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Abstract—Adversarial examples have recently exposed the se-
vere vulnerability of neural network models. However, most of the
existing attacks require some form of target model information
(i.e., weights/model inquiry/architecture) to improve the efficacy
of the attack. We leverage the information-theoretic connections
between robust learning and generalized rate-distortion theory
to formulate a universal adversarial example (UAE) generation
algorithm. Our algorithm trains an offline adversarial generator
to minimize the mutual information between the label and
perturbed data. At the inference phase, our UAE method can
efficiently generate effective adversarial examples without high
computation cost. These adversarial examples in turn allow
for developing universal defenses through adversarial training.
Our experiments demonstrate promising gains in improving the
training efficiency of conventional adversarial training.

I. INTRODUCTION

The security of Deep Neural Networks (DNNs) has been

under severe scrutiny after being exposed to the threat of

adversarial example attacks. The term adversarial example

attack refers to an attack where an adversary achieves a

malicious objective (e.g., accuracy degradation) by adding

imperceptible noise to the input of the DNN. Recently, a series

of adversarial example methodologies have been proposed [1]–

[7] demonstrating the widespread vulnerability of deep learn-

ing models.

Adversarial example attacks are categorized under two

classes of threat models. First, in a white-box adversarial

attack [1], [2], the attacker has complete knowledge (e.g.,

architecture, weights, and gradients) of the target DNN model.

As a consequence, these attacks require strong adversarial

access to conduct a successful attack, which makes them

less practical. Additionally, strong white-box attacks [1], [3],

[4] suffer from higher computational overhead (i.e., time and

attack iterations). In contrast, the threat model for black-

box attacks [5], [8] limits information about the target DNN

from the attacker. For example, the attacker may only have

access to example input and output pairs for the target DNN,

which is otherwise treated like a black-box. Alternatively, as

shown in Fig. 1(A), a black-box attacker might not utilize any

direct knowledge about the target DNN, except by training

a substitute/source model with the same training data. This

source model could be used to generate an adversarial pertur-

bation that the attacker can add to the input to fool the target

black-box DNN. Recent works have focused on improving

the efficacy of these black-box attacks by obtaining additional
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Fig. 1. Overview of traditional black-box attack and our attack framework.
A) In a substitute black-box attack [5], [8], the attacker trains a substitute
white-box model. Then the attacker feeds the image to be attacked “1” into
the substitute model and generates the noise. Finally, the attack adds the
noise to the original image to fool a target black-box DNN. B) In contrast,
our approach trains an off-line generator to generate a universal adversary.
Then at the online stage, the attacker can generate the adversary w/o any
back-propagation or model-specific gradient (i.e., strictly black-box). Thus,
our UAE attack can be labeled as a universal adversary.

information from the target black-box model through model

query [6], [9]–[11].

However, in this work, we approach the problem of generat-

ing adversarial examples from a more strict black-box scenario

perspective. We assume that the attacker has no knowledge of

the target DNN and is denied access to any model query. The

only available resource to the attacker is the publicly available

portion of the training dataset for the given task. Thus, the

goal is to generate universal adversarial examples that are

independent of any target model information.

Inspired by the formulation in [12], we propose a novel



attack method that we call a Universal Adversarial Example

(UAE) attack. First, we train an off-line generator as shown

in Fig. 1(B). The goal of the generator training step is to

learn to minimize the mutual information between the label

and perturbed data. We train the generator parameters by

adopting a recently proposed mutual information gradient

estimation (MIGE) [13] method that, instead of estimating

the mutual information (a challenging task in high dimen-

sions), directly estimates the gradient of mutual information

with respect to parameters given the data samples. Once

the generator is trained, it can produce model-independent,

universal adversarial examples with low computational cost

(i.e., without gradient computations through backpropagation).

To summarize our contributions:

1) We formulate a framework for generating model-

independent, universal adversarial examples that target

the underlying data distribution, by leveraging the con-

nections between robust learning and generalized rate-

distortion theory.

2) We propose a novel attack methodology called universal

adversarial example (UAE), which trains an off-line

adversarial generator via mutual information gradient es-

timation. The proposed UAE can generate fast, effective,

model-independent adversarial examples.

3) We demonstrate the utility of these adversarial examples

towards training universal defenses with considerable

speed-up over conventional methods.

II. RELATED WORK

Recent works have investigated different ways of enhancing

black-box attacks. An ensemble network approach [14], [15]

was proposed to increase the efficacy of substitute model

black-box attacks. Additionally, [6], [9]–[11] considered ex-

ploiting queries with the target model to extract valuable

information (i.e., about the decision rule) to generate an

improved transferable adversary. However, these approaches

come at the expense of additional memory, computational

overhead, or online access required to send multiple query

requests.

In contrast, our goal is to generate universal adversarial

examples independent of any model-specific information. Prior

works [16]–[19] have also referred to the term universal ad-

versarial perturbation indicating a set of adversarial examples

generated without any information about the target data set.

We acknowledge that a data-independent universal adversary

is useful in several applications such as black-box attacks.

However, one drawback of these techniques is they are not

model-agnostic. In fact, existing black-box attacks [20], [21]

that train a specific generator crafts adversarial samples to

fool a specific target model. In our approach, we shift the

paradigm of universal adversary from being data-independent

to a model-independent scenario.

While our work focuses on the problem of adversarial

examples and robust machine learning, we note that our funda-

mental approach is also immediately applicable to data privacy

problems [22]–[27]. The optimal privacy-utility tradeoffs can

also be formulated as a constrained maximum conditional

entropy problem [22], as later given by Eq. (6). Our approach,

as a novel data-driven method to solve the maximum entropy

problem, provides an alternative to other methods [28], [29].

III. METHODOLOGY

A. Problem Formulation

Popular white-box attack algorithms [30] utilize model-

specific gradient information to maximize the conditional

entropy of a given target model fα parameterized by α. The

goal of such a worst-case perturbation mechanism can be

formalized as follows:

max
Z∈X :

d(X,Z)≤ǫ

ℓ(fα(Z), Y ), (1)

where ℓ denotes the loss function for the model fα, X is the

original input data with the domain X , Y is the corresponding

label in Y := {1, . . . ,m}, and Z is the attack within the

allowable perturbation ǫ ≥ 0, with respect to some suitably

chosen distortion metric d : X × X → [0,∞] (e.g., often ℓ0,

ℓp, or ℓ∞ norm distance). A popular approach [1] to defend

against a worst-case adversary attempts to solve the following

minimax optimization problem, via adversarial training:

min
α

E
[

max
Z∈X :

d(X,Z)≤ǫ

ℓ(fα(Z), Y )
]

, (2)

where the expectation is over the distribution of (X,Y ).
Extending the above formulation, [12] considers a stronger

stochastic adversary, allowing for mixed strategies, as captured

by a noisy channel PZ|X,Y ∈ D :=
{

PZ|X,Y : Pr[d(X,Z) ≤
ǫ] = 1

}

. For the ideal optimization over all decision rules

q ∈ P(Y|X ), and with cross-entropy as the loss function, i.e.,

ℓ(q(Y |Z)) := − log q(Y |Z), [12] establishes the following

minimax equality and equivalence with the maximum condi-

tional entropy problem:

min
q

max
PZ|X,Y ∈D

E[− log q(Y |Z)] (3)

= max
PZ|X,Y ∈D

min
q

E[− log q(Y |Z)] (4)

= max
PZ|X,Y ∈D

H(Y |Z). (5)

Since the entropy H(Y ) is constant over PZ|X,Y ∈ D, the

optimization can be equivalently formulated as minimization

of mutual information I(Z;Y ) as follows:

max
PZ|X,Y ∈D

H(Y |Z) = H(Y )− min
PZ|X,Y ∈D

I(Z;Y ). (6)

B. UAE Attack Method

Our proposed UAE generation method is trained to mini-

mize the mutual information of Eq. (6). The generator model

produces Z = gθ(X,Y ), where gθ is a parameterized, random

mapping, which is specifically realized as a neural network

with noise samples as an auxiliary input to provide random-

ization. The neural network is constructed to ensure that the

distortion limit is not exceeded, i.e., Pr[d(X,Z) ≤ ǫ] = 1, by

projecting the output Z back within the distortion limit, if it



is exceeded. The model gθ implicitly defines the conditional

distribution Pθ(Z|X,Y ), and combined with the underlying

data distribution PX,Y , also implicitly defines the marginal

Pθ(Z) and conditional Pθ(Z|Y ) distributions.

Our approach comprises two steps: (1) Off-Line Generator

Training, and (2) Online Adversarial Example Generation.

After the adversarial generator is trained in the first step,

universal adversarial examples can be generated with low

computational cost in the second step.

1) Off-Line Generator Training: We train the UAE gen-

erator gθ to minimize the mutual information as formulated

in Eq. (6). To perform this optimization, given access to only

the samples, we avoid direct calculation/estimation of the true

mutual information, and instead approximate its gradient using

the MIGE method [13] applied to the expansion:

∇θI(Z;Y ) = ∇θH(Z)−
1

m

m
∑

y=1

∇θH(Z|Y = y) (7)

= ∇θE[− logPθ(Z)]

+
1

m

m
∑

y=1

∇θE[logPθ(Z|Y )|Y = y]. (8)

The MIGE method efficiently estimates the gradient of mutual

information by estimating the score functions for the implicit

distributions in the first and second terms given in Eq. (8).

Specifically, it employs a change of variables [13], [31] to

rewrite these terms, with Z = gθ(X,Y ), as follows:

∇θI(Z;Y ) = E[−∇Z logPθ(Z)∇θgθ(X,Y )]

+
1

m

m
∑

y=1

E[∇Z logPθ(Z|Y )∇θgθ(X,Y )|Y = y]. (9)

Then, we use the Spectral Stein Gradient Estimator

(SSGE) [31] to estimate the terms ∇Z logPθ(Z) and

∇Z logPθ(Z|Y = y) from samples drawn from Pθ(Z) and

Pθ(Z|Y = y), respectively. The overall off-line training stage

is summarized in Algorithm 1.

2) Online Attack Generation: After completing the off-

line generator training step, the attacker can use the pre-

trained UAE generator gθ to generate universal adversarial

examples as Z = gθ(X,Y ). As a result, our UAE attack

samples do not rely on any target model information. Such a

universal adversary can be used to attack any black-box target

model with negligible computational overhead. In contrast,

most of the existing black-box and white-box methods require

adjusting the adversarial information depending on the target

classifier model. Such an adjustment is often computationally

expensive. Finally, our UAE generated samples can be used

to perform adversarial training with minor cost as well. We

refer to this defense as a universal defense response since the

training samples again do not depend on any specific neural

network model.

Algorithm 1 Off-line UAE generator training

1: procedure TRAIN GENERATOR

2: Initialize the generator model parameters θ.

3: for each training iteration do

4: Prepare a data batch {(Xi, Yi)}
n
i=1

iid
∼ PX,Y .

5: Apply the generator to produce Zi = gθ(Xi, Yi).
6: Estimate ∇Z logPθ(Z) using SSGE over the entire

batch of samples {Zi}
n
i=1.

7: for each class y = 1, . . . ,m do

8: Select data samples corresponding to class y.

9: Estimate ∇Z logPθ(Z|Y = y) using SSGE

over only the samples Zi, where the corresponding Yi = y.

10: end for

11: Compute the mutual information gradient accord-

ing to Eq. (9), with expectations approximated by the

empirical mean over the data batch.

12: Perform a gradient descent step to update θ.

13: end for

14: Return: Trained generator gθ.

15: end procedure

IV. EXPERIMENTAL SETUP

A. Dataset

As a proof of concept, we evaluate our UAE method on

the MNIST dataset [32], which contains 28× 28 pixel, gray-

scale images of hand-written digits. We use the standard train-

test data split with 60K images for the training set and the

remaining 10K for testing.

B. Baseline Attacks

For comparison to a baseline white-box attack, we use

the Projected Gradient Descent (PGD) [1] attack. PGD is a

popular method used in adversarial training, where the model

is jointly trained with clean and attack examples to enhance

robustness [1]. In our evaluation, we refer to this model as the

PGD trained model for a specific ǫ and metric (e.g., ℓ2 or ℓ∞
distance in our experiments). The baseline model is labeled as

the clean model indicating that no adversarial examples were

used in the training phase.

For the black-box substitute model attack [5], [8], we used

a substitute model attack as depicted in Fig. 1. For our attack,

we used the MNIST training set to train the generator. Thus

to keep the comparison fair with our attack, we trained the

substitute model for the black-box attack using the same

MNIST training dataset. Then, during evaluation, we used

the substitute/source model to generate PGD samples and to

perform the attack on the target model using these samples.

C. Attack Settings

For the PGD attack and PGD training, our attack uses ℓ∞
distance with ǫ = 0.3, an attack step-size of 2/255, and attack

iterations of 40, unless specified otherwise. For our attack, we

train the generator model for 20 iterations with the standard

stochastic gradient descent (SGD) optimizer of PyTorch with



TABLE I
BLACK-BOX ATTACK PERFORMANCE ON A CLEAN MODEL (99.28%

ACCURACY). REPORTING THE TEST ACCURACY OF THE MODEL AFTER

ATTACKING WITH DIFFERENT (ℓ2 DISTANCE ǫ) ATTACK.

Attack 4 4.5 5 5.5 6 6.5 7 7.5

Substitute 81.86 73.78 63.52 52.3 40.59 30.14 21.17 13.85
UAE 91.46 82.15 65.02 49.25 36.65 27.52 21.18 16.92

a learning rate of 0.01 and momentum of 0.9. We run each

attack experiment three times and report the mean with error

margin (i.e., ± 1.68× standard deviation) in Fig. 3 & Table II.

To compute the gradient of the implicit data distribution, we

use SSGE [33]1. We record the attack generation time of the

attack methods on NVIDIA GeForce GTX 1080 Ti GPU. We

measure the attack time in seconds (s) after attacking the 10K

MNIST testing samples and evaluate the test accuracy in our

platform.

D. Model Architecture

In our experiment, we used a four-layer DNN as the

classifier model for the MNIST dataset. This classifier DNN

model contains two convolution layers and two fully connected

layers2. Our generator is a multi-layer perceptron with three

fully connected layers. Finally, as a source model for substitute

black-box attack, we used a two-layer fully-connected neural

network. Later in Section VI, we demonstrate that even a

smaller (two-layer) black-box substitute model requires more

time to generate adversarial examples than our generator

(three-layer).

V. RESULTS

A. Universal Attack

The black-box attack evaluation under a given ℓ2 distance

constraint is presented in Table I. We vary the ℓ2 distance from

4 to 7.5 and report the test accuracy for a clean model. The

test accuracy of this model without any attack (i.e., ℓ2 = 0)

is 99.28%. After attack, both the substitute and UAE attacks

degrade the test accuracy with increasing attack strength

(i.e., higher ǫ). At low ǫ, the substitute model shows better

performance; but with increasing ǫ, in particular at ǫ = 5.5–

6.5, UAE outperforms the substitute model attack. As the UAE

attack does not rely on any model-specific information, at a

large ǫ = 7.5 the attack can at best degrade the accuracy close

to a random guess (10% for a 10-class problem).

Our UAE attack generated samples can also be useful for

stronger white-box attacks (e.g., PGD). For example, before a

PGD attack we can initialize the samples with our universal

adversary (labeled as PGD with universal initialization) in-

stead of random initialization. As shown in Fig. 2, our UAE

initialization can increase the strength of the PGD attack in

comparison to random initialization. For a fixed attack step-

size and ǫ, our universal initialization consistently achieves

better attack performance than the baseline PGD method.

1https://github.com/zhouyiji/MIGE/tree/master/toy
2https://github.com/pytorch/examples/tree/master/mnist
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Fig. 2. We attack a PGD (ǫ = 0.3) trained model using PGD attack in orange
and using PGD examples generated from universal initialization in blue.

TABLE II
MODEL TRAINED WITH ADVERSARIAL EXAMPLES FOR TWO CASES: I)

WITH PGD SAMPLES; II) WITH PGD SAMPLES GENERATED USING OUR

UNIVERSAL INITIALIZATION. WE ATTACK BOTH CASES WITH PGD
ATTACK BY VARYING ǫ FROM 0.2 TO 0.35 TO REPORT ACCURACY.

Method 0 0.2 0.25 0.3 0.35

PGD 98.95 94.5 ± 0.06 93.1 ± 0.03 91.3 ± 0.05 83.08 ± 0.1
PGD with UAE 98.81 94.8 ± 0.3 93.7 ± 0.5 92.5 ± 0.3 86.97 ± 2.3

B. Universal Defense Response

As prior observation shows (Fig. 2), the UAE adversary

can enhance the performance of PGD attack, we utilize those

adversaries to produce a defense response. In Table II, we train

two models using adversarial examples of ℓ∞ distance ǫ = 0.3.

The first one uses adversarial examples generated by the PGD

algorithm with random initialization and the second one uses

adversarial examples generated from the PGD algorithm with

universal initialization. Then, we attack both models using the

white-box PGD attack for ǫ = 0.2, . . . , 0.35. Our initialization

during adversarial training helps to enhance the robustness

against PGD attacks. In particular, at ǫ = 0.35 (in Table II),

our UAE PGD training can improve the test accuracy by

approximately 4% in comparison to PGD training. Our UAE

attack can provide an enhanced initialization method for a

strong white-box attack, but this incurs the heavy computation

burden of the subsequent PGD iterations during training.

As a low-complexity alternative, we directly train a classifier

model using our universal adversarial examples in Fig. 3.

To compare this universal defense response with a similar

method, we use adversarial training with the substitute black-

box adversarial examples, which also has a low computation

cost similar to UAE. Both our attack and black-box PGD

have comparable computation costs, because in both cases the

adversarial examples can be generated even before the training

starts. Finally, a clean model is also evaluated as a baseline.

We train these three models on three different ℓ∞ distance

attacks (e.g., at ǫ = 0.5/0.4/0.2). For each case, we attack

these three models with a white-box PGD attack of different

strengths (ǫ = 0.2, . . . , 0.6). In Fig. 3, our UAE attack based

adversarial training (blue) shows better resistance to the white-

box PGD attack for a range of attack strengths. In contrast, the
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TABLE III
COMPARISON OF ATTACK TIME IN SECONDS (S): RELATIVE TIME COST OF

SUBSTITUTE AND PGD ATTACKS IN COMPARISON TO OUR ATTACK.

UAE Substitute PGD

0.913s (1×) 1.12s (1.2×) 11.37s (12.5×)
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Fig. 4. Test accuracy vs number of attack iterations on a PGD (ǫ = 0.3)
trained model.

black-box PGD (green) makes the model even more vulnerable

to PGD attack than a clean model (violet).

VI. ANALYSIS

1) Time Analysis: The amount of time required to conduct

the PGD attack, black-box substitute model attack, and UAE

attack on a clean model is summarized in Table III. Our UAE

attack is about 12× faster than the PGD white-box attack and

is slightly faster than the substitute model attack. Such a pre-

trained generator provides two major benefits: i) UAE can

generate adversarial examples faster and ii) the pre-trained

generator can generate the adversarial examples before the

training starts for adversarial training.

In summary, the UAE attack is a fast and efficient way of

generating adversarial examples, which are independent of any

target model (i.e., universal). The pre-trained generator opens

door for augmenting the training data off-line (e.g., even before

training starts). Hence, it will be a useful tool enabling large-

scale and computationally efficient adversarial training.

2) Computation Reduction: In this section, we evaluate the

effect of attack iterations on the efficacy of PGD examples

with our universal initialization. Fig. 4 shows that UAE

UAE
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Fig. 5. UAE attack images for several values of ℓ2 distance, ǫ. For large ǫ,
the UAE attack is stronger and can potentially confuse a human eye.

initialization reduces the number of attack iterations of the

white-box PGD attack. It is possible to achieve the same

attack efficacy as a 60-iteration white-box PGD attack with

only 40 attack iterations using our UAE initialization. Thus,

universal initialization reduces the attack computation by 1.5×
while achieving the same attack strength (e.g., about 87% test

accuracy). In fact, even single step adversarial attacks (i.e.,

FGSM [2]) requires generating adversarial samples during

each iteration of the training process for each trained model.

In contrast, UAE can generate the training samples once

universally for any model at any given training iteration.

Practically, such reduction in computation may save hundreds

of GPU training hours during large-scale adversarial training.

This shows that the UAE reduces the attack complexity of

a white-box attack, and hence also the complexity of an

adversarial training defense.

3) Visualization: We visualize sample UAE attack images

in Fig. 5. Increasing the attack strength ǫ reduces the dissim-

ilarity between images in different classes.

VII. CONCLUSION

Our proposed UAE attack can generate universal adversarial

examples in a model-independent manner. Such a universal

attack can be as effective as a black-box substitute attack

model, while reducing the attack time as well. Additionally,

these samples can be applied to adversarial training to reduce

the computational costs.
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