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Vehicle Center-of-Gravity Height and Dynamics Estimation with
Uncertainty Quantification by Marginalized Particle Filter

Karl Berntorp, Ankush Chakrabarty, and Stefano Di Cairano

Abstract— This paper addresses the center-of-gravity height
and dynamics estimation problem, which is key for rollover-
prevention systems in automotive. We model the vehicle as a
spring-damper system and develop a Bayesian method that
outputs estimates of the center-of-gravity height, suspension
stiffness and damping coefficient. We leverage the model struc-
ture to design a computationally efficient particle filter, which,
combined with Bayesian optimization for particle initialization
and a particle-size adaptation scheme, leads to an imple-
mentation that provides accurate, smooth estimates of CoG
height, stiffness, and damping. A Monte-Carlo simulation study
on a standardized maneuver shows that the method almost
instantaneously provides reliable estimates that represent well
the true parameter values.

I. INTRODUCTION

To design roll-dynamics control methods, such as rollover
avoidance systems based on differential braking systems or
active front steering (AFS), it is imperative to have at least
basic understand of the inertial parameters, such as mass
and inertia, and the location of the mass, that is, the center
of gravity (CoG). Automotive manufacturers can provide
values for the inertial parameters and the CoG. However,
they are typically for some nominal (usually empty) loading
conditions, whereas in reality the loading conditions, hence
the CoG, will vary significantly between different drives.

Rollover accidents are relatively uncommon but constitute
a large portion of severe accidents and fatalities [1]. Hence,
development of improved control principles for avoiding
such accidents is a major consideration for automotive man-
ufacturers. According to [2], usually automotive manufactur-
ers employ robust active road-handling control strategies to
account for the unknown and changing CoG, by designing
for the worst-case scenario. Another approach in the case of
Sport Utility Vehicles (SUVs) is to intentionally design the
vehicle heavier than usual by adding ballast in the undercar-
riage, which aims to lower the CoG position while reducing
the percent margin of the load variation and thus constraining
the variation of the CoG location. While such approaches are
successful up to certain extent, they come with drawbacks,
such as performance loss under normal driving conditions
and reduced efficiency due to added weight.

To avoid designing for the worst-case scenario, the control
performance benefits from real-time CoG location estima-
tion. Such estimation can be used to warn the driver or can
be integrated into rollover prevention systems.

The CoG estimation problem has been researched con-
currently with the rollover avoidance control problem. The
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methods span from recursive linear least-squares (RLS) [3],
multiple-model estimation [2], and extended Kalman filters
(EKF) [4]. The method in [3] assumes a model that is linear
in the parameters. The approach in [4] utilizes the correlation
between the vertical load of a tire and the tire instant effective
radius, but needs access to the tire radius. In [2], the sensing
assumed can be extracted from modern production vehicles.
However, it employs a multiple-model approach that; (i),
can be unsuitable to use in control applications due to the
inherent chattering heavior that can arise when switching
models; (ii), does not include uncertainty quantification and
therefore it can be difficult to assess the quality of the
estimate when integrated into a control loop; and (iii), needs
a priori determined ranges of all involved parameters, which
to ensure convergence may need to require a very large
number of models in the estimator.

In this paper, we provide a method for estimating the CoG
height h. We model the roll dynamics as a torsional spring-
damper system, where the roll angle φ and roll rate φ̇ are
the states and the spring stiffness K and damping D are
parameters estimated jointly with the state and CoG height h.
We formulate an estimation method based on a marginalized
particle filter (MPF, [5]), where K, D, and h are estimated
using a PF and conditioned on the particles, the states can be
analytically estimated with a conditional Kalman filter (KF).
PFs solve nonlinear, non-Gaussian estimation problems by
generating random state trajectories and assigning a weight
to them according to how well they predict the observations
[6]. When there is a tractable substructure present, parts of
the state space can be estimated analytically, which results
in the MPF. Since the MPF estimates the distribution of
the involved variables, the proposed method also provides
uncertainty estimates, which can be used for assessing the
quality of the estimates. For PFs, it is crucial to have enough
number of particles, especially in the transient phase, since
otherwise it may lead to poor performance, or divergence of
the filter [6]. To cope with this, we design two additional
stages of the MPF;

(i) we initialize the method using Bayesian optimization
(BO), where we leverage limited archival data to esti-
mate offline a distribution of most likely initial values
for the parameters of interest; and

(ii) we implement a control mechanism based on controlling
the effective sample size in PFs for monitoring the
quality of the particles.

These two additional design steps enable us to start off with
a good initial guess thus limiting the number of particles in



the MPF while ensuring that we keep the number of particles
at a reasonable level that trades-off estimation quality and
computational demands.

BO methods solve optimization problems where the objec-
tive function is cumbersome or expensive to evaluate over the
whole search space, and therefore incorporates an uncertainty
on the objective as a distribution function. BO methods have
been used for learning system dynamics online (e.g., [7]). For
estimation, a recent paper has demonstrated the utility of BO
methods for concurrently learning dynamical models from
data while maintaining robustness certificates (local input-to-
state stability) of the estimation error, even during learning
[8]. In the current paper, we leverage limited offline data and
BO methods to estimate a distribution function to generate
sensible initial guesses for the MPF.

Notation: By p(x0:k|y0:k), we mean the posterior den-
sity function of the state trajectory x0:k from time in-
dex 0 to time index k given the measurement sequence
y0:k := {y0, . . . ,yk}. Throughout, for a vector x, x ∼
N (µ,Σ) indicates that x is Gaussian distributed with mean
µ and covariance Σ. The notation ẑk|m denotes the estimate
of z at time index k given measurements up to time index
m, Var(q) is the variance of the variable q, and ceil(·) is the
ceiling function.

II. MODELING

The suspension system is modeled as a torsional spring-
damper system (Fig. 1), and has been used before in CoG
estimation [2]. We introduce three assumptions.

Assumption 1. The entire mass is sprung and rolls about a
roll axis centered at the ground level of the body.

Assumption 2. The roll angle is sufficiently small such that
sinφ ≈ φ and cosφ ≈ 1.

Assumption 3. The lateral acceleration ay , roll angle φ,
and roll rate φ̇ are measured at every time step.

While our method does not strictly need Assumption 1, it
simplifies modeling slightly. Considering the sprung mass as
the whole vehicle mass is an approximation, but for regular
passenger vehicles, and SUVs in particular, the unsprung
mass can constitute as little as a few percent of the total
mass [2], [9]. Assumption 2 basically states that the vehicle
either assumes normal driving maneuvers, that is, such that
the roll dynamics are not overly excited, or that there is
an active rollover protection control system implemented in
the vehicle. This assumption can be relaxed, for example, by
introducing nonlinear filters also for the roll state estimation.
Finally, Assumption 3 is satisfied by vehicles equipped with
an electronic stability-control system (lateral acceleration)
and a smart suspension system (φ, the suspension needs to
have a height or elongation sensor). If the vehicle is equipped
with a three-dimension inertial measurement unit (IMU), φ
and φ̇ can instead be determined by a combination of the
gyro measurements and the vertical acceleration.

As described in [2], Assumption 1 enables us to model
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Figure 4.8 An illustration of the suspension system in the roll direction,
modeled as a torsional spring-damper system with spring constant Kf and
damper constant Df . This suspension model is used in the derivations
of the two-track model, see Figure 4.7. The mass center is located at a
distance h from the origin of the vehicle frame. The suspension system is
modeled in an equivalent way for the pitch dynamics.

Preliminaries The model incorporates suspension. We model the sus-
pension system as a torsional spring and damper system, where the spring
and damper constants for each wheel have been lumped to two constants,
one for each degree of freedom. We assume small roll and pitch angles and
model the suspension in the roll and pitch directions as two decoupled sys-
tems. Figure 4.8 provides an illustration of the roll dynamics. We assume
that the wheels at all times are in contact with the ground and that the
road is flat. Matrices with dimension 3$ 1 serve as placeholders for the
vector components. The coordinate systems are described in Appendix A.
I means an inertial, earth-fixed, frame and V denotes the vehicle-fixed
frame rotated an angle y (the yaw) about the Z-axis of I . Similarly, C
indicates the chassis frame, rotated with an angle q (the pitch) about the
Y-axis of V and with B we mean the body frame, rotated an angle f (the
roll) about the X -axis of C . The rotation matrix from C to V is RV

C . The
time derivative of a vector v with respect to a specific frame S is indicated
with a subscript as in d

dt

��
S v.

Kinematics Assume that V rotates with the angular velocity vector x
with respect to the inertial frame I . Then, given a vector v,

d
dt

����
I

v =
d
dt

����
V

v+ x$ v. (4.14)

75

Fig. 1. The torsional spring-damper model for roll dynamics used in this
paper, where the chassis roll is modeled with one spring and damper.

the roll-plane dynamics by

(Ix +mh2)φ̈+Dφ̇+Kφ = mh(ay cosφ+ g sinφ), (1)

where g is the gravitational acceleration, m is the mass, and
Ix is the moment of inertia about the vehicle x-axis. By
Assumption 2 and setting J = Ix + mh2, we can write the
system on state-space form with the state x =

[
φ φ̇

]>
as

ẋ =

[
0 1

−K−mgh
J −D

J

]
x+

[
0
mh
J

]
ay, (2)

Remark 1. At steady state ẋ = 0, we can solve for

h =
Kφ

m(gφ+ ay)
.

However, K is unknown and will change with loading
conditions so this is not practical.

We form the estimation model based on (2). First, note
that (2) is linear in x, but it is nonlinear in the parameters.
Second, all parameters will be time varying in the sense that
they will change depending on the loading conditions, but
when the vehicle is moving, they are unlikely to have large
variations. Hence, it is appropriate to model the parameters
as nearly constant position models, which in discrete time
for the notation θ =

[
K D h

]>
means

θk+1 = θk +wθ,k, (3)

where wθ,k is modeled as zero-mean Gaussian distributed
with covariance Qθ according to wθ,k ∼ N (0,Qθ), with
prior distribution θ0 ∼ p0(θ).

Based on (2) and (3) and Assumption 3, the model is

θk+1 = Fθk +wθ,k, (4a)
xe
k+1 = A(θk)xe

k +B(θk)ay, (4b)
yk = Cxe

k + ek, (4c)

where ek ∼ N (0,R) and the lateral acceleration is modeled
as ay ∼ N (ay,m, Qa), where ay,m is the measurement and
Qa can be determined using standard methods [10].

III. COG HEIGHT ESTIMATION BY MARGINALIZED
PARTICLE FILTER

The Bayesian approach to filtering is to compute the
posterior density p(x0:k|y0:k) of the state trajectory x0:k

given the measurement history y0:k. When the dynamics are
linear with Gaussian noise, the optimal estimator is given
by the KF [11]. Generally, numerical approximations are



required. PFs [12] represent the posterior density with a set of
weighted particles. Each particle represents a state trajectory,
which gives the approximation

p(x0:k|y0:k) ≈
N∑

i=1

qikδxi
0:k

(x0:k). (5)

In (5), δ(·) is the Dirac delta mass and qik is the as-
sociated importance weight for the ith particle given the
measurements y0:k. The particle weights are updated as
qik ∝ qik−1p(yk|xi

k). To avoid having a significant depen-
dence on a few particles with large weights (i.e., particle
depletion [10]), a crucial resampling step is carried out,
which provides an equally-weighted distribution. To decrease
the number of particles and the variance of the estimates, it
is advantageous to exploit model structure. This is the idea
behind marginalization, where the subset of the state space
that allows for analytic expressions is marginalized out. It is
therefore possible to use fewer particles. The enabler for the
MPF is the factorization

p(xk,θ0:k|y0:k) = p(xk|θ0:k,y0:k)p(θ0:k|y0:k) (6)

The second distribution in (6) is approximated by the PF.
Given the nonlinear state trajectory, the first part in (6) is
linear Gaussian. Thus, it can be estimated with conditional
KFs, one for each particle conditioned on the particle tra-
jectory. Generally, the main difference compared with the
standard KF consists of performing an extra measurement
update for each KF using the forward propagated θik+1 as
an extra measurement. For the base implementation of the
MPF used in this paper, model (4) is equivalent to Model 1
in [5], which gives the weight update

q̄ik = N (yk|Cx̂i
k|k−1,CP

i
k|k−1C

> +R) (7)

and the standard KF measurement update

x̂i
k|k = x̂i

k|k−1 +Ki
k(yk −Cx̂i

k|k−1),

P i
k|k = P i

k|k−1 −K
i
kCP

i
k|k−1,

Si
k = CP i

k|k−1C
> +R,

Ki
k = CP i

k|k−1(Si
k)−1.

(8)

Due to the model structure, the KF time update is

x̂i
k|k−1 = A(θik)x̂i

k−1|k−1 +B(θik)ay,

P i
k|k−1 = A(θik)P i

k−1|k−1A(θik)> +B(θik)QaB(θik)>.
(9)

A. Initialization and Speedup

The MPF for our model structure provides asymptotic
convergence guarantees, meaning that as the number of
particles N → ∞, the MPF estimates converge to the true
state both in the mean-square sense and in distribution [10].
A key question is what value of N is sufficient large to
get estimates that are accurate enough to be of practical
value. For our estimation problem, the initial possible range
of values of the spring stiffness, damping coefficient, and
CoG height, varies heavily between vehicle type and loading

conditions. Hence, to ensure sensible results coming out of
the estimator, without any additional knowledge about the
parameter range at initialization time, a very large number
of particles is needed to make sure that the initial guess has
any reasonable chance to converge to the true parameters. We
now provide two add-on steps to the standard MPF. First, we
desribe a procedure to warm-start the MPF using Bayesian
optimization, which provides a priori information of how to
sample the initial guess of the parameter set. Second, we
include a sample-size adaptation of the MPF to decrease
the number of particles needed while maintaining reliable
estimation performance.

B. Warm Starting the MPF using Bayesian Optimization

BO methods solve optimization problems of the form

min
θ∈Θ
J (θ),

where the objective function J (θ) is usually too expensive
to evaluate over the admissible search space Θ (assumed
to be known), and an analytical form of the function is
unavailable, making it impossible to derive analytical gra-
dients. To prevent prohibitive expenditure in evaluating the
cost, the BO framework models the uncertainty on J , at
θ values that have not yet been evaluated, as a probability
distribution. In particular, BO can employ Gaussian-process
regression [13] to construct a surrogate J̃ of the true
objective function that can be evaluated relatively cheaply
and, therefore, evaluated often. At each iteration of the
BO algorithm, the Gaussian process regressor J̃ is used to
inform which θ ∈ Θ is the next best candidate for evaluation;
upon selecting this next best candidate θ∗, the corresponding
true function value J (θ∗) is evaluated, and the Gaussian
process updates its posterior belief by appending the newly-
obtained data pair θ∗,J (θ∗) to the prior dataset. While
re-learning the Gaussian process regressor involves solving
a nonconvex problem and inversion of a square matrix of
growing dimension, inference is cheap [14]. Iterating and re-
learning the surrogate map results in a balance of exploration
and exploitation that is automatic in the BO framework [15].

A crucial component of BO methods is the acquisition of
the next candidate θ? based on the surrogate cost function.
Typically, this is done via an acquisition function which is
designed to yield regions in the admissible search space Θ,
based on the Gaussian process, where the optimal solution
most likely lies. While many suitable acquisition functions
have been investigated in the literature, we use the expected
improvement function, which is explained hereafter.

Suppose we have run the BO algorithm for m iterations,
and let θ+ denote the optimal solution obtained thus far. That
is, θ+ := arg min{J (θt)}mt=1. The expected improvement
acquisition function for a Gaussian prior at any θ ∈ Θ is
given by AEI(θ) = σ̃(θ)

(
zΦG(z) + φG(z)

)
, where

z =
µ̃(θ)− J (θ+)

σ̃(θ)
.

Here, ΦG and φG denote the cdf and pdf of the standard
(zero mean, unit variance) Gaussian distribution, and µ̃ and



σ̃ are the mean and variance obtained from the surrogate
J̃ . Using the acquisition function AEI one can obtain the
next best candidate θ∗ := arg minΘAEI(θ), with which the
function value J (θ∗) can be evaluated.

After NBO iterations of the BO algorithm, we have accu-
mulated a history {θ∗t ,J (θ∗t )}NBO

t=1 . This history comprises
both θ∗ values which were found during exploration, and,
in later iterations of the BO procedure, θ∗ values that had a
high likelihood of being the optimum. Since both exploration
and exploitation information is embedded in this history, and
assuming that NBO is not very small, we can estimate a
probability density function on θ∗ values using, for example,
kernel density estimators [8], from which we can obtain an
initial density p0(θ) by taking a high confidence interval,
e.g., the 95% confidence interval. Algorithm 1 provides
pseudo-code of the BO warm-start procedure, where Y is a
set of measurements (the data) over a predefined time span.

Algorithm 1 Pseudo-code of the BO warm-start procedure
Input: Measured sequence Y , Estimation model E ,
Initial guess θ∗0 of (K,D, h), Admissible range Θ,
Acquisition function A, Confidence interval β ∈ (0, 1).

1: for t← 0 to NBO do
2: Ŷt ← output of E with parameters set to θ∗t
3: J (θ∗t )← L2 (or other error metric) between Y , Ŷt
4: Update history {θ∗j ,J (θ∗j )}tj=0

5: Update Gaussian process model with history
6: θ∗t+1 ← arg minθ∈ΘA(θ)
7: end for
8: Estimate density π from θ∗ history using (kernel) density

estimation
9: p0(θ)← compute β-confidence interval from π

C. Controlling the Effective Sample Size

PFs generally exhibit convergence rates that are inversely
proportional to the square root of the number of particles
[16]. However, for finite N , convergence rates are usually
problem-dependent and difficult to predict before implemen-
tation. There are several methods for adapting the number of
particles N during runtime (c.f. [17], [18]), which all look
at different metrics for controlling the number of particles in
response to the estimation quality.

We adapt the method in [17], which controls the number
of particles by monitoring the effective sample size (ESS).
The ESS Neff gives an indication of the degree of lack
of particles corresponding to the true state and is usually
defined as Neff = N

1+Var(qk) . By predefining a lower bound
N∗ on the ESS, the number of particles needed at time
step k to achieve an ESS of N∗ can be calculated as
Nk = ceil(N∗(1 + Var(qk))), and the variance Var(qk) can
be expanded as

Var(qk) = E(q2
k)− (E(qk))2. (10)

Solving for (10) involves solving a set of integral equations
and cannot be done in closed-form since they require the

state, which the particle filter approximates. However, they
can be solved numerically, for example, by using Monte-
Carlo integration. An approximation suggested in [17] is
to utilize that Nk ≥ N∗. Hence, the first N∗ particles
generated by the particle filter sampling step can be used to
approximate the integrals. Another approach, which we use
in this paper, is to use the Monte-Carlo integration resulting
from the Nk−1 particles generated in the previous time step.

Algorithm 2 provides the pseudo-code of the proposed
estimation algorithm. As with all identification methods, the
system needs to be excited properly for the parameters to be
identifiable uniquely from the data. The degree of excitation
can be tested at runtime and the estimator can be turned on
and off in response to this test. For a simple, yet effective
procedure for activating/deactivating the method in repsonse
to excitation, see, for example, [19].

Algorithm 2 Pseudo-code of the estimation algorithm
Warm-Start: Execute Algorithm 1 to get an initial
distribution p0(θ).
Initialize: Set N−1, {xi

0}
N−1

i=1 ∼ p0(x0), {qi0}
N−1

i=1 =

1/N−1, {θi0}
N−1

i=1 ∼ p0(θ), and define desired ESS N∗.
1: for k ← 0 to . . . do
2: for each particle i ∈ {1, . . . , Nk−1} do
3: Update weights according to (7).
4: end for
5: Normalize weights as qik = q̄ik/(

∑Nk−1

i=1 q̄ik).
6: Approximate (10) to get Var(qk) (Sec. III-C and

[17]).
7: Determine Nk = ceil(N∗(1 + Var(qk))).
8: Resample Nk particles and copy the correspond-

ing statistics. Set {qik}
Nk
i=1 = 1/Nk.

9: for each particle i ∈ {1, . . . , Nk} do
10: Determine xi

k|k and P i
k|k using (8).

11: end for
12: for each particle i ∈ {1, . . . , Nk} do
13: Determine θik+1 using (3).
14: Determine xi

k+1|k and P i
k+1|k using (9).

15: end for
16: end for

IV. SIMULATION STUDY

We use the Sine-with-dweel maneuver, standardized by
NHTSA. The estimation model used for Algorithm 2 is
the quite simple linear-in-state model presented in Sec. II.
However, the simulation model is a nonlinear five-state ve-
hicle model that includes lateral and longitudinal dynamics,
nonlinear tire forces including combined slip, and suspension
dynamics, which includes both sprung and unsprung mass
models. This model is substantially more complex than the
estimation model, and the results therefore also indicate the
robustness of the method to modeling errors. The model
and the parameters used are the same as in [20], where the
parameters are set to be similar to a North-American SUV.

For the BO warm-start procedure, we simulate the system
for the entirety of the Sine-with-dwell maneuver. With this
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Fig. 2. Resulting estimated initial distribution using the Bayesian optimiza-
tion procedure in Sec. III-B. True underlying parameter values are indicated
by the red vertical dashed lines and the initial uniform ranges are indicated
by the blue vertical dash-dotted lines.

0 0.5 1 1.5 2

−8

−4

0

4

Time [s]

δ [deg]

Fig. 3. The road-wheel steering angle for the Sine-with-dwell maneuver.

single trajectory, the BO algorithm is iterated 100 times using
the estimation model described in Sec. II with different θ
learned by the BO procedure. Initially, we sample parame-
ters K,D, h from the set [50000, 80000] × [3000, 10000] ×
[0.5, 1.2], and the resulting estimates of the distribution of
parameters using the BO procedure in Sec. III-B are shown
in Fig. 2. The BO warm-start procedure shrinks the range of
likely values around the true values, and the true parameters
all lie quite close to the maximum-likelihood estimate, and
certainly within the 95% confidence intervals induced by
the respective density functions, as shown in Fig. 2. In
Algorithm 2, the distributions in Fig. 2 correspond to p0(θ)
and are the distributions from which we sample the initial
guess in the MPF. To partition out the initial particles we
sample 20 values according to the probablities for each of
the dimensions in Fig. 2, which gives N−1 = 203 = 8000
particles initially. For the particle adaptation, N∗ = 1000.

Remark 2. The offline estimated distributions in Fig. 2 using
Algorithm 1 are highly non-Gaussian and there is even a
tendency of bimodality, motivating the use of a PF.

We have executed 1000 Monte-Carlo runs of the Sine-
with-dwell maneuver, see Fig. 3. Fig. 4 shows the estimation
results for one representative Monte-Carlo realization. Due
to the BO warm-starting, the sampled particle range initially
covers the true parameter range, and, hence, we immediately
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Fig. 4. Parameter estimation results for one Monte-Carlo execution for the
Sine-with-dwell maneuver in Fig. 3. True values in red dashed, estimates
in black, and 3σ area in gray.

0 0.5 1 1.5 2

1000

1500

2000

2500

3000
3500

Time [s]

Nk

Fig. 5. Time evolution for the number of particles for the realization
corresponding to Fig. 4.

get estimates that are very close to the true values. However,
as time increases, the certainty about the estimates increase
over time. The average CoG height estimate over the time
span is ĥ ≈ 0.74m, which is 0.04m away from the true value.
Fig. 5 displays the time evolution of the number of particles
needed to achieve an ESS of N∗ = 1000. The number of
particles decreases within a few samples, from N−1 = 8000.

Figs. 6–8 compare the estimation results of Algorithm 2
with a version of Algorithm 2 that uses adaptive particle size
selection but initializing the filter from the initial, uniform
range of parameter values, denoted by NONBO, and a version
with BO for warm-starting but without adaptive particle size
selection, denoted by NONADAP. For NONADAP, we have
chosen the number of particles N to equal the average of the
number of particles used in Algorithm 2, that is, an average
of Fig. 5 for all Monte-Carlo runs in this example. Clearly,
not using BO for initialization of the MPF, as is the case for
NONBO, leads to much larger variance of the estimator, even
though the mean after the initial transients is very similar to
Algorithm 2. On the other hand, by fixing the number of
particles beforehand as in NONADAP, we get a considerably
biased estimator that suffers from particle depletion, implied
by the small estimated variance in combination with that the
mean is biased for all three parameters.

V. CONCLUSION

We developed a method for estimating the CoG height
h, along with the suspension parameters K, D, when the
vehicle roll-dynamics are modeled as a torsional spring-
damper system. We leveraged that the roll dynamics are
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Fig. 6. Averaged estimation results of the spring stiffness K for 1000
Monte-Carlo executions for the Sine-with-dwell maneuver in Fig. 3, with
3σ shown as shaded areas. Algorithm 2 and NONBO have similar mean
but the uncertainty is significantly larger for NONBO. NONADAP does not
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Fig. 7. Averaged estimation results of the damping coefficient D for 1000
Monte-Carlo executions for the Sine-with-dwell maneuver in Fig. 3, with
3σ shown as shaded areas. Algorithm 2 and NONBO have similar mean
but the uncertainty is significantly larger for NONBO. NONADAP does not
represent well the underlying value.
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Fig. 8. Averaged estimation results of the CoG height h for 1000 Monte-
Carlo executions for the Sine-with-dwell maneuver in Fig. 3, with 3σ
shown as shaded areas. Algorithm 2 and NONBO have similar mean but the
uncertainty is significantly larger for NONBO. NONADAP does not represent
well the underlying value.

linear in the states but nonlinear in the parameters, which
makes it possible to design an MPF. To avoid having to
pre-set the number of particles to a very high prescribed
value, we developed a BO-based procedure to provide an
initial guess of the parameter distribution. This, along with
a mechanism to adaptively select the number of particles
during runtime, leads to an implementation of the particle
filter that is both computationally efficient and gives reliable,
yet not too conservative, uncertainty estimates.
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