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Abstract—This paper investigates the diversity gain of a dis-

tributed cyclic delay diversity (dCDD) scheme for cyclic-prefixed

single carrier systems in non-identical fading channels. Non-

identical small-scale fading is assumed in the environment, in

which non-identical line-of-sight and non-line-of-sight fading co-

exist. A condition for dCDD resulting in intersymbol interference

free reception at the receiver, has been extended to this new

channel environment. For an overpopulated system setup, a gen-

eralized performance analysis, which has not been available from

existing works, has been conducted after developing closed-form

expressions for the distribution of the signal-to-noise ratio (SNR)

realized at the receiver. Since the order statistics are involved in

the statistical properties of the SNR, the corresponding spacing

statistics are utilized to derive feasible closed-form expressions.

The finalized closed-form expressions are shown to provide very

reliable outage probability and spectral efficiency of dCDD

for underpopulated and overpopulated systems. An asymptotic

performance analysis verifies the maximum achievable diversity

of the dCDD even in the overpopulated case within the considered

channel environment. Link-level simulations are conducted and

these verify the maximum achievable diversity gain.

Index Terms—Distributed single carrier system, cyclic delay

diversity, diversity gain, non-identical frequency selective fading,

coexisting line-of-sight and non-line-of-sight paths.

I. INTRODUCTION

The increasing proliferation of massive wireless devices and

tremendous multimedia traffic lead to stringent requirements

on 5G-and-beyond wireless communication systems. Massive

connectivity, energy efficiency, and low latency transmissions

are deemed as key performance metrics for evaluating wire-

less techniques in emerging applications such as autonomous

vehicles, intelligent factories, and tactile internet [2]–[6]. As

a promising diversity technique for wireless communications,

transmit diversity has gained considerable attention. For exam-

ple, orthogonal transmit diversity, space-time spreading, phase-

switched transmit diversity, and delay diversity are well known

techniques for achieving transmit diversity [7], [8]. Consider-

ing the diversity deterioration resulting from the absence of

multi-path propagation and limited space for multi-antenna
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deployments, distributed transmission strategies have been

proposed to achieve geographically enabled transmit diversity,

including distributed space-time coding [9], [10], distributed

maximal ratio transmission (dMRT) [11], [12], and distributed

relaying [13]. It is also the case that a full rate orthogonal

space-time block code is not known for a general number

of distributed transmitters. In contrast to the conventional

maximal ratio transmission scheme proposed by [14] and [15],

dMRT can achieve diversity gain for a general number of

single antenna transmitters by increasing the receive signal-

to-noise ratio (SNR) over independent frequency selective

fading channels. However, exact knowledge of channel state

information at the transmitter (CSIT) is required, which is a

challenging problem in a distributed communications system.

To achieve transmit diversity gain, cyclic delay diversity

(CDD) has been widely used in practical Orthogonal Fre-

quency Division Multiplexing (OFDM)-based wireless sys-

tems such as [16], [17], and [18] since it does not require CSIT.

Although CDD requires lower complexity, in general, forward

error correction is also required for OFDM transmissions to

convert spatial diversity into frequency diversity [19]. Also,

conventional CDD-based communications systems apply CDD

among antennas that are installed at the same transmitter [17]–

[21]. In contrast to such conventional CDD, distributed CDD

(dCDD) that distributes CDD among single antenna equipped

transmitters has been developed using different schemes. For

example, the authors of [22] developed a multi-relay selection

scheme to apply dCDD among the selected relays for coop-

erative relaying communications. Additionally, the authors of

[23] integrated a selective random CDD scheme with joint

cooperative relaying and hybrid automatic repeat request for

two-hop vehicular communications.

Cyclic-prefixed single carrier (CP-SC) transmission has

been also proposed for several wireless systems [24] con-

sidering more practical issues such as peak-to-average ratio,

power-backing off, and dynamic range of the linear amplifier

[25]. Several works [19]–[22] that exploit these benefits have

attempted to use CDD among antennas. The recent work [26]

proposed dCDD for CP-SC transmissions. Since then, CP-SC

based dCDD has been applied to different types of wireless

system such as spectrum sharing systems [27], [28], physical

layer secrecy systems [29], [30], and cooperative transmit di-

versity systems [31]. For frequency selective fading channels,

it has been shown in [32] and [33] that multipath diversity

can be achieved without utilizing channel equalization [20].

Multiuser diversity can also be exploited to achieve the maxi-

mum diversity by using either the best terminal selection [32]
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or best relay selection [33]. In contrast to the approaches of

[22] and [23], recent approaches [27]–[31] can jointly exploit

multipath diversity and multiuser diversity among distributed

transmitters and in frequency selective fading channels. Thus,

it is expected that the dCDD scheme employed by [27]–

[31] will lead to distributed systems with greater throughput.

Although there are several works [34]–[36] that derive the

probability density function (PDF) of the partial sum of the

order statistics, they mainly assume either identical Rayleigh

fading or identical frequency selective fading channels, so that

it is not straightforward to use them in diversity gain analysis.

Thus, to the best our knowledge, the diversity gain analysis of

dCDD for a general scenario has never been investigated for

non-identical frequency selective channels.

In this paper, we address the following three issues.

• Except [26], others systems [27], [29], [30] assume an

underpopulated system, in which the total number of

remote radio units (RRUs) is less than the total number

of RRUs that is supported by dCDD, due to a limited

coverage of the feasible analysis.

• The analysis provided by [26] works only for less

than three RRUs in the independent but non-identically

distributed (i.n.i.d.) frequency selective fading envi-

ronment. It is a more realistic system setup that a

plurality of RRUs exist above what dCDD can support.

In addition, as an RRU can be recognized as one of

the antennas of the distributed antenna system (DAS),

the distances from RRUs to the receiver (RX) will be

distributed in the DAS. Thus, it is an open problem

how to analyze performance of dCDD in the overpop-

ulated distributed system in environments with i.n.i.d.

frequency selective fading channels.

• Due to a widespread installation of RRUs, line-of-sight

(LoS) and none-line-of-sight (nLoS) paths may coexist

in the target environments. Thus, it is also necessary

to investigate the impact of coexisting LoS and nLoS

paths on the performance.

Considering these three issues, we summarize the following

three contributions in this paper.

• Motivated by the work conducted in [26], we derive a

new received signal model. The distribution of the SNR

realized at the RX is derived based on the order statistics

[37] and the spacing statistics [38]. Since reliability of

the partial fraction (PF)-based derivation tends to decline

as either the maximum number of multipath components

over the whole system or the maximum allowed number

of RRUs increases, we use a very reliable approximation

in its final step. Thus, in contrast to the derivation used in

[26], a new derivation can support more than three RRUs

even for an overpopulated system.

• Based on the derived distributions, we separately derive

closed-form expressions for the outage probability and

spectral efficiency.

• From the asymptotic outage probability in the high SNR

region, the achievable diversity gain is derived. For

various system settings and channel parameters, their

impacts on the diversity gain are investigated. In addition,

the impact of a different ratio of the LoS path to the

nLoS path on the diversity gain is analyzed. Link-level

simulation results verify the derived maximum diversity

gain.

Notation: IN is an N × N identity matrix; 0 denotes an

all zeros matrix of appropriate dimensions; N
(
µ, σ2

)
denotes

the complex Gaussian distribution with mean µ and variance

σ2; B denotes the set composed of 0 and 1; N0 denotes the

set of non-negative integers; and C denotes the set of complex

numbers, so that Cm×n denotes the vector space of all m×n
complex matrices. Fϕ(·) denotes the cumulative distribution

function (CDF) of the random variable (RV) ϕ, whereas its

PDF is denoted by fϕ(·); and the binomial coefficient is

denoted by
(
n
k

)△
= n!

(n−k)!k! . For a vector a, N(a) denotes the

cardinality of a; and a(l) denotes its lth element. For a

vector ai,|N | with the second subscript defining its cardinality,

sum(ai,|N |) = c denotes the sum for all sets of positive

indices of [ai(1), . . . ,ai(N)] satisfying
∑N

j=1 ai(j) = c.
When the second parameter of the binomial coefficient no-

tation is represented by a vector, ai,|N |, the binomial coeffi-

cient notation becomes the multinomial coefficient as follows:(
c

ai,|N|

)△
= c!

ai(1)!...ai(N)! .

For a set of continuous random variables, {x1, x2, . . . , xN},

x〈i〉 denotes the ith smallest random variable, so that it

becomes the ith order statistic with 0 < x〈1〉 ≤ x〈2〉 ≤
. . . ≤ x〈N〉 < ∞. By defining the differences between two

adjacent order statistics, that is, yi
△
=x〈i〉−x〈i−1〉 for i ≥ 2 and

y1 = x〈1〉, yis become independent [39] with yi ≥ 0, ∀i, and

form the spacing statistics. Each of the elements of the order

statistics can be expressed in terms of the spacing statistics

as follows: x〈i〉 =
∑i

j=1 yj . The Jacobian matrix for this

transformation is lower triangular with ones on the diagonal,

so that its determinant is one.

II. SYSTEM AND CHANNEL MODELS
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Fig. 1. Illustration of the proposed dCDD-based distributed single carrier
system.

A block diagram of a proposed cooperative CP-SC system is

provided in Fig. 1. The network server (NS) provides backhaul

communications to M RRUs via very reliable backhaul. For

practical deployment constraint, only one single antenna is

assumed at the RRUs and RX. Due to the maximum available
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number of RRUs, K , which is supported by dCDD, Fig. 1

shows that the first K RRUs are working as dCDD RRUs,

whereas the remaining M−K crossed-out RRUs are in the idle

state, a state that the RRU is not allowed to transmit signals

by the NS. With the aid of Global Navigation Satellite System

or 802.11-based precision time protocol [40], [41], the RRUs

are assumed to be clock synchronized to the NS. Thus, the NS

works as the clock master as well. Phase synchronization is

also assumed among the NS and RRUs. Although RRUs are

geographically distributed with respect to the NS, we assume

that the NS, M RRUs, and RX are co-located, so that the RX

can receive the signals simultaneously from K RRUs by the

control of the NS.

A. Channel model

With the deployment in the multipath-rich environments,

we assume that a wireless channel from the mth RRU to RX,

denoted by hm, is assumed to be distributed by frequency

selective fading. In addition, due to geographically distributed

RRUs with respect to the RX, we assume the following things:

• Due do different distances from the RRUs to RX, small-

scale fading and large-scale fading are not identical in the

whole system.

• Channels are uncorrelated with one another.

• LoS path and nLoS path are co-existing in the environ-

ment [27]. A similar model is also employed for the ultra

dense cloud small cell network [42]. A binary Bernoulli

process is used to model a random selection of LoS

and nLoS paths [27]. Due to distributed distances in the

considered system, the selection probability of LoS and

nLoS paths are not identical.

Under these assumptions, a wireless channel hm, from the

mth RRU to RX, is expressed as follows [27]:

hm = Im,L(dm)−ǫL/2h̃m,L + Im,nL(dm)−ǫnL/2h̃m,nL

= Im,L
√
αm,Lh̃m,L + Im,nL

√
αm,nLh̃m,nL (1)

where small-scale frequency selective fading channels [17],

[24] are respectively denoted by h̃m,L and h̃m,nL for LoS and

nLoS paths with N(h̃m,L) = Nm,L and N(h̃m,nL) = Nm,nL,

whose elements are assumed to be i.i.d. according to CN (0, 1).

In addition, αm,L
△
=(dm)−ǫL and αm,nL

△
=(dm)−ǫnL , that is, a

distance dependent path loss model is used to model a large

scale fading. Since RRUs are geographically distributed in

the considered system, different path losses can be assumed

as well. The euclidean distance from the mth RRU to RX

is denoted by dm. Path-loss exponents of the LoS path and

nLoS path are respectively defined by ǫL and ǫnL. In addition,

Im,L is a Bernoulli variable with probability Pr(Im,L =
1) = Gm,L and Pr(Im,L = 0) = 1 − Gm,L. Similarly,

Im,nL
△
=1 − Im,L is a complementary Bernoulli variable of

Im,L with Pr(Im,nL = 1) = Gm,nL
△
=1 − Gm,L. Again, due to

geographically distributed RRUs with respect to the RX, h̃m,L

and h̃m,nL are composed by different numbers of multipath

components.

B. Summary of dCDD operation

Since dCDD is proposed for CP-SC transmissions, the NS

prepares a block symbol s ∈ CQ×1, composed of Q modulated

symbols, for transmissions. Thus, Q is a system parameter that

is determined by the NS.

1) Information for frequency selective channels: Since we

assume an overpopulated system, the number of RRUs, M ,

in the distributed system is above the maximum number of

RRUs, K , that supports dCDD without causing inter-symbol

interference (ISI) at the RX. To select K RRUs out of M
RRUs, the NS requires an additional information, being fed

back by the RX1. One of the unique features of dCDD is that

the RX needs to feed back only Nmax
2, which is defined by

Nmax
△
=max(Nm,L, Nm,nL, ∀m). Note that this parameter is

determined from frequency selective fading channels.

2) Information for channel quality indicator (CQI): In

addition, the NS needs to use a CQI to select K RRUs for

dCDD operation. This CQI should be prepared from channel

estimates. With a very reliable channel estimate, ĥm, at the

RX, we can have ĥm ≈ hm, ∀m. Thus, the RX can compute

mth CQI as follows:

CQIm
△
=Im,Lαm,L‖h̃m,L‖2 + Im,nLαm,nL‖h̃m,nL‖2 (2)

and then arrange them by their magnitudes in such a way

that CQI〈1〉 ≤ CQI〈2〉 ≤ . . . ≤ CQI〈M〉. Note that a pilot

block symbol, sp ∈ CQ×1 that satisfies E{sp} = 0 and

E{sp(sp)H} = IQ, is used for CP-SC transmissions at the

RRUs. After receiving the pilot symbol in the training period,

the RX measures its channel strength. Now to specify the order

statistics for CQIs, the RX sends a list indexing CQI, i.e.,

X
△
=(〈1〉, 〈2〉, . . . , 〈M〉), from the least to greatest, to the NS.

Only sending this list to the NS, feedback overhead can be

reduced.

3) Number of dCDD RRUs: Now using available Q, Nmax,

and X, the NS selects K RRUs, where K is determined

by K = ⌊ Q
Nmax

⌋ with ⌊·⌋ denoting the floor function, to

provide greater aggregated channel quality at the RX3. This

can be possible by selecting K RRUs indexed by the last K
elements of X. Un-selected RRUs for dCDD will be in the idle

state, a state that the NS does not allow them to transmit the

signals to the RX. By applying these procedures, an ISI-free

reception can be possible at the RX even for simultaneous CP-

SC transmissions. It is worthwhile to note that dCDD does not

require full CSIT. Instead, it requires Q, Nmax, and X, the last

two of which need to be fed back by the RX. In general, Nmax

is usually specified by Nmax = Q/4 [24], [25] in wireless

systems, so that four RRUs can be supported as dCDD RRUs.

1When the system assumes a single tap channel such as [22], [23], then
the RX dose not need to feedback any information.

2
Nmax can be fed back to the transmitter in the form of CQI or precoding

type indicator as those in Physical Uplink Control Channel or Physical Uplink
Shared Channel of Long Term Evolution [43].

3This number is different from that of [22], [23] that assume one tap
channel. Thus, this is more effective in covering non-identical frequency
selective fading channels.
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4) CDD delay assignment: Now using Nmax and K , the

NS assigns CDD delay to each of the dCDD RRUs according

to

∆m = (m− 1)Nmax, for 1 ≤ m ≤ K. (3)

Applying the CDD delay at each CDD-RRU is equal to

multiply the input symbol block s by the permutation matrix

Pm ∈ BQ×Q, which is a circularly shifted identity matrix of

size Q, IQ. It is clear that Pm is a right circulant matrix

of order Q. An amount of its circular shifting down is

determined by ∆m. Thus, each dCDD RRU requires only

simple mathematical operation. In order to verify ISI-free

operation achieved by the CDD delay assignment, we provide

one example as follows:

5) Example 1: Let us assume that Q = 6, M = 2, N〈1〉,L =
2, and N〈2〉,L = 3. Then, we can have Nmax = 3 and K = 2.

Thus, for G1,L = G2,L = 1, H̃〈1〉,L is given by (4) provided at

the top of the next page. In (4), we have defined ∆0 = 0 and

∆1 = 3. Similarly, for ∆0 = 2 and ∆1 = 5, H̃〈1〉,L is given

by (5) at the top of the next page that applies a random CDD

assignment [23]. From (4) and (5), non-overlapped channel

elements are observed in each of the components of H̃〈1〉,L.

Thus, ISI-free CP-SC transmissions can be achieved when K
is determined by K = ⌊ Q

Nmax
⌋.

6) Received signal at the RX: According to dCDD, the RX

can receive the ISI-free signals from K dCDD RRUs simul-

taneously. To simplify notation, we use 〈m〉△=〈M −K +m〉
in the sequel. Thus, the received signal, r ∈ CQ×1, at the RX

is given by

r =
∑K

m=1

(
I〈m〉,L

√
PTα〈m〉,LH̃〈m〉,LPm+

I〈m〉,nL

√
PTα〈m〉,nLH̃〈m〉,nLPm

)
s+ z (6)

where PT denotes the transmission power at the dCDD RRUs.

Equivalent channel matrices H̃〈m〉,L ∈ CQ×Q and H̃〈m〉,nL ∈
C

Q×Q are right circulant matrices, mainly determined by

h̃〈m〉,L ∈ CNm,L×1, h̃〈m〉,nL ∈ CNm,nL×1, and additional

zeros. According to [33], H̃〈m〉,L and H̃〈m〉,nL are precisely

determined as follows:

H̃〈m〉,L = W
H
Λ〈m〉,LW and

H̃〈m〉,nL = W
H
Λ〈m〉,nLW (7)

where W ∈ CQ×Q is the discrete Fourier matrix with

its conjugate transposition denoted by WH . In addition,

Λ〈m〉,L ∈ CQ×Q and Λ〈m〉,nL ∈ CQ×Q are diagonal matrices

with the qth diagonal elements respectively determined by

λq,L =
∑N〈m〉,L

l=1
h̃〈m〉,L(l)e

−j2πq(l−1)/Q and

λq,nL =
∑N〈m〉,nL

l=1
h̃〈m〉,nL(l)e

−j2πq(l−1)/Q. (8)

An additive noise is modeled by z ∼ N (0, σ2
zIQ). For a

transmission block symbol, s, we also assume that E{s} = 0

and E{ssH} = IQ. Note that in the representation of (6), the

order statistics are involved in the channel related terms and

indicator functions, I〈m〉,L and I〈m〉,nL.

III. PERFORMANCE ANALYSIS

By using independent Bernoulli RVs and uncorrelated chan-

nels, the SNR realized at the RX is given by

γ
△
=
∑K

m=1

(
I〈m〉,Lα̃〈m〉,L‖h̃〈m〉,L‖2+

I〈m〉,nLα̃〈m〉,nL‖h̃〈m〉,nL‖2
)
=

∑K

m=1
γ〈m〉 (9)

where α̃〈m〉,L = ρα〈m〉,L, α̃〈m〉,nL = ρα〈m〉,nL

with ρ
△
=PT /σ

2
z , and γ〈m〉

△
=
(
I〈m〉,Lα̃〈m〉,L‖h̃〈m〉,L‖2 +

I〈m〉,nLα̃〈m〉,nL‖h̃〈m〉,nL‖2
)
. Note that ISI-free reception

at the RX makes an aggregated SNR at the RX, so that

improved performance can be achieved.

Corollary 1: Due to randomly coexisting LoS and nLoS

paths, the CDF of γ〈m〉 is given by

Fγ〈m〉
(x) = G〈m〉,LFα̃〈m〉,L‖h̃〈m〉,L‖2(x)+

G〈m〉,nLFα̃〈m〉,nL‖h̃〈m〉,nL‖2(x) (10)

where Fα̃〈m〉,L‖h̃〈m〉,L‖2(x) and Fα̃〈m〉,nL‖h̃〈m〉,nL‖2(x) are re-

spectively CDFs of α̃〈m〉,L‖h̃〈m〉,L‖2 and α̃〈m〉,nL‖h̃〈m〉,nL‖2.

Proof: The CDF of γm is given by

Fγ〈m〉
(x) = Pr(γ〈m〉 < x|I〈m〉,L)Pr(I〈m〉,L)+

Pr(γ〈m〉 < x|I〈m〉,nL)Pr(I〈m〉,nL) (11)

so that we can derive (10).

Due to employed channel assumptions, CDFs of

α̃〈m〉,L‖h̃〈m〉,L‖2 and α̃〈m〉,nL‖h̃〈m〉,nL‖2 are respectively

expressed as follows [12]:

Fα̃〈m〉,L‖h̃〈m〉,L‖2(x) =
γl(N〈m〉,L, x/α̃〈m〉,L)

Γ(N〈m〉,L)
and

Fα̃〈m〉,nL‖h̃〈m〉,nL‖2(x) =
γl(N〈m〉,nL, x/α̃〈m〉,nL)

Γ(N〈m〉,nL)
(12)

where Γ(·) and γl(·, ·) respectively denote the complete

gamma function and incomplete lower-gamma function. Now

using (12), (10) can be evaluated in the following corollary.

Corollary 2: The CDF and PDF of γ〈m〉 are evaluated as

follows:

Fγ〈m〉
(x) =

∑1

pm=0

∑pm

rm=0
(G〈m〉,L)

pm−rm(G〈m〉,nL)
rm

Ψ〈m〉e
−ã〈m〉xx〈m̃〉

= X〈m〉e
−ã〈m〉xx〈m̃〉 and

fγ〈m〉
(x) = Y〈m〉e

−ă〈m〉xx〈m̆〉−1 (13)

where ã〈m〉
△
=(qm − rm)/α̃〈m〉,L + rm/α̃〈m〉,nL and

m̃
△
=(tm,|N〈m〉,L|)

T
lm,|N〈m〉,L| + (tm,|N〈m〉,nL|)

T
km,N〈m〉,nL

for tm,|N〈m〉,L|
△
=[0, 1, . . . , N〈m〉,L − 1]T ,

tm,|N〈m〉,nL|
△
=[0, 1, . . . , N〈m〉,nL − 1]T , lm,N〈m〉,L

,

and km,N〈m〉,nL
, which are respectively satisfying

sum(lm,|N〈m〉,L|) = pm − rm and sum(km,|N〈m〉,nL|) = rm.

Note that lm,N〈m〉,L
∈ N

|N〈m〉,L|
0 and km,N〈m〉,nL

∈ N
|N〈m〉,nL|
0

are related with the multinomial theorem. Furthermore, we

have defined Ψ〈m〉 provided at the top of the next page and

X〈m〉
△
=
∑1

pm=0

∑pm

rm=0(G〈m〉,L)
1−rm(G〈m〉,nL)

rmΨ〈m〉. In
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H̃〈1〉,L =




h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2)

h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0

0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1)

h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2)

h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3)

h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1)




. (4)

H̃〈1〉,L =




h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3)

h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1)

h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0 h̃〈1〉,L(2)

h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1) 0

0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2) h̃〈2〉,L(1)

h̃〈2〉,L(1) 0 h̃〈1〉,L(2) h̃〈1〉,L(1) h̃〈2〉,L(3) h̃〈2〉,L(2)




. (5)

Ψ〈m〉
△
=
∑

sum(lm,|N〈m〉,L|)=pm−rm

[(
pm − rm
lm,|N〈m〉,L|

)∏N〈m〉,L−1

tm=0
(1/tm!)lm,tm+1

]∑
sum(km,|N〈m〉,nL|)=rm

[(
rm

km,|N〈m〉,nL|

)

∏N〈m〉,nL−1

tm=0
(1/tm!)km,tm+1

]

addition, Y〈m〉
△
=
∑1

rm=0

( G〈m〉,L

Γ(N〈m〉,L)(α̃〈m〉,L)
N〈m〉,L

)1−rm

( G〈m〉,nL

Γ(N〈m〉,nL)(α̃〈m〉,nL)
N〈m〉,nL

)rm
,ă〈m〉

△
=(1 − rm)/α̃〈m〉,L +

rm/α̃〈m〉,nL, and m̆
△
=N〈m〉,L + rm(1 − N〈m〉,L) +

rm(N〈m〉,nL − 1).
Proof: By using binomial and multinomial theorems [44,

Eq. (1.111)], we can readily derive (13).

Due to different distances from the dCDD RRUs to RX,

Xm
△
=γ〈m〉 has a different distribution depending on its index

m. In addition, dCDD makes the SNR, γ, aggregate K largest

SNRs when there is no ISI reception at the RX. Thus, it is

necessary to use the order statistics in analyzing the statistical

properties of the SNR.

For the order statistics, {γ〈m〉,m = 1, . . . ,K}, the joint

PDF of X1, . . . , XK is given by [37]

fX1,...,XK
(x1, x2, . . . , xK) = PerAK (14)

where

AK
△
=

1

(M −K)!




F1(x1) f1(x1) . . . f1(xK)
F2(x1) f2(x1) . . . f2(xK)

...
... . . .

...
FM (x1) fM (x1) . . . fM (xK)
M −K︸ ︷︷ ︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸




(15)

with Fj(·) and fj(·) respectively denoting the CDF and PDF of

γj , the SNR. Their expressions are similarly defined as those

of (13). Also, we define

[
a1 a2
i︸︷︷︸ j︸︷︷︸

]
denoting i copies of

the first column vector a1 and j copies of the second column

vector a2, and so on. The permanent of the square matrix

A, denoted by PerA, is defined similar to the definition of

the matrix determinant except that all signs are taken to be

positive [37]. For example, for a square matrix A, given by

A =




a b
c d
1︸︷︷︸ 1︸︷︷︸


, we have PerA = ad+ bc.

With some manipulations, a desired compact expression for

PerAK is given by

PerAK =
∑

n1,...,nK
n1 6=n2 6=...6=nK

∏K

i=1
Yni

e−ăni
xi(xi)

m̆ni
−1

∏M

i=K+1
(Xni

e−ãni
xi(x1)

m̃ni ) (16)

where
∑

n1,...,nK
n1 6=n2 6=...6=nK

△
=
∑K

n1=1

∑K
n2=1

n2 6=n1

. . .
∑M

nK=1
nK 6=n1

...
nK 6=nK−1

.

Based on PerAK , the moment geometric function (MGF) for

γ is provided in the following theorem.

Theorem 1: The MGF of the SNR realized at the RX by

dCDD is given by

Mγ(s) =
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

[∏K

m=1
(s+ qm)−em

]
(17)

where
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

△
=
∑

n1,...,nK
n1 6=n2 6=...6=nK

CM,K∑

sum(a2,|2|)=m̆2−1

(
m̆2−1
a2,|2|

)
. . .

∑

sum(aK,|K|)=m̆K−1

(
m̆K−1
aK,|K|

)
with

{aj,|j| ∈ N
|j|
0 , ∀j}, CM,K

△
=(

∏K
i=1 Yni

)(
∏M

i=K+1 Xi),

e1
△
=m̆1 +

∑K
j=2 aj,|j|(1) +

∑M
i=K+1 m̃i,

ek≥2
△
=
∑K

j=2 aj,|j|(m) + 1, q1
△
= 1

K (
∑K

j=1 ăj +
∑M

i=K+1 ãi),

and qk≥2
△
= 1

K+1−m

(∑K
j=m ăj

)
, with ăi

△
=ăni

, m̆i
△
=m̆ni

, and

ãni

△
=ãi.
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Proof: See Appendix A.

Due to geometrically distributed RRUs, it is given that qi 6=
qj , ∀i 6= j. Thus, the number of repeated poles of the MGF is

determined by K , the maximum number of RRUs for dCDD.

However, as either M , K , or Nmax increases, the PF makes

the computation of the inverse MGF (IMGF) easy to diverge,

so that it is necessary to develop a more reliable expression

for the MGF.

Corollary 3: According to [45], a very reliable and approx-

imated expression for
∏K

m=1(s+ qm)−em , a part of the MGF,

Mγ(s), is given by

∏K

m=1
(s+ qm)−em =

∑N1

l=0
δl(bI)

−l(1/bI + s)−Fd−l (18)

where N1 denotes an upper limit summation. In

addition, Fd
△
=
∑K

m=1 em, bI
△
=min(1/q1, . . . , 1/qK),

and δl
△
=1

l

∑l
i=1 iriδl−i with δ0 = 1 and ri =∑K

m=1
em
i (1− bIqm)i.

Proof: See Appendix B.

It was verified by [45] that when max
i

∣∣∣∣
(1− bIqi)

(1 + bIs)

∣∣∣∣ < 1, ∀s,

(18) is a valid approximation. Corollary 3 provides the MGF

expressed by the weighted sum of N1+1 terms, each of which

is proportional to (1/bI+s)−Fd−l. Since the IMGF of (1/bI+
s)−Fd−l is 1

Γ(Fd+l)e
−x/bIxFd+l−1, the following corollary can

be immediately derived.

Corollary 4: The PDF and CDF of γ can be expressed by a

finite number of gamma distributions. Its expression is given

by

fγ(x) =
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

∑N1

l=0
δl(bI)

−l 1

Γ(Fd + l)
e−x/bIxFd+l−1 and

Fγ(x) =
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

N1∑

l=0

δl(bI)
−l (bI)

Fd+l

Γ(Fd + l)
γl(Fd + l, x/bI). (19)

Corollary 5: Only when two RRUs are selected for dCDD

operation, which is the best case of [26] on the number of

RRUs for performance analysis, the PDF and CDF of γ are

respectively given by

fγ(x) =
∑̃

n1,n2
n1 6=n2

∏2

m=1
(3−m)−emΓ(em)

∑N1

l=0
δl(bI)

−l 1

Γ(Fd + l)
e−x/bIxFd+l−1 and

Fγ(x) =
∑̃

n1,n2
n1 6=n2

∏2

m=1
(3−m)−emΓ(em)

∑N1

l=0
δl(bI)

−l (bI)
Fd+l

Γ(Fd + l)
γl(Fd + l, x/bI) (20)

where the re-used notations in (20) can be easily inferred from

the derivation of (19).

Note that N1 controls the accuracy of the distributions in

representing them with a finite number of gamma distribu-

tions. In addition, Fd is a key parameter that determines an

asymptotic performance in the high SNR region. Based on

(19), performance metrics, such as the outage probability and

spectral efficiency will be derived next.

A. Performance metrics

1) Outage probability: Since a closed-form expression for

the CDF of the SNR realized at the RX is available, the outage

probability (OP) at the outage threshold, oth, is given by

OP =
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

∑N1

l=0
δl(bI)

−l (bI)
Fd+l

Γ(Fd + l)
γl(Fd + l, oth/bI). (21)

2) Spectral efficiency: The spectral efficiency (SE) can be

derived as follows:

SE =

∫ ∞

0

log2(1 + x)fγ(x)dx

=
1

ln(2)

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

N1∑

l=0

δl(bI)
−l

Γ(Fd + l)

∫ ∞

0

log(1 + x)e−x/bIxFd+l−1dx. (22)

After representing log(1 + x) is terms of Meijer G-function

[46], and applying [47, eq. (07.34.22.0003.01)], (22) can be

evaluated as follows:

SE =
1

ln(2)

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

∏K

m=1
(K + 1−m)−emΓ(em)

∑N1

l=0

δl(bI)
Fd

Γ(Fd + l)
G1,3

3,2

(
bI
∣∣ 1− Fd − l, 1, 1

1, 0

)
(23)

where Gm,n
p,q

(
t
∣∣ a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
denotes the Meijer

G-function [44, Eq. (9.301)].

To find insightful meaning from the derivations, we conduct

performance analysis in the high SNR region next.

B. Asymptotic performance analysis

In the high SNR region, (12) can be approximated as

Fα̃〈m〉,L‖h̃〈m〉,L‖2(x) ≈
ρ−N〈m〉,LxN〈m〉,L

Γ(N〈m〉,L + 1)(α〈m〉,L)
N〈m〉,L

and

Fα̃〈m〉,nL‖h̃〈m〉,nL‖2(x) ≈
ρ−N〈m〉,nLxN〈m〉,nL

Γ(N〈m〉,nL + 1)(α〈m〉,nL)
N〈m〉,nL

.

(24)

Thus, the corresponding expression for the CDF of γ〈m〉 can

be derived as follows:

Fγ〈m〉
(x) ≈ F〈m〉ρ

−N〈m〉xN〈m〉 (25)

where

N〈m〉 =

{
N〈m〉,L, for N〈m〉,L ≤ N〈m〉,nL,
N〈m〉,nL, for N〈m〉,L > N〈m〉,nL

(26)

and F〈m〉 provided at the top of the next page. Similarly, the

PDF of γ〈m〉 in the high SNR region can be expressed as

follows:

fγ〈m〉
(x) ≈ P〈m〉ρ

−N〈m〉e−x/(ρB〈m〉)xN〈m〉−1 (27)
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F〈m〉 =





G〈m〉,L
(α〈m〉,L)

−N〈m〉,L

Γ(N〈m〉,L+1) , for N〈m〉,L < N〈m〉,nL,

G〈m〉,nL
(α〈m〉,nL)

−N〈m〉,nL

Γ(N〈m〉,nL+1) , for N〈m〉,L > N〈m〉,nL,

G〈m〉,L
(α〈m〉,L)

−N〈m〉,L

Γ(N〈m〉,L+1) + G〈m〉,nL
(α〈m〉,nL)

−N〈m〉,nL

Γ(N〈m〉,nL+1) , for N〈m〉,L = N〈m〉,nL.

where

B〈m〉 =





α〈m〉,L, for N〈m〉,L < N〈m〉,nL,

α〈m〉,nL, for N〈m〉,L > N〈m〉,nL,

α〈m〉,L + α〈m〉,nL, for N〈m〉,L = N〈m〉,nL, and

(28)

and P〈m〉 defined at the top of the next page. Note that, in the

high SNR region, we approximate the CDF and PDF of γ〈m〉

in terms of min(N〈m〉,L, N〈m〉,nL). Based on (25) and (27),

PerAas
K can be given by

PerAas
K =

∑
n1,...,nK

n1 6=n2 6=...6=nK

DM,Ke−x1/(ρB〈n1〉)

x
(N〈n1〉

+
∑

M
i=K+1

N〈ni〉
−1)

1
(∏K

i=2
e−xi/(ρB〈ni〉

)(xi)
N〈ni〉

−1
)
ρ−Gd (29)

where DM,K
△
=
(∏M

i=K+1 F〈ni〉

)(∏K
i=1 P〈ni〉

)
, and Gd =∑M

i=1 N〈ni〉. Applying the spacing statistics again to xis, (29)

can be computed as (30) provided at the top of the next page.

Note that (30) shows that PerAas
K is expressed in the form of

a product of functions, each of which is a function of only

one of the yis. Since yis are independent of one another, the

MGF can be derived as follows:

Mas
γ (s) =

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

(∏K

m=1
(K + 1−m)−easmΓ(easm)

)

(s+ qas1 )−eas1
∏K

k=2
(s+ qask )−eask ρ−Gd (31)

where
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

△
=
∑

n1,...,nK
n1 6=n2 6=...6=nK

DM,K∑

sum(w2,|2|)=N〈n2〉
−1

(
N〈n2〉

−1
w2,|2|

) ∑

sum(w3,|3|)=N〈n3〉
−1

(
N〈n3〉−1
w3,|3|

)

. . .
∑

sum(wK,|K|)=N〈nK〉−1

(
N〈nK〉−1
wK,|K|

)
, qas1

△
= 1

K

∑K
j=1

1
ρB〈nj〉

,

qask≥2

△
= 1

K+1−k

∑K
j=k

1
ρB〈nj〉

, eas1
△
=N〈n1〉 +

∑K
j=2 wj,|j|(1) +

∑M
i=K+1 N〈ni〉, and eask≥2

△
=
∑K

j=k wj,|j|(k) + 1. Thus, we

can see that qi 6= qj for i 6= j due to a different number of

summations and normalizing constants.

Theorem 2: The dCDD can achieve the asymptotic diversity

gain, Gd =
∑M

i=1 N〈ni〉, over non-identical frequency selec-

tive fading channels.

Proof: It is necessary to study the asymptotic

behavior of Mγ(s) as ρ → ∞, which shows

that Mγ(s)
ρ→∞
≈

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

(∏K
m=1(K + 1 −

m)−easmΓ(easm)
)
s−

∑K
k=1

eask ρ−Gd . Since 1 +
∑|j|

l=1 wj,|j|(l) =

N〈nj〉, we can have
∑K

k=1 e
as
k = Gd. Thus,

Mγ(s)
ρ→∞
≈

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

(∏K
m=1(K + 1 −

m)−easmΓ(easm)
)
s−Gdρ−Gd , which verifies the asymptotic

diversity gain Gd.

From this asymptotic MGF, the asymptotic CDF of γ can

be derived as

F as
γ (x)

ρ → ∞
≈

∑̃
n1,...,nK

n1 6=n2 6=...6=nK

(∏K

m=1
(K + 1−m)−easm

Γ(easm)
) 1

Γ(Gd + 1)

(ρ
x

)−Gd

(32)

so that, at a given outage threshold, oth, we can have OPas ∝
( ρ
oth

)−Gd .

Theorem 2 can be rephrased in the following Corollaries.

Corollary 6: For non-identical frequency selective fading

channels, dCDD can achieve the maximum diversity gain, Gd,

irrespective of how many RRUs are selected as the dCDD

RRUs. That is, the diversity gain is independent of K .

Proof: From the expression for Gd =
∑M

m=1 N〈nm〉 =∑M
m=1 min(Nm,L, Nm,nL), we can see that the minimum

number of multipath components of the frequency selective

channel connected to each of M RRUs contributes to the

diversity gain. Since dCDD makes the RX aggregate K
SNRs including the greatest SNR, realized by M RRUs, the

achievable diversity gain depends on M , the total number

of RRUs in the system. When K = 1, the dCDD-based

system will be similar to the cooperative systems [32] and

[33] that achieve the same diversity gain by employing best

relay selection.

Corollary 7: For non-identical frequency selective fading

channels, dCDD provides a greater diversity gain as the total

number of RRUs increases. That is, the diversity gain depends

on M as the summation of multipath components.

Proof: From the expression for Gd, we can see that

Gd increases as the number of RRUs increases depending

on the type of the frequency selective fading channels in

LoS dominant, nLoS dominant, and coexisting LoS and nLoS

environments. When the environment is LoS dominant, the

diversity gain is given by Gd =
∑M

m=1 Nm,L. Refer to the

derivations from [26], [32], and [33].

IV. SIMULATION RESULTS

As an additional notation, ≺ a, b, c, d ≻ denotes that the first

element, a, is assigned to RRU1, whereas the forth element, d,

is assigned to RRU4. In the link-level simulations, we assume

the following common parameters:

• Quadrature phase-shift keying (QPSK) modulation is

used with PT = 1.

• The transmission block size for CP-SC transmissions is

Q = 32.

• Path-loss exponents are respectively assumed to be ǫL =
2.09 and ǫnL = 3.75 for LoS and nLoS paths [48].
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P〈m〉 =





G〈m〉,L
(α〈m〉,L)

−N〈m〉,L

Γ(N〈m〉,L)

△
=Pm,1, for N〈m〉,L < N〈m〉,nL

G〈m〉,nL
(α〈m〉,nL)

−N〈m〉,nL

Γ(N〈m〉,nL)

△
=Pm,2, for N〈m〉,L > N〈m〉,nL

∑1
l=0(Pm,1)

1−l(Pm,2)
2, for N〈m〉,L = N〈m〉,nL.

PerAas
K =

∑
n1,...,nK

n1 6=n2 6=...6=nK

DM,K

∑

sum(w2,|2|)=N〈n2〉
−1

(
N〈n2〉

−1
w2,|2|

) ∑

sum(w3,|3|)=N〈n3〉
−1

(
N〈n3〉

−1
w3,|3|

)
. . .

∑

sum(wK,|K|)=N〈nK〉−1

(
N〈nK〉−1
wK,|K|

)[
e−y1/(

∑K
j=1

ρB〈nj〉
)y

(N〈n1〉
+
∑

K
j=2

wj,|j|(1)+
∑

M
i=K+1

N〈ni〉
−1)

1

]

∏K

l=2

[
e−yl/(

∑
K
j=l ρB〈nj〉

)y
(
∑

K
j=l

wj,|j|(l))

l

]
ρ−Gd . (30)

• Locations of six RRUs are assumed to be ≺ (6.8 +
j3.3), (4.4 + j2.5), (8.0 + j4.6), (9.0 + j1.7), (7.3 −
j2.6), (10.3− j0.5) ≻. In addition, the RX is assumed to

be placed at (3.0− j3.0).
• A fixed number is used for N1 that controls the accuracy

of the IMGF, i.e., NI = 100.

• The SNR threshold causing an outage is given by oth = 1
dB.

To verify the performance metrics, we consider several sce-

narios as follows:

• S1: M = 4 with Nm,Ls =≺ 2, 3, 3, 2 ≻ and Nm,nLs =≺
3, 2, 2, 4 ≻.

• S2: M = 5 with Nm,Ls =≺ 3, 2, 2, 3, 3 ≻ and

Nm,nLs =≺ 4, 3, 2, 2, 2 ≻.

• S3: M = 5 with Nm,Ls =≺ 2, 3, 3, 2, 4 ≻ and

Nm,nLs =≺ 3, 2, 2, 4, 3 ≻.

• S4: M = 5 with Nm,Ls =≺ 3, 4, 4, 3, 5 ≻ and

Nm,nLs =≺ 3, 2, 2, 4, 3 ≻.

• S5: M = 4 with Nm,Ls =≺ 2, 3, 3, 2 ≻ and Nm,nLs =≺
5, 4, 4, 6 ≻.

• S6: M = 4 with Nm,Ls =≺ 3, 4, 4, 3 ≻ and Nm,nLs =≺
3, 2, 2, 4 ≻.

• S7: M = 4 with Nm,Ls =≺ 3, 4, 4, 3 ≻ and Nm,nLs =≺
5, 4, 4, 6 ≻.

• S8: M = 4 with Nm,Ls =≺ 4, 5, 5, 4 ≻ and Nm,nLs =≺
3, 2, 2, 4 ≻.

• S9: M = 5 with Nm,Ls =≺ 2, 3, 3, 2, 4 ≻ and

Nm,nLs =≺ 5, 4, 4, 6, 1 ≻.

• S10: M = 6 with Nm,Ls =≺ 2, 3, 3, 2, 4, 3 ≻ and

Nm,nLs =≺ 5, 4, 4, 6, 1, 6 ≻.

Note that GnLs can be obtained via GnLs = 1 − GLs. When

GLs =≺ 0.0, . . . , 0.0 ≻, this corresponds to the environ-

ment where only nLoS paths exist. In contrast, GLs =≺
1.0, . . . , 1.0 ≻ corresponds to the environment where only LoS

paths exist. Note that S1, S6, and S7 specify various numbers

of multipath components for small-scale fading channels re-

spectively influenced by LoS and nLoS large-scale fading. The

curves obtained by the link-level simulations are denoted by

Ex. Analytically derived performance curves are denoted by

An.

A. Performance analysis in terms of the OP
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Fig. 2. OP for various scenarios.

1) Accuracy of the derivation: Fig. 2 shows the correct-

ness of the analytically derived OP, which is given by (21),

comparing with the corresponding exact OP. This figure also

shows that as the more RRUs are involved in dCDD operation,

K , at the same number of RRUs, M , a lower OP is obtained.

We can also see that for the same number of dCDD RRUs,

a more number of RRUs results in a lower OP. For general

system parameters, M and K , the proposed derivations are

seen to be very reliable and provide very accurate results. This

figure also verifies the accuracy of the OP in the LoS-rich non-

identical fading environment, which was mainly investigated

by [26]. Thus, (21) can provide a reliable and approximation

for the OP for various system and channel parameters.

2) Impact of selection probability of LoS path on the OP:

To investigate the impact of selection probability of the LoS

path, GL, on the OP, we use scenario S4 with K = 3.

Analytically derived OPs are obtained via (21). For this

scenario, Fig. 3 shows the following observations:
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Fig. 3. Impact of GL on the OP. Scenario S4 is used for this simulation.

• The OPs are bounded by two extreme cases: i) a LoS-rich

environment; and ii) a nLoS-rich environment.

• Since the nLoS path has a greater path-loss exponent than

the LoS path, a lower OP is obtained as GL increases.

• Except the LoS-rich environment, as the SNR increases,

the asymptotic OP is tend to be determined by the

OP related with the nLoS path since
∑5

m=1 Nm,L >∑5
m=1 Nm,nL. See proof of Corollary 6.

• When GLs =≺ 0.0, 0.4, 0.4, 0.4, 0.4 ≻, the first nLoS

path makes the OP approach rapidly to that of the nLoS-

rich environment comparing with the case of GLs =≺
0.4, 0.4, 0.4, 0.4, 0.4≻. See proof of Corollary 6.

• A single nLoS path has a much greater effect on the OP

when other paths have a lower selection probability of

LoS path. For example, GLs =≺ 0.0, 0.4, 0.4, 0.4, 0.4 ≻
vs. GLs =≺ 0.0, 0.8, 0.8, 0.8, 0.8 ≻.

• Comparing with the case of K = 1, which corresponds to

the system of [32] and [33], dCDD enables effective RRU

cooperation, so that dCDD with K = 3 can realize an OP

of 1e−8 with a 3.8 dB SNR gain. However, in the high

SNR region, the slope, i.e., the diversity gain, is similarly

independent of K . Thus, this can be an additional proof

for Corollary 6.

3) Impact of the number of multipath components on the

OP: In Fig. 4, we investigate impact of the number of

multipath components on the OP, which is obtained via (21),

under two different set of GLs, i.e., ≺ 0.6, 0.7, 0.8, 0.9 ≻ and

≺ 0.1, 0.2, 0.3, 0.4 ≻. For M = 4 and K = 3, We can observe

the following facts

• When dCDD is running in the environment where the

nLoS path appears more frequently, the OP differences

due to different number of multipath components over

the LoS path is negligible as the SNR increases. For

example, scenario S1 vs. scenario S6 with GLs =≺
0.1, 0.2, 0.3, 0.4 ≻.

• In general, when the LoS path appears more frequently

10 15 20 25 30 35
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10
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Fig. 4. OP for various cases with M = 4 and K = 3.

in the target environment, the number of multipath

components of the LoS path impacts the OP up to

the middle SNR regions. For example, scenario S5 vs.

scenario S6 with GLs =≺ 0.6, 0.7, 0.8, 0.9 ≻. However,

as the SNR increases, the asymptotic OP is determined

by the number of multipath components of the nLoS

path. Furthermore, for GLs =≺ 0.6, 0.7, 0.8, 0.9 ≻,

S7 results in a lower OP comparing with S6 since

min(
∑4

m=1 Nm,L,
∑4

m=1 Nm,nL) is greater for S7.

4) Impact of the distance on the OP: For this scenario, we

assume that the location of the RX is on a line through two

ending points (3− j3) and (11 + j3). Based on the approach

proposed by [49], Gm,L is determined by the following prob-

ability model

Gm,L = min(D1/dm, 1)(1− e−dm/D2) + e−dm/D2 (33)

for dm, a distance from the mth RRU to the RX. In

(33), D1 = 1.854 and D2 = 39.71 are determined

by the distribution of all the distances measured from

the considered system setup. D1 is set to a distance

in which 10% of all distances should lie, whereas D2

is set to four times of a distance in which 99% of

all distances should lie. For the first four RRUs, (33)

provides GLs =≺ 0.8962, 0.94445, 0.9761, 0.96267 ≻,

GLs =≺ 0.9294, 0.9565, 0.9474, 0.9101 ≻,

GLs =≺ 0.8584, 0.9076, 0.9511, 0.9695 ≻, and

GLs =≺ 0.8927, 0.95052, 1.0, 1.0 ≻, for the RX respectively

located at (4−j2.25),(6−j0.75),(8+j0.75), and (10+j2.25).
For the different locations of the RX, Fig. 5 shows the OP of

the case with M = 4, K = 3, and scenario S1. Since a large-

scale fading depends on the distance from the RRU to RX, the

location of the RX also influences the OP. As the RX is close

to the ending location, (11+j3), the distances from the RRUs

are decreased and it enters the LoS-rich environment. Thus, at

the same small-scale fading severity, a lower OP is obtained.

Comparing with the system without dCDD, i.e., K = 1, RRU
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Fig. 5. OP for various locations of the RX.

cooperation by dCDD attributes a lower OP. However, we can

observe that the slope will be similar in the high SNR region

even for K = 1.

1 1.5 2 2.5 3 3.5 4
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10
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10
1

Fig. 6. OP for various cases in the log10 − log10 scale. Analytically derived
expressions are used for the OP.

5) Asymptotic OP analysis: We now conduct the diversity

gain analysis of the CP-SC system based on the asymptotic

OP. For various scenarios, we compute the diversity gain,

Gd, derived from Theorem 2, which verifies that Gd =∑M
m=1 min(Nm,L, Nm,nL). By measuring the slope of the

outage probability provided in Fig. 6, we can compute the

diversity gain in the high SNR regions as follows. We use a

fixed M = 4.

• Scenario S1 with a different value of K . For example,

dCDD with two RRUs results in the same diversity gain

as that of three dCDD RRUs. Its slopes are measured

as 8.88 and 8.92 respectively for K = 3 and K = 2.

The exact diversity gain is Gd = 10. Thus, K does not

determine the diversity gain, which is proved by Corollary

6.

• In contrast to scenario S1, scenario S5 results in a lower

outage probability due to nLoS paths. However, scenario

S5 results in the same slope due to LoS paths that

determine the slope. A measured slope is given by 9.7,

whereas the exact diversity gain is Gd = 10.

• For scenario S8, we investigate the impact of GLs on the

asymptotic diversity gain. For different values of GLs, a

same slope, 10.1, is measured comparing with the exact

diversity gain, Gd = 11. This is valid even if one path

is in the nLoS-rich environment. Especially, when one

path is in the LoS-rich environment, it results in a 10 dB

improvement in achieving an 1e−10 OP, without changing

the diversity gain.

B. Performance analysis in terms of SE

An analytically derived SE is obtained via (23).
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Fig. 7. SE for various scenarios.

1) Accuracy of the derivation: We first investigate the

spectral efficiency for various scenarios. The results are pro-

vided in Fig. 7. This figure shows that for all the considered

scenarios, the developed closed-expression for the SE pro-

vides very accurate results comparing with those of link-level

simulations. This figure also shows that for scenario S2 and

GLs =≺ 0.6, 0.7, 0.8, 0.9, 0.1 ≻, greater RRU cooperation by

dCDD, i.e., K = 2, results in about a 0.5 bits/s/Hz increased

SE at 20 dB SNR comparing with the case of K = 1, which

corresponds to the system of [32] and [33].

2) Impact of selection probability of LoS path on the SE:

Since the selection probability of LoS path is one of the key

parameters in determining the performance, we investigate its

impact on the SE. In generating Fig. 8, we assume M = 5,

the same GL
△
=Gm,L for all the paths, and a fixed SNR, PT

σ2
z
=

24 dB. Thus, we mainly investigate the impact of the selection

probability of LoS path on the SE for a different number of the
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Fig. 8. SE for various values of GLs.

dCDD RRUs. For two scenarios: (1) the number of multipath

components of LoS paths is greater than that of nLoS paths;

and (2) the number of multipath components of LoS paths is

less than that of nLoS paths. From the both scenarios, we can

observe the following facts:

• A greater SE is achieved as GL increases since LoS paths

become dominant.

• When the number of multipath components of LoS paths

is greater than that of nLoS paths, the rate of change of

the SE with respect to GL is greater than other scenario.

• For the considered channel environments, the perfor-

mance gap for with K = 5, K = 3, and K = 1 increases

as GL increases. This gap is particularly noticeable as K
is increased.
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Fig. 9. SE for various values of M , K , and the number of multipath
components.

3) Impact of the number of multipath components on the

SE: In Fig. 9, we investigate the impact from various param-

eters on the SE. We can make the following observations.

• As M increases, a greater SE is achieved due to an

increased diversity gain. For example, M = 4,K = 4
vs. M = 5,K = 5 and M = 6,K = 5.

• Even if the additional paths are only for nLoS, a greater

SE can be achieved. For example, M = 4,K = 4 vs.

M = 5,K = 5 with GLs =≺ 0.6, 0.7, 0.8, 0.9, 0.0≻ and

GLs =≺ 0.0, 0.6, 0.7, 0.8, 0.9 ≻. An increased diversity

gain causes this result.

• When the additional paths are only for nLoS, the

number of numtipath components over the nLoS path

determines the SE. For example, M = 5,K = 5
with GLs =≺ 0.6, 0.7, 0.8, 0.9, 0.0 ≻ and GLs =≺
0.0, 0.6, 0.7, 0.8, 0.9≻. Since N1,nL = 5 and N5,nL = 1,

GLs =≺ 0.0, 0.6, 0.7, 0.8, 0.9 ≻ results in a greater SE

among two considered scenarios. A similar observation

can be made for M = 6,K = 5 with two additional

nLoS paths.

• Corollary 6 and Corollary 7 are related with the above

observations.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 10. SE for various locations of the RX.

4) Impact of the distance on the SE: For the same simula-

tion setting for Fig.5, Fig.10 shows the impact of the distance

on the SE. As the RX is close to the ending location, (11+j3),
the distances are decreased. Thus, signal-power attenuation

is decreased, which makes the considered system achieve a

greater SE.

V. CONCLUSIONS

In this paper, we have derived the diversity gain of dCDD

being used in distributed CP-SC system, which is overpopu-

lated with RRHs, in non-identical frequency selective fading

channels, which coexist with LoS and nLoS paths. For these

channels, generalized closed-form expressions for the distri-

butions of the SNR realized at the receiver have been derived.



12

To achieve reliable and accurate performance measurement

metrics, several approaches, such as order statistics, spacing

statistics, and approximation of the summation of gamma

distributions, have been jointly applied. For various simulation

scenarios, it has been seen that the selection probability of

the LoS path, number of the RRUs for dCDD, number of

multipath components are key parameters that determine the

outage probability. According to the asymptotic analysis in

the high SNR region, the maximum diversity gain has been

derived and justified by the link level simulations. Similar

performance behavior of the spectral efficiency has been

verified for various simulation scenarios. Even for a particular

LoS path selection probability model, the proposed derivations

have been shown to provide an accurate outage probability

and spectral efficiency. By converting the multiple-input and

single-output frequency selective fading channels into a highly

frequency selective fading channel, and applying effective

signal processing at the RRUs that leads to ISI-free reception

at the receiver, dCDD enables the distributed CP-SC system

to achieve the maximum diversity gain.

APPENDIX A: DERIVATION OF THEOREM 1

We first rewrite PerAK as follows:

PerAK =
∑

n1,...,nK
n1 6=n2 6=...6=nK

CM,Ke−x1(ă1+
∑

M
i=K+1

ãi)

(x1)
m̆1+

∑
M
i=K+1

m̃i−1
∏K

i=2
e−ăixi(xi)

m̆i−1 (A.1)

where CM,K
△
=
(∏K

i=1 Yni

∏M
i=K+1 Xi

)
, ăi

△
=ăni

, m̆i
△
=m̆ni

,

and ãni

△
=ãi. Thus, the MGF of γ is given by

Mγ(s) =

∫ ∞

0

∫ ∞

x1

. . .

∫ ∞

xM−2

∫ ∞

xM−1

e−s(
∑

K
j=1

xj)PerÃK

dxM . . . dx2dx1. (A.2)

In general, the computation of (A.2) is possible only for K = 1
and K = 2 since Xis are order statistics, which are dependent

on one another. Thus, we apply the spacing statistics Yi =
Xi−Xi−1 with X1 = Y1, i.e., Xi =

∑i
j=1 Yi. Having applied

the spacing statistics, (A.2) can be evaluated as

Mγ(s) =

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

∫ ∞

0

e−s(
∑

K
j=1

∑j

i=1
yi)PerAK

dyM . . . dy2dy1. (A.3)

where PerAK is also converted into the following form

PerAK =
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

e−y1(
∑K

j=1
ăj+

∑M
i=K+1

ãi)

y
(m̆1+

∑
K
j=2

aj,|j|(1)+
∑

M
i=K+1

m̃i−1)

1 e−y2(
∑

K
j=2

ăj)

y
(
∑

K
j=2

aj,|j|(2))

2 e−y3(
∑K

j=3
ăj)y

(
∑

K
j=3

aj,|j|(3))

3 . . .

e−yK(
∑K

j=K
ăj)y

(
∑

K
j=K aj,|j|(K))

K (A.4)

where
∑̃

n1,...,nK
n1 6=n2 6=...6=nK

△
=
∑

n1,...,nK
n1 6=n2 6=...6=nK

CM,K∑

sum(a2,|2|)=m̆2−1

(
m̆2−1
a2,|2|

)
. . .

∑

sum(aK,|K|)=m̆K−1

(
m̆K−1
aK,|K|

)
with

a2,|2| ∈ N
|2|
0 , . . . ,aK,|K| ∈ N

|2|
0 . Note that the multinomial

theorem is used in the derivation of (A.4) as (
∑i

j=1 yj)
m̆i−1 =∑

sum(ai,|i|)=m̆i−1

(
m̆i−1
ai,|i|

)∏i
j=1(yj)

ai,|i|(j). Note that except

the term related to y1, others have a similar form. Since yjs

are independent of one another, and the domain of yis is all

positive values, i.e., 0 ≤ yj ≤ ∞, the spacing statistics makes

us to derive the final expression for the MGF of γ as shown

in (17).

APPENDIX B: DERIVATION OF Corollary 3

According to [45], we first express
∏K

m=1(s + qm)−em as

follows:
∏K

m=1
(s+ qm)−em = (bI)

Fd(1 + bIs)
−Fd

(
1− x1

1 + bIs

)−e1

. . .
(
1− xM

1 + bIs

)−eM
(B.1)

where bI = min(1/q1, . . . , 1/qM ) and xi
△
=1 − bIqi. When∣∣ xi

1+bIS

∣∣ < 1, (B.1) can be further expressed alternatively as

follows:
∏K

m=1
(s+ qm)−em = (bI)

Fd(1 + bIs)
−Fd

e(
∑∞

l=0
rl(1+bIs)

−l) (B.2)

where rl =
∑K

m=1
em
l (1 − bIqm)l. By evaluating

e(
∑∞

l=0
rl(1+bIs)

−l) = 1+ δ1(1− bIqm)−1+ δ2(1− bIqm)−2+
. . ., and taking the derivative of both sides, a recursive form for

δk can be derived as δk+1 = (r1δk+. . .+(k+1)rk+1δ0)/(k+
1) with δ0 = 1. Thus, we can derive

∏K

m=1
(s+ qm)−em =

∑∞

l=0
δl(bI)

−l(1/bI + s)−Gd−l.

(B.3)
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