air gap profile as a function of stator angle
for in the case of inner race fault, when there is no contact
between fault and a ball, and when there is contact, which
corresponds to the illustration of Fig. 2, with eccentricity level
e0 = 0.3 assumed.

With the air gap profile at each condition, and the model
established in the previous section, we can conduct dynamic
simulation of the motor operation. We simulated the induction
motor with healthy bearing, and faulty bearing with inner
race fault, both at no load conditions. For the faulty case, we
assume an eccentricity level e0 = 0.3 is created to the air gap
variation, which corresponds to Fig. 3. With the line voltage
of 200 V and line frequency of fs = 60 Hz, the phase current
as function of time is simulated and plotted in Fig. 4. As seen
from the enlarged plot in Fig. 4(b), the time-domain signals
are dominated by the fundamental component, but there are
small features in each curve, with the faulty case seem to
have more components. To understand the details, Fourier
transform is applied to obtain the spectrum of the two cases,
and the results are shown in Fig. 5. Due to the inner race fault
with characteristic frequency fc = 144 Hz, we observe fault
signatures at fc − fs = 84 Hz and fc + fs = 204 Hz in the
current spectrum, which are missing in the case of healthy
bearings.

For the MWFM based model, any mechanical fault is
described in the air gap profile. Therefore, we can also
quantitatively evaluate the relation of the fault severity,
which causes different level of air gap variation, and the
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Fig. 4: (a) Simulated stator current signal the induction motor
with healthy bearing (e0 = 0, blue dashed curve), and inner
race fault with e0 = 0.3 (red curve), with a zoom-in plot shown
in (b).

Fig. 5: Simulated current spectrum of the induction motor with
healthy bearing (e0 = 0, blue dashed curve), and inner race
fault with e0 = 0.3 (red curve). fc and fs are the fault and
supply frequency respectively.

corresponding faulty component amplitude in the phase
current spectrum. Fig. 6 shows the amplitude of the two lowest
order fault components at fc − fs and fc + fs due to the
inner race fault, normalized to the fundamental component
at fs, as a function of the eccentricity level caused by the
fault. As expected, the amplitude increases monotonically with
the increasing fault level. In fact, the amplitude of the fault
component is proportional to the corresponding magnetic flux
component generated due to the fault. Since the magnetic
flux is the product of the air gap permeance and the rotor
generated MMF, both of which are linearly proportional to the
fault level, the fault current component should be a quadratic



function of the fault level. In Fig. 6, we fit each of the two
fault components with a quadratic function y = ax2 + b to
show the trend of amplitude growth with increasing fault level.
The fitting coefficients are a =0.0761, b = 0.0002 for fc− fs
component, and a =0.0849, b = 0.0002 for fc+fs component.
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Fig. 6: Simulated faulty current amplitude at fc−fs and fc+
fs, normalized to the fundamental current at fs, as a function
of the eccentricity level e0, with fitted curves using quadratic
function y = ax2 + b are also shown.

Such fault analysis is helpful in identifying and quantifying
the signatures due to various faults. For condition monitoring
and condition-based maintenance of electric machines based
on MCSA, we envision that fault components in the stator
current of the machines that correspond to different fault types
are regularly monitored and compared against pre-determined
threshold values; maintenance requests for corresponding
faulty components are triggered if the monitored fault
indicators exceed the threshold values. To achieve that, proper
threshold values need to be identified for each component
and each electric machine. As there can be many machines
of different power ratings that are operating at the same
plant, each with varying speed and load conditions, the
fault component values for different machines and different
conditions also vary. The quantitative MWFM based model
includes the electrical parameters of the electric machine,
accounts for different mechanical faults with changing air gap
profile, and can simulate the dynamic operation of electrical
machine with different load conditions. Although only the
result with inner race fault is demonstrated in the paper, it
is straightforward to evaluate other bearing fault conditions,
or a combination of multiple faults.

IV. CONCLUSIONS

In this paper, we investigated the dynamic modeling
of induction motor with ball bearing faults based on
coupled-circuit model and modified winding function method
(MWFM). The mechanical fault is described by the the
modulation of the air gap profile of the motor. We showed

that the stator current spectrum can be obtained with
the model, and fault signatures of bearing faults can be
identified and quantified. For motor condition monitoring and
condition-based maintenance using motor current signature
analysis (MCSA) method, this model helps identify the fault
severity and set proper threshold values for maintenance needs.
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