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Abstract
State-of-the-art approaches for visually-guided audio source separation typically assume sources
that have characteristic sounds, such as musical instruments. These approaches often ignore
the visual context of these sound sources or avoid modeling object interactions that may be
useful to characterize the sources better, especially when the same object class may produce
varied sounds from distinct interactions. To address this challenging problem, we propose
Audio Visual Scene Graph Segmenter (AVSGS), a novel deep learning model that embeds the
visual structure of the scene as a graph and segments this graph into subgraphs, each subgraph
being associated with a unique sound obtained via co-segmenting the audio spectrogram. At
its core, AVSGS uses a recursive neural network that emits mutually-orthogonal sub-graph
embeddings of the visual graph using multi-head attention, these embeddings conditioning
an audio encoder-decoder towards source separation. Our pipeline is trained end-to-end via
a self-supervision task that consists in separating audio sources using the visual graph from
artificially mixed sounds.

In this paper, we also introduce an “in the wild” dataset for sound source separation that
contains multiple non-musical sources, which we call Audio Separation in the Wild (ASIW).
This dataset is adapted from the AudioCaps dataset, and provides a challenging natural and
daily-life setting for source separation. Thorough experiments on the proposed ASIW and
the standard MUSIC datasets demonstrate state-of-the-art sound separation performances of
our method against recent prior approaches.
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Abstract

State-of-the-art approaches for visually-guided audio
source separation typically assume sources that have char-
acteristic sounds, such as musical instruments. These ap-
proaches often ignore the visual context of these sound
sources or avoid modeling object interactions that may be
useful to better characterize the sources, especially when
the same object class may produce varied sounds from dis-
tinct interactions. To address this challenging problem, we
propose Audio Visual Scene Graph Segmenter (AVSGS), a
novel deep learning model that embeds the visual struc-
ture of the scene as a graph and segments this graph into
subgraphs, each subgraph being associated with a unique
sound obtained by co-segmenting the audio spectrogram. At
its core, AVSGS uses a recursive neural network that emits
mutually-orthogonal sub-graph embeddings of the visual
graph using multi-head attention. These embeddings are
used for conditioning an audio encoder-decoder towards
source separation. Our pipeline is trained end-to-end via a
self-supervised task consisting of separating audio sources
using the visual graph from artificially mixed sounds.

In this paper, we also introduce an “in the wild” video
dataset for sound source separation that contains multiple
non-musical sources, which we call Audio Separation in the
Wild (ASIW). This dataset is adapted from the AudioCaps
dataset, and provides a challenging, natural, and daily-life
setting for source separation. Thorough experiments on the
proposed ASIW and the standard MUSIC datasets demon-
strate state-of-the-art sound separation performance of our
method against recent prior approaches.

1. Introduction
Real-world events often encompass spatio-temporal in-

teractions of objects, the signatures of which leave imprints
both in the visual and auditory domains when captured as
videos. Knowledge of these objects and the sounds that
they produce in their natural contexts are essential when de-
signing artificial intelligence systems to produce meaningful

… …

Figure 1. A schematic illustration of our Audio Visual Scene Graph
Segmenter (AVSGS) framework on frames from our Audio Sep-
aration in the Wild (ASIW) dataset. Given an input video and
the associated audio, our method builds a spatio-temporal (fully-
connected) visual scene graph spanning across the video frames,
and learns alignments between sub-graphs of this scene graph and
the respective audio regions. The use of the scene graph allows
rich characterization of the objects and their interactions, allowing
effective identification of the sound sources for better separation.

deductions. For example, the sound of a cell phone ringing
is drastically different from that of one dropping on the floor;
such distinct sounds of objects and their contextual inter-
actions may be essential for an automated agent to assess
the scene. The importance of having algorithms with such
audio-visual capabilities is far reaching, with applications
such as audio denoising, musical instrument equalization,
audio-guided visual surveillance, or even in navigation plan-
ning for autonomous cars, for example by visually localizing
the sound of an ambulance.

Recent years have seen a surge in algorithms at the in-
tersection of visual and auditory domains, among which
visually-guided source separation – the problem of separat-
ing sounds from a mixture using visual cues – has made
significant strides [5, 9, 58, 57]. State-of-the-art algorithms
for this task [54, 58, 57] typically restrict the model design
to only objects with unique sounds (such as musical instru-
ments [5, 57]) or consider settings where there is only a
single sound source, and the models typically lack the rich-
ness to capture spatio-temporal audio-visual context. For
example, for a video with “a guitar being played by a per-



son” and one in which “a guitar is kept against a wall”,
the context may help a sound separation algorithm to decide
whether to look for the sound of the guitar in the audio spec-
trogram; however several of the prior works only consider
visual patches of an instrument as the context to guide the
separation algorithm [9], which is sub-optimal.

From a learning perspective, the problem of audio-visual
sound source separation brings in several interesting chal-
lenges: (i) The association of a visual embedding of a sound
source to its corresponding audio can be a one-to-many map-
ping and therefore ill-posed. For example, a dog barking
while splashing water in a puddle. Thus, methods such
as [5, 9] that assume a single visual source may be misled.
(ii) It is desirable that algorithms for source separation are
scalable to new sounds and their visual associations; i.e.,
the algorithm should be able to master the sounds of varied
objects (unlike supervised approaches [48, 53]). (iii) Nat-
urally occurring sounds can emanate out of a multitude of
interactions – therefore, using a priori defined sources, as
in [5, 9], can be limiting.

In this work, we rise up to the above challenges using
our Audio Visual Scene Graph Segmenter (AVSGS) frame-
work for the concrete task of sound source separation. Fig-
ure 1 presents the input-output setting for our task. Our
setup represents the visual scene using spatio-temporal scene
graphs [18] capturing visual associations between objects oc-
curring in the video, towards the goal of training AVSGS to
infer which of these visual associations lead to auditory
grounding. To this end, we design a recursive source sepa-
ration algorithm (implemented using a GRU) that, at each
recurrence, produces an embedding of a sub-graph of the
visual scene graph using graph multi-head attention. These
embeddings are then used as conditioning information to
an audio separation network, which adopts a U-Net style
encoder-decoder architecture [39]. As these embeddings are
expected to uniquely identify a sounding interaction, we en-
force that they be mutually orthogonal. We train this system
using a self-supervised approach similar to Gao et al. [9],
wherein the model is encouraged to disentangle the audio
corresponding to the conditioned visual embedding from a
mixture of two or more different video sounds. Importantly,
our model is trained to ensure consistency of each of the
separated sounds by their type, across videos. Thus, two
guitar sounds from two disparate videos should sound more
similar than a guitar and a piano. Post separation, the sepa-
rated audio may be associated with the visual subgraph that
induced its creation, making the subgraph an Audio-Visual
Scene Graph (AVSG), usable for other downstream tasks.

We empirically validate the efficacy of our method on the
popular Multimodal Sources of Instrument Combinations
(MUSIC) dataset [58] and a newly adapted version of the
AudioCaps dataset [20], which we call Audio Separation in
the Wild (ASIW). The former contains videos of perform-

ers playing musical instruments, while the latter features
videos of naturally occurring sounds arising out of complex
interactions in the wild, collected from YouTube. Our experi-
ments demonstrate the importance of visual context in sound
separation, and AVSGS outperforms prior state-of-the-art
methods on both of these benchmarks.

We now summarize the key contributions of the paper:

• To the best of our knowledge, ours is the first work to
employ the powerful scene graph representation [18]
for the task of visually-guided audio source separation.

• We present AVSGS for this task, that is trained to pro-
duce mutually-orthogonal embeddings of the visual
sub-graphs, allowing our model to infer representations
of sounding interactions in a self-supervised way.

• We present ASIW, a large scale in the wild dataset
adapted from AudioCaps for the source separation task.
This dataset features sounds arising out of natural and
complex interactions.

• Our AVSGS framework demonstrates state-of-the-art
performance on both the datasets for our task.

2. Related Works
In this section, we review relevant prior works which we

group into several categories for ease of readability.
Audio Source Separation has a very long history in the
fields of signal processing and more recently machine learn-
ing [3, 6, 29, 46, 48, 47]. Audio-only methods have typically
either relied on a priori assumptions on the statistics of the
target sounds (such as independence, sparsity, etc.), or re-
sorted to supervised training to learn these statistics [42]
(and/or optimize the separation process from data [51]) via
deep learning [55, 14, 50, 13, 56, 48]. Such supervised
learning often involves the creation of synthetic training data
by mixing known sounds together and training the model
to recover target sounds from the mixture. Settings where
isolated target sources are unavailable have recently been
considered, either by relying on weak sound-event activ-
ity labels [36], or using unsupervised methods that learn to
separate mixtures of mixtures [52].
Audio-Visual Source Separation considers the task of dis-
covering the association between the acoustic signal and
its corresponding signature in the visual domain. Such
methods have been employed for tasks like speech sep-
aration [1, 4, 31], musical instrument sound separation
[9, 5, 57, 58], and separation of on-screen sounds of generic
objects [33, 43]. More recently, researchers have sought to
integrate motion information into the visual representation
of these methods, either in the form of pixel trajectories
[57], or human pose [5]. However, these approaches adopt
a video-level “mix-and-separate” training strategy which
works best with clean, single-source videos. Differently,
our approach is trained to disentangle sound sources within



a video. Gao et al. [9] proposed an approach in a simi-
lar regime, however they do not capture the visual context,
which may be essential to separate sound that emanates as a
result of potentially complex interactions between objects in
the scene. Further, our proposed framework allows character-
izing generic sounds that can arise from fairly unconstrained
settings, unlike approaches that are tailored to tasks such as
musical instrument sound separation.
Localizing Sound in Video Frames seeks to identify the
pixels in a video frame that visually represent the sound
source. Several approaches have been proposed for this
task [2, 19, 40, 19, 12]. While such methods do visually
ground the audio sources, they do not separate the audio,
which is the task we consider.
Synthesizing Sound from Videos constitutes another class
of techniques in the audio-visual paradigm [34, 59] that has
become popular in recent years. For example, [8, 32] pro-
pose frameworks capable of generating both monaural and
binaural audio starting from videos. However, we are inter-
ested in separating the audio from different sound sources,
starting with a mixed audio.
Scene Graphs in Videos have proven to be an effective
toolkit in representing the content of static images [18, 26]
capable of capturing the relationship between different ob-
jects in the scene. These representations have only recently
been deployed to videos for tasks such as action recogni-
tion [17] and visual dialog [11]. We employ these powerful
representations to separate a mixed audio into its constituent
sources, which can then be associated with their correspond-
ing subgraphs for other downstream tasks.

3. Proposed Method
We begin this section by first presenting a description of

the problem setup along with an overview of our model. We
then delve deeper into the details of the model and finish the
section by providing the details of our training setup.

3.1. Problem Setup and Overview

Given an unlabeled video V and its associated discrete-
time audio x(t) =

∑N
i=1 si(t) consisting of a linear mixture

of N audio sources si(t), the objective in visually-guided
source separation is to use V to disentangle x(t) into its
constituent sound sources si(t), for i ∈ {1, 2, . . . , N}. In
this work, we represent the video as a spatio-temporal visual
scene graph G = (V, E), with nodes V = {v1, v2, . . . , vK}
representing objects (including people) in the video V , and
E denoting the set of edges ejk capturing the pairwise in-
teraction or spatial context between nodes vj and vk. Our
main idea in AVSGS is to learn to associate each audio
source si(t) with a visual sub-graph gi of G. We approach
this problem from the perspective of graph attention pool-
ing to produce mutually-orthogonal sub-graph embeddings
auto-regressively; these embeddings are made to be aligned

with the respective audio sources using an Audio Separator
sub-network that is trained against a self-supervised unmix-
ing task [9, 58, 57]. Figure 2 presents an overview of the
algorithmic pipeline of our model.

3.2. Audio Visual Scene Graph Segmenter Model

Figure 2 presents an illustration of the algorithmic
pipeline that we follow in order to obtain the separated
sounds si(t) from their mixture x(t). Below, we present
the details of each step of this pipeline.
Object Detector: The process of representing a video V as
a spatio-temporal scene graph starts with detecting a set of
M objects and their spatial bounding boxes in each frame of
the video. As is common practice, we use a Faster-RCNN
(FRCNN) [38] model for this task, trained on the Visual
Genome dataset [23]. As this dataset provides around 1600
object classes, denoted C, it can detect a significant set of
common place objects. Further, for detecting objects that are
not in the Visual Genome classes (for example, the musical
instruments in the MUSIC dataset which we consider later),
we trained a separate FRCNN model with labeled images
from the Open Images dataset [22], which contains those
instrument annotations.

Given a video frame I , the object detector FRCNN pro-
duces a set of M quadruples

{(
CkI , B

k
I , F

k
I , S

k
I

)}M
k=1

=
FRCNN(I), one for each detected object, consisting of the
label C ∈ C of the detected object, its bounding box B in
the frame, a feature vector F identifying the object, and a
detection confidence score S.
Visual Scene Graph Construction: Once we have the ob-
ject detections and their meta-data, our next sub-task is to use
this information to construct our visual scene graph. While
standard scene graph approaches [17] often directly use the
object detections to build the graph (sometimes combined
with a visual relationship detector [11]), our task of sound
separation demands that the graph be constructed in adher-
ence to the audio, so that the audio-visual correlations can
be effectively learned. To this end, for every sound of inter-
est, we associate a principal object, denoted p, among the
classes in C (obtainable from the FRCNN) that could have
produced the sound. For example, for the sound of a piano
in an orchestra, the principal object can be the piano, while
for the sound of ringing, the object could be a telephone. Let
us denote the set of such principal object classes as P ⊂ C.

To construct the visual scene graph for a given video
V , we first identify the subset of principal objects P =
{p1, . . . , pN} ⊂ P that are associated with that video. This
information is derived from the video metadata, such as for
example the video captions or the class labels, if available.
Next, we identify the video frames containing the most con-
fident detections of each object pi ∈ P . We refer to such
frames as the key frames of the video – our scene graph is
constructed using these key frames. For every principal ob-
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Figure 2. Detailed illustration of our proposed AVSGS model.

ject pi, we then identify the subset of the M object bounding
boxes (produced by FRCNN for that key frame), which have
an Intersection Over Union (IoU) with the bounding box for
pi greater than a pre-defined threshold γ. We refer to this
overlapping set of nodes as the context nodes of pi, denoted
as Vpi . The vertex set of the scene graph is then constructed
as V =

⋃N
i=1(pi

⋃
Vpi). Note that each graph node v is

associated with a feature vector Fv produced by FRCNN
for the visual patch within the respective bounding box.

Our next subtask for scene graph construction is to define
the graph edges E . Due to the absence of any supervision
to select the edges (and rather than resorting to heuristics),
we assume useful edges will emerge automatically from the
audio-visual co-segmentation task, and thus, we decided to
use a fully-connected graph between all the nodes in V; i.e.,
our edges are given by: E = {ejk}(j,k)∈V×V . Since the
scene graph is derived from multiple key frames in the video
and its vertices span a multitude of objects in the key frames,
our overall scene graph is thus spatio-temporal in nature.
Visual Embeddings of Sounding Interactions: The visual
scene graph G obtained in the previous step is a holistic rep-
resentation of the video, and thus characterizes the visual
counterpart of the mixed audio x(t). To separate the audio
sources from the mixture, AVSGS must produce visual cues
that can distinctly identify the sound sources. However, we
neither know the sources nor do we know what part of the
visual graph is producing the sounds. To resolve this di-
chotomy, we propose a joint learning framework in which
the visual scene graph is segmented into sub-graphs, where
each sub-graph is expected to be associated with a unique
sound in the audio spectrogram, thus achieving source sep-
aration. To guide the model to learn to correctly achieve
the audio-visual segmentation, we use a self-supervised task

described in the next section. For now, let us focus on the
modules needed to produce embeddings for the visual sub-
graph.

For audio separation, there are two key aspects of the
visual scene graph that we expect the ensuing embedding to
encompass: (i) the nodes corresponding to sound sources and
(ii) edges corresponding to sounding interactions. For the
former, we use a multi-headed graph attention network [44],
taking as input the features Fv associated with the scene
graph nodes v and implement multi-head graph message
passing, thereby parting attention weights to nodes that the
framework (eventually) learns to be important in characteriz-
ing the sound. For the latter, i.e., capturing the interactions,
we design an edge convolution network [49]. These net-
works are typically multi-layer perceptrons, hΛ(·, ·), which
take as input the concatenated features corresponding to a
pair of nodes vj and vk which are connected by an edge and
produces an output vector ejk. Λ encapsulates the learnable
parameters of this layer. The updated features of a node vk
are then obtained by averaging all the edge convolution em-
beddings incident on vk. The two modules are implemented
in a cascade with the node attention preceding the edge con-
volutions. Next, the attended scene graph is pooled using
global max-pooling and global average pooling [25]; the
pooled features from each operation are then concatenated,
resulting in an embedding vector ζ for the entire graph. As
we need to produce N embedding vectors from ζ, one for
each source and another additional one for background, we
need to keep track of the embeddings generated thus far.
To this end, we propose to use a recurrent neural network,
implemented using a GRU. In more detail, our final set of vi-
sual sub-graph embeddings Y = {y1,y2, . . . ,yN , ,yN+1},



where each yi ∈ Rd, is produced auto-regressively as:

yi = GRU(ζ; ∆i−1), i = 1, 2, . . . , N,N + 1 (1)

where ∆i−1 captures the bookkeeping that the GRU does to
keep track of the embeddings generated thus far.
Mutual-Orthogonality of Visual Embeddings: A subtle
but important technicality that needs to be addressed for
the above framework to succeed is in allowing the GRU to
know whether it has generated embeddings for all the audio
sources in the mixture. This poses the question how do we
ensure the GRU does not repeat the embeddings? Practically,
we found that this is an important ingredient in our setup for
audio source separation. To this end, we propose to enforce
mutual orthogonality between the embeddings that the GRU
produces. That is, for each recurrence of the GRU, it is
expected to produce a unit-normalized embedding yi that
is orthogonal to each of the embeddings generated prior to
it, i.e., {y1,y2, . . . ,yi−1}. We include this constraint as
a regularization in our training setup. Mathematically, we
enforce a softer-version of this constraint given by:

Lortho(Y ) =
∑

i,j∈{1,2,...,N},i6=j

(y>i yj)
2. (2)

One key attribute of this mechanism for deriving the feature
representations yi is that such embeddings could emerge
from potentially complex interactions between the objects
in the scene graph, unlike popular prior approaches, which
resort to more simplistic visual embeddings, such as the
whole frame [57] or a single object [9].
Audio Separator Network: The final component in our
model is the Audio Separator Network (ASN). Given the suc-
cess of U-Net [39] style encoder-decoder networks for sep-
arating audio mixtures into their component sound sources
[16, 28], particularly in conditioned settings [9, 30, 58, 41],
we adopt this architecture for inducing the source separation.
Since we are interested in visually guiding the source separa-
tion, we condition the bottleneck layer of ASN with the sub-
graph embeddings yi produced above. In detail, ASN takes
as input the magnitude spectrogram X ∈ RΩ×T of a mixed
audio x(t), produced via the short-time Fourier transform
(STFT), where Ω and T denote the number of frequency
bins and the number of video frames, respectively. The spec-
trogram is passed through a series of 2D-convolution layers,
each coupled with Batch Normalization and Leaky ReLU,
until we reach the bottleneck layer. At this layer, we repli-
cate each graph embedding yi to match the spatial resolution
of the U-Net bottleneck features, and concatenate along its
channel dimension. This concatenated feature tensor is then
fed to the U-Net decoder. The decoder consists of a series
of up-convolution layers, followed by non-linear activations,
each coupled with a skip connection from a corresponding
layer in the U-Net encoder and matching in spatial resolution

of its output. The final output of the U-Net decoder is a time-
frequency mask, M̂i ∈ [0, 1]Ω×T , which when multiplied
with the magnitude spectrogram X of the mixture yields
an estimate of the magnitude spectrogram of the separated
source Ŝi = M̂i �X, where � denotes element-wise prod-
uct. An estimate ŝi(t) of the separated waveform signal for
the i-th source can finally be obtained by applying an inverse
short-time Fourier transform (iSTFT) to the complex spec-
trogram obtained by combining Ŝi with the mixture phase.
For architectural details, please refer to the supplementary.

3.3. Training Regime

Audio source separation networks are typically trained
in a supervised setting in which a synthetic mixture is cre-
ated by mixing multiple sound sources including one or
more known target sounds, and training the network to es-
timate the target sounds when given the mixture as input
[14, 13, 48, 50, 55, 56]. In the visually-guided source sepa-
ration paradigm, building such synthetic data by considering
multiple videos and mixing their sounds is referred to as
“mix-and-separate” [9, 5, 57, 58]. We train our model in a
similar fashion to Gao et al. [9], in which a co-separation
loss is introduced to allow separation of multiple sources
within a video without requiring ground-truth signals on
the individual sources. In this training regime, we feed
the ASN with a spectrogram representation Xm of the mix-
ture xm(t) = x1(t) + x2(t) of the audio tracks from two
videos, and build representative scene graphs, G1 and G2,
for each of the two corresponding videos. We then extract
unit-norm embeddings from each of these two scene graphs,
y1
i , i ∈ {1, 2, . . . , N1} and y2

i , i ∈ {1, 2, . . . , N2}. Next,
each of these embeddings yui are independently pushed into
the bottleneck layer of ASN that takes as input Xm. Once
a separated spectrogram Ŝui is obtained as output for the
input pair (yui ,Xm), we feed this Ŝui to a classifier which
enforces the spectrogram signature to be classified as that
belonging to one of the principal object classes in Pu. In
contrast with [9], where there is a direct relationship between
the conditioning by a visual object and the category of the
sound to be separated, we here do not know in which or-
der the GRU produced the conditioning embeddings, and
thus which principal object class luc ∈ Pu should corre-
spond to a given embedding yui . We therefore consider
different permutations σu of the ground-truth class labels of
video u, matching the ground-truth label of the c-th object
to the σu(c)-th embedding, and use the one which yields the
minimum cross-entropy loss, similarly to the permutation
free (or invariant) training employed in speech separation
[13, 15, 56]. Our loss is then:

Lcons = −
∑
u=1,2

min
σu∈SNu+1

Nu+1∑
c=1

log(puσu(c)(l
u
c )), (3)



where SNu+1 indicates the set of all permutations on
{1, . . . , Nu + 1}, pui (l) denotes the predicted probability
produced by the classifier for class l given Ŝui as input, and
luc is the ground-truth class of the c-th object in video u.

Further, in order to restrict the space of plausible audio-
visual alignments and to encourage the ASN to recover full
sound signals from the mixture (in contrast to merely what
is required to minimize the consistency loss [36]), we also
ensure that the sum of the predicted masks for separating the
sound sources produce an estimated mask that is close to the
ground truth ideal binary mask [27], using a co-separation
loss similar to prior work [9, 36]:

Lco−sep =
∑
u=1,2

∥∥∥Nu+1∑
i=1

M̂u
i −Mu

ibm

∥∥∥
1
, (4)

where Mu
ibm = 1Xu

m>X¬u
m

denotes the ideal binary mask for
the audio of video u within the mixture Xm.

Armed with the above three losses in Eq. 2, Eq. 3,
and Eq. 4, the final training loss for our model is obtained as
follows, with weights λ1, λ2, λ3 ≥ 0:

L = λ1Lcons + λ2Lco−sep + λ3Lortho. (5)

4. Experiments
In order to validate the efficacy of our approach, we con-

duct experiments on two challenging datasets and compare
its performance against competing and recent baselines.

4.1. Datasets

Audio Separation in the Wild (ASIW): Most prior ap-
proaches in visually-guided sound source separation report
performances solely in the setting of separating the sounds
of musical instruments [5, 58, 57]. Given musical instru-
ments often have very characteristic sounds and most of the
videos used for evaluating such algorithms often contain pro-
fessional footages, they may not capture the generalizability
of those methods to daily-life settings. While there have
been recent efforts towards looking at more natural sounds
[54], the categories of audio they consider are limited (∼10
classes). Moreover, most of the videos contain only a single
sound source of interest, making the alignment straightfor-
ward. There are a few datasets that could be categorized as
considering “in the wild” source separation, such as [7, 43],
but they either only consider separating between on-screen
and off-screen sounds [43], or provide only limited informa-
tion about the nature of sounds featured [7], making the task
of learning the audio-visual associations challenging.

To fill this gap in the evaluation benchmarks between “in
the wild” settings and those with very limited annotations,
we introduce a new dataset, called Audio Separation in the
Wild (ASIW). ASIW is adapted from the recently introduced
large-scale AudioCaps dataset [20], which contains 49,838

training, 495 validation, and 975 test videos crawled from
the AudioSet dataset [10], each of which is around 10 s long.
In contrast to [7], these videos have been carefully annotated
with human-written captions (English-speaking Amazon Me-
chanical Turkers – AMTs), emphasizing the auditory events
in the video. We manually construct a dictionary of 306
frequently occurring auditory words from these captions. A
few of our classes include: splashing, flushing, eruptions,
or giggling, and these classes are almost always grounded
to principal objects in the video generating the respective
sound. The set of principal objects has 14 classes (baby,
bell, birds, camera, clock, dogs, toilet, horse, man/woman,
sheep/goat, telephone, trains, vehicle/car/truck, water) and
an additional background class. The principal object list
is drawn from the Visual Genome [23] classes. We retain
only those videos which contain at least one of these 306
auditory words. Table 2 gives a distribution of the number
of videos corresponding to each of these principal object
categories. The resulting dataset features audio both arising
out of standalone objects, such as giggling of a baby, as well
as from inter-object interactions, such as flushing of a toilet
by a human. The supplementary material lists all the 306
auditory words and the principal object associated to each
word. After pre-processing this list, we use 147 validation
and 322 test videos in our evaluation, while 10,540 videos
are used for training.
MUSIC Dataset: Apart from our new ASIW dataset, we
also report performance of our approach on the MUSIC
dataset [58] which is often considered as the standard bench-
mark for visually-guided sound source seapartion. This
dataset consists of 685 videos featuring humans performing
musical solos and duets using 11 different instruments; 536
of these videos feature musical solos while the rest are duet
videos. The instruments being played feature significant
diversity in their type (for instance, guitar, erhu, violin are
string instruments, flute, saxophone, trumpet are wind instru-
ments, while xylophone is a percussion instrument). This
makes the dataset a challenging one, despite its somewhat
constrained nature. In order to conduct experiments, we split
these videos into 10-second clips, following the standard pro-
tocol [9]. We ignore the first 10 seconds window of each of
the untrimmed videos while constructing the dataset, since
quite often the players do not really start playing their in-
struments right away. This results in 6,300/132/158 training,
validation, and test videos respectively.

4.2. Baselines

We compare AVSGS against recently published ap-
proaches for visually-guided source separation, namely:
Sound of Pixel (SofP) [58]: one of the earliest deep
learning based methods for this task;
Minus-Plus Net (MP Net) [54]: recursively removes the
audio source that has the highest energy;



Table 1. SDR, SIR, and SAR [dB] results on the MUSIC and ASIW test sets. [Key: Best results in bold and second-best in blue.]

MUSIC ASIW

SDR↑ SIR↑ SAR↑ SDR↑ SIR↑ SAR↑

Sound of Pixel (SofP) [58] 6.1 10.9 10.6 6.2 8.1 10.6
Minus-Plus Net (MP Net) [54] 7.0 14.4 10.2 3.0 7.7 9.4
Sound of Motion (SofM) [57] 8.2 14.6 13.2 6.7 9.4 11.1
Co-Separation [9] 7.4 13.8 10.6 6.6 12.9 12.6
Music Gesture (MG) [5] 10.1 15.7 12.9 - - -

AVSGS (Ours) 11.4 17.3 13.5 8.8 14.1 13.0

Table 2. Number of videos for each of the principal object categories of ASIW dataset.

Baby Bell Birds Camera Clock Dogs Toilet Horse Man Sheep Telephone Trains Vehicle Water

1616 151 2887 913 658 1407 838 385 6210 710 222 141 779 378

Table 3. SDR, SIR, and SAR [dB] results on the ASIW test set.
[Key: Best results in bold.]

ASIW

Row SDR↑ SIR↑ SAR↑

1 AVSGS (Full) 8.8 14.1 13.0

2 AVSGS - No orthogonality (λ3 = 0) 7.4 13.3 11.6
3 AVSGS - No multi-lab. (λ1 = 0) 6.4 11.2 11.7
4 AVSGS - No co-sep (λ2 = 0) 1.1 1.3 13.8
5 AVSGS - N=3 8.4 13.5 12.2
6 AVSGS - No Skip Conn. 2.8 4.6 11.3
7 AVSGS - No GATConv 6.5 11.6 11.8
8 AVSGS - No EdgeConv 6.2 10.1 13.2
9 AVSGS - No GRU 6.5 12.3 10.6

Co-Separation [9]: incorporates an object-level separation
loss while training using the “mix-and-separate” framework.
However, the visual conditioning is derived using only a
single object in the scene.
Sound of Motion (SofM) [57]: integrates pixel-level
motion trajectory and object/human appearances across
video frames, and
Music Gesture (MG) [5]: is the most recent method on
musical sound source separation and integrates appearance
features from the scene along with human pose features.
However this added requirement of human pose, limits its
usability as a baseline to only the MUSIC dataset.

4.3. Evaluation Metrics

In order to quantify the performance of the different al-
gorithms, we report the model performances in terms of
the Signal-to-Distortion Ratio (SDR) [dB] [45, 37], where
higher SDR indicates more faithful reproduction of the orig-
inal signal. We also report two related measures, Signal-to-
Interference Ratio (SIR) (which gives an indication of the
amount of reduction of interference in the estimated signal)
and Signal-to-Artifact Ratio (SAR) (which gives an indica-
tion of how much artifacts were introduced), as they were
reported in prior audio-visual separation works [58, 9].

4.4. Implementation Details

We implement our model in PyTorch [35]. Following
prior works [58, 9], we sub-sample the audio at 11 kHz, and
compute the STFT of the audio using a Hann window of size
1022 and a hop length of 256. With input samples of length
approximately 6s; this yields a spectrogram of dimensions
512 × 256. The spectrogram is re-sampled according to a
log-frequency scale to obtain a magnitude spectrogram of
size Ω × T with Ω = 256, T = 256. The detector for the
musical instruments was trained on the 15 musical object
categories of the Open Images Dataset [24]. The FRCNN
feature vectors F are 2048 dimensional. We detect up to two
principal objects per video and use a set of up to 20 context
nodes for a principal object. Additionally, a random crop
from the image is considered as another principal object and
is considered as belonging to the “background” class. The
IoU threshold is set to δ = 0.1, and 4 multi-head attention
units are used in the graph attention network. The embedding
dimension obtained from the graph pooling stage is set to
512. The GRU used is unidirectional with one hidden layer
of 512 dimensions, and the visual representation vector thus
has d = 512 dimensions. The weights on the loss terms are
set to λ1 = 1, λ2 = 0.05, λ3 = 1. The model is trained
using the ADAM optimizer [21] with a weight decay of
1e-4, β1 = 0.9, β2 = 0.999. During training, the FRCNN
model weights are frozen. An initial learning rate of 1e-
4 is used and is decreased by a factor of 0.1 after every
15,000 iterations. These hyper-parameters and those of the
baseline models are chosen based on the performances over
the respective validation sets of the two datasets. At test
time, a the visual graph corresponding to a video is paired
with a mixed audio (obtained from one or multiple videos)
and fed as input to the network, which iteratively separates
the audio sources from the input audio signal. We then apply
an Inverse STFT transform to map the separate spectrogram
to the time domain, for evaluation.
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Figure 3. Qualitative separation results on ASIW (left) and MU-
SIC (right). Bounding boxes on frames show regions attended
by AVSGS (green: principal object, blue: context nodes). Red
boxes indicate regions of high differences between ground truth
and predicted spectrograms.

Figure 4. Performance plots of model variants with graphs con-
structed from multiple frames (black) and single frame (red).

4.5. Results

We present the model performances on the MUSIC and
ASIW datasets in Table 1. From the results, we see that our
proposed AVSGS model outperforms its closest competitor
by large margins of around 1.3 dB on SDR and 1.6 dB on
SIR on the MUSIC dataset, and around 1.2 dB on SDR and
2 dB on SIR on the ASIW dataset, which reflects substantial
gains, given that these metrics are in log scale. We note
that our much higher SIR did not come at the expense of a
lower SAR, as is often the case, with the SAR in fact surpass-
ing MG’s [5] by 0.6 dB. SofM is the non-MUSIC-specific
baseline that comes closest to our model’s performance, per-
haps because it effectively combines motion and appearance,
while the visual information of most other approaches is
mainly appearance-based and holistic. In AVSGS, while
motion is not explicitly encoded in the visual representation,
the spatio-temporal nature of our graph G implicitly embeds
this key element. MG’s competitive performance on MU-
SIC gives credence to the hypothesis that for good audio
separation, besides the embedding of the principal object,
appropriate visual context is necessary. In their setting, this
is limited to human pose. However when the set of con-
text nodes is expanded, richer interactions can be captured,
which proves beneficial to the model performance, as is seen
to be the case for our model. Importantly, our approach

for incorporating this context information generalizes well
across both datasets, unlike MG.

Ablations and Additional Results: In Table 3, we report
performances of several ablated variants of our model on the
ASIW dataset. The second, third, and fourth rows showcase
the model performance obtained by turning off one loss
term at a time. The results overwhelmingly point to the
importance of the co-separation loss (row 3), without which
the performance of the model drops significantly. We also
tweaked the number of objects per video to 3 and observed
very little change in model performance, as seen in row 5
of Table 3. Row 6 underscores the importance of having
skip connection in the ASN network. In rows 7 and 8 we
present results of ablating the different components of the
scene graph. The results, indicate that both GATConv and
EdgeConv are both roughly equally salient. Finally, as seen
in row 9, our model underperforms without the GRU.

Additionally, in Figure 4 we plot the performance of our
AVSGS model with varying number of context nodes at test
time, shown in black. This experiment is then repeated for a
model where we build the graph from only a single frame.
The performance plot of this variant is shown in red. The
plots, show a monotonically increasing trend underscoring
the importance of constructing spatio-temporal graphs which
capture the richness of the scene contexts.

Qualitative Results: In Figure 3, we present example sepa-
ration results on samples from the ASIW and MUSIC test
sets, while contrasting the performance of our algorithm
against two competitive baselines, Co-Separation and SofM.
As is evident from the separated spectrograms, AVSGS is
more effective in separating the sources than these baselines.
Additionally, the figure also shows the regions attended to
by AVSGS in order to induce the audio source separation.
We find that AVSGS correctly chooses useful context re-
gions/objects to attend to for both datasets. For more details,
qualitative results, and user study, please see the supplemen-
tary materials.

5. Conclusions

We presented AVSGS, a novel algorithm that leverages
the power of scene graphs to induce audio source separa-
tion. Our model leverages self-supervised techniques for
training and does not require additional labelled training
data. We show that the added context information that the
scene graphs introduce allows us to obtain state-of-the-art
results on the existing MUSIC dataset and a challenging new
dataset of “in the wild” videos called ASIW. In future work,
we intend to explicitly incorporate motion into the scene
graph to further boost model performance.
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