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Abstract
We present a decision making approach for autonomous driving that concurrently determines
the driving mode and the motion plan that achieves the driving mode goal. To do this,
we develop two cooperating modules: a mode activator and a motion planner. Based on
the current mode in a non-deterministic automaton, the mode activator determines all the
feasible next modes, i.e., the modes for which there exists a trajectory that reaches the
associated goal. Then, the motion planner generates trajectories achieving the goals of such
feasible modes, selects the next mode and trajectory that result in the best performance, and
updates the current mode in the automaton. To determine the feasibility, the mode activator
uses robust forward and backward reachability that accounts for the discrepancy between
the simplified model used in the reachability computation and the more precise model used
by the motion planner. We prove that, under normal operation, the mode activator always
returns a nonempty set of feasible modes, so that the decision making algorithm is recursively
feasible. We validate the algorithm in simulations and experiments using car-like laboratory-
scale robots.

IEEE Conference on Decision and Control (CDC)

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Cooperating Modular Goal Selection and
Motion Planning for Autonomous Driving
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Abstract— We present a decision making approach for au-
tonomous driving that concurrently determines the driving
mode and the motion plan that achieves the driving mode
goal. To do this, we develop two cooperating modules: a mode
activator and a motion planner. Based on the current mode in
a non-deterministic automaton, the mode activator determines
all the feasible next modes, i.e., the modes for which there
exists a trajectory that reaches the associated goal. Then, the
motion planner generates trajectories achieving the goals of
such feasible modes, selects the next mode and trajectory that
result in the best performance, and updates the current mode in
the automaton. To determine the feasibility, the mode activator
uses robust forward and backward reachability that accounts
for the discrepancy between the simplified model used in the
reachability computation and the more precise model used by
the motion planner. We prove that, under normal operation, the
mode activator always returns a nonempty set of feasible modes,
so that the decision making algorithm is recursively feasible.
We validate the algorithm in simulations and experiments using
car-like laboratory-scale robots.

I. INTRODUCTION
The guidance system of an autonomous vehicle must

determine the discrete driving mode such as lane changing,
lane following, intersection crossing, and the continuous
trajectory to achieve the goal of such mode [1]. Thus, the
overall guidance problem requires mixed continuous-discrete
decision-making algorithms that are notoriously challenging
to implement in real-time in platforms with limited compu-
tational capabilities [2]. As a result, the mode determination
and trajectory planning problems are often decoupled into
separated modules, see Fig. 1a.

In this paper, we propose an architecture where the mode
determination is performed in coordination with the trajec-
tory generation. Specifically, the decision making and motion
planning algorithm, which is from now on referred to simply
as decision making for shortness, is based on the interaction
between two cooperating modules: a mode activator and
a motion planner (see Fig. 1b). Based on the currently
active mode and a non-deterministic automaton providing
the admissible next modes, the mode activator determines all
feasible modes, i.e., the modes for which the motion planner
can produce trajectories that achieve the corresponding goals,
while safely behaving in traffic. For each feasible mode,
the motion planner generates trajectories, and then selects
the mode and trajectory that yield the best performance,
providing the former to the mode activator as next mode.
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The proposed structure retains the reduced complexity and
flexibility of a modular architecture, where different models
and algorithms are used in different modules. For instance,
unnecessary computations for a motion attempting to achieve
an infeasible goal are avoided by simple calculations in the
mode activator based on a simplified vehicle model. How-
ever, it can also achieve high performance by selecting the
best mode, based on the corresponding trajectory computed
with a higher precision model.

In our previous work [3], we developed a reachability-
based decision making module for the architecture in Fig. 1a.
The decision making approach in [3] requires the sequence
of modes to be generated a priori, and selects the mode
based only on its feasibility, without accounting for the
performance achieved by the motion planner in such mode.

Other decision-making approaches in autonomous driving
are often based on rules or forward simulations. Rule-based
approaches were used in the DARPA Urban Challenge [1],
where for example, lane changing is allowed if there is a free
space on the next lane that is larger than some threshold.
In forward simulation approaches, [4], [5] compute multiple
trajectories, classify them depending on different modes,
and choose one mode associated with an optimal trajectory.
In [6], [7] other vehicles’ (OVs) reactions are considered
in the ego vehicle’s (EV) planning process based on the
forward simulation of all vehicles to predict outcomes of
each decision. For other related works, readers are referred
to [8]. The main drawbacks of rule-based approaches are
the need for large amount of hand-tuning and the lack of
guarantees, while for many forward simulation approaches
the main issue is that the finite simulation horizon may not
be guaranteed to retain feasibility at future time steps.

The mode activator exploits well researched reachability
tools [9]–[11] to determine whether a mode is feasible. We
label as infeasible the modes for which the current state is
outside the backward reachable set of the associated goal,
and those for which achieving the goal necessarily causes a
collision with the OVs. We handle the discrepancy between
the simplified model of the mode activator and the more
accurate model of the motion planner by shrinking or inflat-
ing the reachable sets. Moreover, by imposing an invariant
property in the forward trajectories, we guarantee that there
is always at least one feasible mode, which results in the
algorithm to be recursively feasible. Reachability tools have
been exploited in autonomous driving systems [12], [13],
but the objective of the mode activator is different in that it
determines the existence of trajectories that safely reach each
mode goal prior to actually computing the trajectory itself.
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Fig. 1: Modular architectures for autonomous driving: (a) Sequential
determination of driving mode and trajectory, e.g., [3]. (b) Concurrent
determination of driving mode and trajectory by cooperating mode activation
and motion planning (dashed box).

The rest of the paper is structured as follows. In Section II,
we explain the models used in the mode activator and the
model used in the motion planner, along with the dynamical
model of OVs. In Section III, we present the design of the
decision-making algorithm and prove that there is always at
least one feasible mode. We provide the validation results
via computer simulations and laboratory experiments in
Section IV, and conclude the paper in Section V.

Notation: In the paper, Z,R and Rn denote the sets of
integers, real numbers, and real vectors of dimension n,
respectively. Also, Z+ = {z ∈ Z : z > 0} and Za:b =
{z ∈ Z : a ≤ z ≤ b}. With a discrete-time signal xk, we
use xa:b to denote a sequence (xa, . . . , xb) with a, b ∈ Z,
or simply write x when it is not necessary to specify the
interval. According to a dynamical model, xk(u0:k−1, x0)
denotes the state reached at time step k starting from the
state x0 with the input sequence u0:k−1 = (u0, . . . , uk−1).
Given two sets A and B, the Minkowski set addition is
A ⊕ B = {a + b : a ∈ A, b ∈ B} and the Pontryagin
set difference is A	B = {a : a+ b ∈ A,∀b ∈ B}.

II. MODELS IN THE DECISION MAKING SYSTEM

In this section, we introduce the models used in the mode
activator and motion planner, and the dynamical model of
OVs used to predict the behavior over a finite time horizon.

A. Models used in the Mode Activator

In the mode activator, for mode transition model we
consider the automaton in Fig. 2. The discrete mode q ∈
Q corresponds to a request for the EV to perform dif-
ferent tasks, such as lane changing (LC), lane keeping
(LK), stopping (ST), and at intersections, turning left (TL),
going forwards (GF), or turning right (TR). Here, Q =
{LC, LK, ST, TL, GF, TR} although other modes, such as
U-turn, creeping in an intersection and merging, can also
be added. Based on our target application, and for the sake
of simplifying the description in this paper, we make the
following two assumptions.

Assumption 1: From each mode in the automaton that
admits a feasible transition, there is a way for the vehicle
to eventually reach its target destination.

Assumption 2: The intersections are all-way stop, i.e.,
each vehicle must stop before crossing the intersection.

LC LK ST

TL GF TR

Fig. 2: Mode transition model as a (non-deterministic) automaton. The
EV modes are lane keeping (LK), lane changing (LC), stopping (ST) at
stop lines, turn left (TL), go forwards (GF), and turn right (TR) through
intersections.

Assumption 1 allows to focus on selecting a mode based
only on a medium term objective, with the guarantee that
the overall destination will be achieved. This is normally
guaranteed by a routing module like a car navigation system
that provides directions that translate into desired modes. The
information about desired modes will be included in the cost
function to determine the next mode. Assumption 2 is mainly
introduced to keep the transition model simple for the sake
of exposition, since then transitioning to intersection crossing
modes (TL, GF, TR) is only possible from the stop (ST)
mode. Other priority rules or traffic lights can be incorporated
with some modifications to the transition model.

Remark 1: We call the automaton in Fig. 2 non-
deterministic because multiple transitions may be allowed
from a state at any time. Given q, the allowed modes to tran-
sition to are denoted by Q(q), e.g., Q(LK) = {LC, LK, ST},
Q(ST) = {ST, TL, GF, TR}. While in rule-based decision
making the transition to be executed is uniquely determined
by guards within the automaton, here the transition to be
executed is ultimately determined outside of the automaton
by the motion planner.

The mode activator uses the discrete-time vehicle model

x̂k+1 = f̂(x̂k, ûk) (1)

where x̂k ∈ X̂ ⊂ Rn̂x is the EV state, ûk ∈ Û ⊂
Rn̂u is the EV input, and both X̂ and Û are bounded.
Model (1) is a simplified vehicle motion model to enable
rapid computations within the mode activator. In this paper,
we use the unicycle model where x̂ = (px, py, v, θ)

ᵀ and
û = (ûv, ûθ)

ᵀ. Here, (px, py) are the x and y positions
in the global frame, v is the longitudinal velocity, θ is the
heading angle, ûv is the longitudinal acceleration and ûθ is
the heading angular rate.

B. Model used in the Motion Planner

The motion planner uses the following vehicle model

xk+1 = f(xk, uk), (2)

where xk ∈ X ⊆ Rnx is the EV state, uk ∈ U ⊆ Rnu

is the input, and both X and U are bounded. Usually,
(2) is a higher-fidelity model with respect to (1), where
n̂x ≤ nx, n̂u = nu. This is due to the different uses of
(1) and (2), as (2) has to be sufficiently accurate to generate
drivable trajectories, while (1) is used only for determining
the existence of drivable trajectories. For (2), we use the



kinematic bicycle model where x = (px, py, v, θ, δ)
ᵀ and

u = (uv, uδ)
ᵀ. The additional state variable δ, compared

with the unicycle model, is the steering angle of the front
wheel, and uδ is the steering rate.

In order to use (1) and obtain valid existence results for
(2), we model the discrepancy between (1) and (2) as an
additive disturbance w = Ψ(x)− x̂ ∈W, where Ψ : X → X̂
is a given function (e.g., the projection onto X̂). Specifically,
we make the following assumption.

Assumption 3: There exist a bounded set W ⊂ Rnx and
a function Ψ : X → X̂ such that for all x̂ ∈ X̂ , û ∈ Û , and
x ∈ {x ∈ X : Ψ(x)− x̂ ∈W}, there exists u ∈ U satisfying

Ψ(f(x, u))− f̂(x̂, û) ∈W. (3)

As a result of Assumption 3, given a reference trajectory
x̂, there exists a trajectory x such that Ψ(x) lies in a
tube surrounding x̂. While Ψ is generally based on model
structure and design experience, the disturbance set W can
be constructed from the models or by extensive numerical
simulation.

C. Model of OVs

In the mode activator, to predict the OV behavior over the
planning horizon, we use a dynamical model similar to (1),

x̂OVk+1 = f̂(x̂OVk , ûOVk ) (4)

where x̂OV ∈ X̂OV ⊂ Rn̂x and ûOV ∈ ÛOV ⊂ Rn̂u

are the OV state and input, respectively, and X̂OV , ÛOV

are bounded. Centered at the state x̂OVk,o of the o-th OV, the
occupancy set is denoted by Ok,o ⊂ Rn̂x , and the occupancy
set at time k is Ok =

⋃no

o=1Ok,o, where no is the total
number of OVs. To avoid collisions, the EV state must not
overlap with Ok at any time step k ∈ Z0:N .

III. DECISION-MAKING ALGORITHM

In the proposed cooperating decision-making algorithm,
the mode activator identifies all modes for which the EV can
achieve the corresponding goal, and provides to the motion
planner only those feasible modes. The motion planner
generates trajectories for the feasible modes and selects one
mode and corresponding trajectory that yield the lowest cost.

The overall decision-making algorithm is presented in
Algorithm 1. Given the current state x0, mode q0, and the
predicted occupancy sets of OVs O0:N = (O0, . . . ,ON ),
the mode activator returns the set of feasible modes QF ⊆
Q(q0), and the motion planner selects the mode qbest ∈ QF
resulting in the lowest-cost trajectory xbest.

Algorithm 1 Cooperating Decision Making and Planning

• Input: State x0, mode q0, occupancy set O0:N .
• QF = ModeActivator(x0, q0,O0:N )
• (xbest, qbest) = MotionPlanner(x0, QF ,O0:N )
• Return Next mode: qbest; EV trajectory:xbest.

Next, we detail the algorithms ModeActivator and
MotionPlanner.

A. The Mode Activator

The mode activator computes a set of feasible modes QF
based on the following principles.

• If the current EV state x0 has not reached yet the current
goal G(q0), the mode activator maintains the current
mode q0 by letting QF = {q0}.

• If the EV state can reach the goal G(q) within the N -
step horizon safely, i.e., without collisions, q ∈ QF .

Here, the goal set G(q) ⊂ X̂ is defined for each mode q ∈ Q.
For LC, the goal is to reach the center line of the next lane;
for LK, the goal is to remain in the vicinity of the center
line of the current lane; for ST, the goal is to reach an area
immediately preceding the stop line at zero speed; and for
TL, GF, and TR, the goal is to reach the desired lane after the
intersection. These allow us to more precisely define feasible
modes: a mode q ∈ Q is said to be feasible if there exists
a trajectory x0:N of model (2) such that Ψ(xk) ∈ G(q) for
some k ∈ Z0:N and Ψ(xk) /∈ Ok for all k ∈ Z0:N .

The mode activator checks several conditions to determine
a set of feasible modes QF : for some x̂0 such that Ψ(x0)−
x̂0 ∈W ,
(a) x̂0 is outside the set G̃(q0);
(b) x̂0 is within the backward reachable set of G̃(q); and
(c) there exists a trajectory that safely reaches G̃(q) within

N planning steps.
Here, G̃(q) is a subset of the goal set G(q), to ensure
robustness as explained later in this section. The mode
activator checks whether the above conditions hold “for some
x̂0”, which means that it uses the most favorable state. This
is possible because Assumption 3 ensures that the EV state
can be kept in the range of the uncertainty for any initial
state chosen within the range of the uncertainty.

Next, we elaborate on each condition and then provide the
mode activator algorithm that implements such conditions.

Condition (a): This condition means that the EV has not
reached the current goal. In this case, we force the mode
activator to return q0 until the EV state reaches the goal.

Condition (b): With this condition, the mode activator can
discard some infeasible mode q before explicitly seeking a
trajectory that reaches the set G̃(q). The backward reachable
set of G̃(q) is defined as

BRS(G̃(q)) = {x̂0 ∈ X̂ : ∃k ∈ Z+,∃û0:k−1 ∈ Ûk,
x̂k(û0:k−1, x̂0) ∈ G̃(q)}. (5)

This is the set of states from which there is an admissible
input sequence to reach the goal G̃(q) at some future time.

In the above conditions, the set G̃(q) is defined as

G̃(q) := G(q) ∩ BRS(G(ST)),

because then x̂0 ∈ BRS(G̃(q)) ensures that the EV will be
able to stop at the end of each lane, following the assumption
of all-way stops. For example, LC should be feasible when
it is possible for the EV to change lane and then stop at the
subsequent stop line. If x̂0 /∈ BRS(G̃(q)), then the EV will



not be able to reach the goal sets G(q) and G(ST) at any
future time, and thus q is infeasible.

Condition (c): The mode q is feasible if there exists a
finite trajectory, called a safe state trajectory, that reaches
the goal set G(q) without collisions. In addition, we impose
an invariant property on such a trajectory to ensure that the
set QF returned by the mode activator is always nonempty.

In the following, we introduce the concept of a control
invariant set [10] and define a safe state trajectory. A control
invariant set is the set of states in which there exists an
admissible input that keeps the state inside the set.

Definition 1: A set K ⊆ X̂ is control invariant for (1), if
for all x̂ ∈ K, there exists û ∈ Û such that f̂(x̂, û) ∈ K.
The goal set of stopping, G(ST), is control invariant because
within the set the EV is stationary at a stop line and can
remain stationary at any future time.

Given the preceding vehicle state x̂OV0 , the safe set is

S(x̂OV ) = {x̂ ∈ X̂ : ∃û ∈ Û , d(x̂, x̂OV ) > dmin,

f̂(x̂, û) ∈ S(f̂(x̂OVk , ûOVk )), ∀ûOV ∈ ÛOV }. (6)

Here, d(x̂, x̂OV ) is the longitudinal distance between x̂ and
x̂OV along the lane’s center line, and dmin is the minimum
safety distance. By (6), the safe set is a control invariant set
and if the EV state is inside the safe set, there exists an input
û ∈ Û that keeps the longitudinal distance between the EV
and the preceding OV greater than dmin regardless of the
OV input ûOV ∈ ÛOV (even in case of sudden braking of
the OV). By maintaining the EV state in the safe set, any
rear-end collision between the EV and the preceding OV can
be avoided for all future times.

Definition 2: Given the current state x0, mode q, and
occupancy set O0:N , a state sequence (x̂0, x̂1, . . . , x̂N ) is
called a safe state sequence x̂safe(x0, q) if

• Ψ(x0)− x̂0 ∈W ;
• x̂k /∈ Ok ⊕W for all k ∈ Z0:N ;
• x̂Nreach ∈ G̃(q)	W for some Nreach ∈ Z0:N ;
• If q = ST, then x̂k ∈ G(ST)	W for all k ∈ ZNreach:N .

Otherwise, x̂k ∈ S(x̂OVk )	W for all k ∈ Z0:N .
According to Definition 2, starting from x̂0, the state never
overlaps with the occupancy set Ok inflated by the distur-
bance set W . Also, one of the states reaches G̃(q) shrunk
by W . Lastly, the safe state sequence enters a control
invariant set to guarantee the existence of an input uN at
the subsequent time step.

In defining x̂safe(x0, q), we use sets that are inflated
or shrunk by the disturbance set W to account for the
discrepancy between models (1) and (2). This ensures that if
x̂safe(x0, q) exists for (1), then there exists a sequence x0:N

for (2) that satisfies Ψ(xk) /∈ Ok for all k, Ψ(xNreach) ∈ G̃(q),
and Ψ(xk) ∈ G(ST) for all k ≥ Nreach or Ψ(xk) ∈ S(x̂OVk )
for all k. Therefore, we can determine the existence of
drivable trajectories by using only the simplified model (1).

Algorithm: In summary, we outline ModeActivator.
If the the current goal set has not been reached, Ψ(x0) /∈

G̃(q0), (Condition (a)), ModeActivator returns the cur-
rent mode q0, which is still feasible by the invariance

Algorithm 2 ModeActivator(x0, q0,O0:N )

• Input: State x0, mode q0, occupancy set O0:N .
• If Ψ(x0) /∈ G̃(q0), then return QF ← {q0}.
• Otherwise, initialize QF ← ∅.
• For all q ∈ Q(q0):

– if Ψ(x0) /∈ BRS(G̃(q)), reject q.
– else if @x̂safe(x0, q), reject q.
– otherwise, QF ← QF ∪ {q}.
– (Optional) if {ST,LF} ⊆ QF , then QF ← QF \LK.
– (Optional) if {TL,GF,TR} ∩QF 6= ∅, then QF ←
QF \ ST.

• Return QF .

condition. Otherwise, it initializes QF = ∅ and evaluates
each q ∈ Q(q0). A candidate mode q ∈ Q(q0) is infeasible
if the EV state is outside the backward reachable set of G̃(q)
(Condition (b)), or if a safe state sequence x̂safe(x0, q) does
not exist (Condition (c)). Additional modes can be removed
from QF to enforce desired behaviors. For instance, if both
LK and ST are in QF , LK can be removed to enforce
conservative stopping. Similarly, if any among TL, GF, or
TR is inside QF , ST can be removed to enforce the EV
to start crossing immediately. If these are not removed, the
decision can be ultimately resolved by the motion planner.

Theorem 1: Under Assumptions 1–3, let QF,k−1 =
ModeActivator(xk−1, qk−1,Ok−1:k+N−1) 6= ∅ at time
step k − 1, and let qk ∈ QF,k−1 be the next mode with
x̂safe(xk−1, qk) = (x̂0, x̂1, . . . , x̂N ). Then, at step k, with
Ψ(xk)− x̂1 ∈W ,

QF,k = ModeActivator(xk, qk,Ok:k+N )

is nonempty.
Proof: (Sketch) If Ψ(xk) /∈ G̃(qk), then QF = {qk},

so it is not empty. If Ψ(xk) ∈ G̃(qk), we will prove that
either LK or ST is always in the set QF except the case
that we purposely remove it from the set. Because the goal
sets are the center line of targeted lanes, Ψ(xk) ∈ G̃(qk) =
G(qk)∩BRS(G(ST)) means that the EV state is on the center
line and has an input to stop at stop lines at some future time.
When qk = ST, x̂safe(xk,ST) exists because Ψ(xk) ∈ G(ST)
and G(ST) is control invariant. For all other qk, x̂safe(xk,LK)
exists because there was a safe state sequence x̂safe(xk−1, qk)
at a previous time step that reaches the center line of lane
corresponding to qk at some future time Nreach while entering
a control invariant set.

The exact computation of BRS(G̃(q)) and x̂safe(x0, q)
may be challenging, especially for automotive computational
platforms that have limited capabilities [2]. However, the
computations can be approximated while maintaining safety,
e.g., by evaluating motion primitives as discussed in [3].

B. The Particle-filter based Motion Planner

Here, we briefly describe the particle-filter based motion
planner used to determine a trajectory given multiple feasible
modes. For a detailed description, see [14].



The planner relies on a priori defined requirements ck

ck = r(q)(xk) + νk (7)

where r(q) is the known mode-dependent requirement func-
tion, and νk is the tolerated probabilistic deviation. Some
common requirements are tracking the centerlane, maintain-
ing a target velocity, keeping a safe distance from the OV
in front [14]. The requirements are mode dependent because
their importance may change based on the mode, e.g, in LC
it is appropriate to drive far from the centerlane.

In a Bayesian framework, by interpreting u in (2) as
process noise and ν in (7) as measurement noise, the motion-
planning model can be written as xk+1 ∼ p(xk+1|xk), and
ck ∼ p(ck|xk,O0:N , q), where xk+1 and ck are regarded as
samples and q ∈ QF .

The motion planner approximates the density function
p(x0:N |c0:N ,O0:N , QF ) by a set of np particles xi0:N ,

p(x0:N |c0:N ,O0:N , QF ) ≈
np∑
i=1

ωiNδ(x0:N − xi0:N ), (8)

where ωiN in (8) is the importance weight for the ith particle,
δ(·) is the Dirac delta mass, and c0:N is the sequence of
outputs according to (7). Due to the different modes q, the
distribution (8) is generally multimodal. Based on (7), the
motion planner extracts x0:N from the density function that
minimizes a compound cost of the trajectory and the mode,

J(x0:N , q) = J
(q)
1 (x0:N ) + J2(q) (9)

where J (q)
1 is a normalization of the mode-dependent trajec-

tory cost which represents the desirability of the computed
trajectory and is related to its probability according to (8),
e.g., its mean-square estimate, and J2 is the mode selection
cost which represents the desirability of the mode. In the
validation in Section IV, J (q)

1 in (9) penalizes the inverse
of the distance from the preceding OVs, the deviation from
centerlane, the deviation from target speed, and the control
aggressiveness, among others. The relative weighting in J (q)

1

depends on the mode q, and lane changes are penalized by J2
to avoid them unless they bring significant driving benefits.

Algorithm 3 outlines the MotionPlanner algorithm.

Algorithm 3 MotionPlanner(x0, QF ,O0:N )

• Input: State x0, set of modes QF , occupancy set O0:N .
• For q ∈ QF :

– determine (8) and x0:N

– (x̄0:N , q̄)← (x̄0:N , q̄) ∪ {(x0:N , q)}.
• Return lowest-cost safe state trajectory and correspond-

ing mode (xbest, qbest) ∈ (x̄0:N , q̄).

IV. VALIDATION IN SIMULATION AND EXPERIMENT

We validate the results of Algorithm 1 in simulations and
experiments. We consider an eight-shaped track, see Fig. 3,
with the EV and two OVs, where the EV implements the
stack in Fig 1b, while the OVs have a fairly simple control
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Fig. 3: Simulation results. Left: EV (red box), OVs (blue boxes), motion
planner samples (magenta), trajectory (green) / Right: modes and transitions
from Fig. 2 (self-loops not shown), feasible modes QF (red border), selected
mode qbest (green fill). The EV (a) maintains the lane as unnecessary lane
changes are to be avoided, (b) starts braking, (c) waits for the OVs to cross
the intersection, and (d) travels through the intersection.

and drive slower than the EV target speed. The EV always
yields to the OVs at intersections, primarily because the
OVs have simple logics to handle intersections, although
other intersection rules such as first-in, first-out can be easily
implemented. In the validation, we do not use a routing
module, so the turns at the intersection are chosen only by
the quality of the computed trajectory.

A. Simulation

Fig. 3 illustrates the simulation results. In Fig. 3a, the
mode activator outputs QF = {LC, LK}, and then, the
motion planner evaluates the two modes and selects LK due
to a penalty for non-required lane changes in J2 in (9). In
Fig. 3b, the EV starts to brake, and stops in Fig. 3c while
yielding to the OVs. In Fig. 3d, the mode activator allows
TL and GF through the intersection, and the motion planner
selects GF. Here, TR is not allowed due to the map geometry.

B. Experiment

For experiments, we setup a ROS network with three
small-scale car-like Hamster1 robots, one as EV and two as
OVs. The robot poses are estimated by an OptiTrack motion
capture system, while we use Hamster on-board encoder and
an inertial measurement unit to estimate the velocity, which
is shared through ROS. As for the EV tracking control in
Fig. 1b, we use a nonlinear model predictive control. More
details on the experimental setup are in [15].

A segment of the experimental results is shown in Fig. 4.
The EV is the robot with a red flag and represented by the
red box. Similarly, the robots with blue flags and blue boxes
represent the OVs. In Fig. 4a, the mode activator determines
that LK and LC are feasible, and in fact the motion planner
is able to generate trajectories (the particles represented by
the magenta dots) that correspond to the two modes. The
motion planner chooses LK because changing lane will make
the EV follow the slow OV. In Fig. 4b, the mode activator
determines that LC is not feasible anymore because it is not

1https://www.hamster-robot.com
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Fig. 4: Experimental results. Top: same coloring as Fig.3. / Bottom: live
scene. In (a), while lane changing is possible, it is not desirable due to slow
traffic. In (b), lane changing becomes impossible due to the presence of
traffic, and in (c), the EV changes lane as it is now feasible again. The EV
slows down in (d) and reaches the stop in (e). In (f), the EV starts crossing
when the intersection is clear.

possible to change lane without colliding with the OV on
the target lane. LC becomes feasible again in Fig. 4c, and
the motion planner selects it because now the slow OV ahead
causes a large cost for staying in the same lane. Approaching
the stop line, the EV begins to slow down in Fig. 4d, and
stops in Fig. 4e. In Fig. 4f, the motion planner starts crossing
the intersection straight.

In the experiments, we observed that for any mode re-
turned by the mode activator, the motion planner was able
to find a feasible trajectory, as expected. The mode activator
always returned a nonempty set QF as proved in Theorem 1.

In terms of computational load, the decision-making sam-
pling period is 0.85 s, and the worst-case execution time for
a Matlab m-code implementation in a desktop with an Intel
Core i7 3.20 GHz CPU and 64 GB RAM is 0.15 s for the
motion planner, and 0.03 s for the mode activator. In the
same computer, also the EV tracking controller and the OVs
controllers and logics are simultaneously executed, while the
low level drivers and controllers run on the robots. Despite
the non-optimized m-code implementation, the decision-

making execution time is well below the sampling period
and the mode activator is particularly quick, indicating that
eliminating the infeasible modes before attempting to com-
pute a trajectory for them brings computational advantages.

V. CONCLUSION

We have presented a cooperating modular decision-making
and motion planning approach for autonomous driving. By
using forward and backward reachability computations based
on simplified vehicle dynamics and a disturbance set, the
mode activator determines a set of feasible modes such
that the motion planner is able to generate trajectories that
achieve their goals. The motion planner selects the trajectory
and mode that yields the best performance. By eliminating
infeasible modes before the motion planner actually com-
putes trajectories, the decision-making process achieves fast
computation, resulting in reactivity to varying environments
and low computational loads. We have proved the recursive
feasibility of the approach and validated the decision-making
algorithm through simulations and experiments.
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