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Abstract
We propose Huffman-coded sphere shaping (HCSS) as a method for probabilistic constella-
tion shaping which provides improved tolerance to fiber nonlinearities in single-span links. An
implementation of this algorithm based on look-up-tables (LUTs) allows for low-complexity,
multiplier-free shaping. The advantage of short-length shaping for mitigating fiber nonlin-
ear impairments is experimentally demonstrated for a system employing dual–polarization
64–ary quadrature amplitude modulation (DP-64QAM) at 56 GBd and operating over 210
km of standard single-mode fiber (SSMF). A gain in achievable information rate (AIR) of
0.4 bits/4D-symbol compared with uniform signaling is measured, corresponding to a 100%
improvement in shaping gain compared with ideal Maxwell–Boltzmann (MB) shaping. The
combinatorial mapping and demapping algorithms can be implemented with integer addition
and comparison operations only, utilizing an LUT with 100 kbit size.
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Abstract—We propose Huffman-coded sphere shaping (HCSS)
as a method for probabilistic constellation shaping which provides
improved tolerance to fiber nonlinearities in single-span links. An
implementation of this algorithm based on look-up-tables (LUTs)
allows for low-complexity, multiplier-free shaping. The advantage
of short-length shaping for mitigating fiber nonlinear impair-
ments is experimentally demonstrated for a system employing
dual–polarization 64–ary quadrature amplitude modulation (DP-
64QAM) at 56 GBd and operating over 210 km of standard
single-mode fiber (SSMF). A gain in achievable information rate
(AIR) of 0.4 bits/4D-symbol compared with uniform signaling
is measured, corresponding to a 100% improvement in shaping
gain compared with ideal Maxwell–Boltzmann (MB) shaping.
The combinatorial mapping and demapping algorithms can be
implemented with integer addition and comparison operations
only, utilizing an LUT with 100 kbit size.

Index Terms—Probabilistic shaping, sphere shaping, nonlinear
fiber channel, multiplier-free LUT, experimental validation.

I. INTRODUCTION

IN recent years, market demand has shifted the nexus of
coherent optical research toward short distance metro ap-

plications, primarily due to cloud and inter-data-center traffic.
Single–span links over 10–120 km at high line rates have
become a significant driver of bandwidth demand. Following
the successful introduction of the 400G ZR standard [1], there
is a great deal of interest in increasing reach and bit rate in
systems that maintain low power, low latency and compatibil-
ity with pluggable optics. Concurrently, probabilistic shaping
has evolved from a topic of academic interest [2] to realizable
technology [3], [4]. The drivers of this adoption have been
partly increased noise tolerance and partly the increased rate
flexibility that can be provided by tuning the rate of the
shaping mapper, while maintaining constant symbol and code
rates [5]. More recently, short block-length shaping [6], [7],
low-complexity shaping [8], [9] and nonlinearity mitigating
shaping architectures [10] have become active research topics.

The effect of shaping length on effective signal-to-noise
ratio (SNR) and achievable information rate (AIR) has been
intensively studied in the literature. Infinite-length probabilistic
shaping based on the Maxwell–Boltzmann (MB) distribution –
which can be capacity achieving in the additive white Gaussian
noise (AWGN) channels – can adversely enhance the fiber
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nonlinearities in long-haul transmission [11] and unrepeated
transmission [12]. The advantage of short-length probabilistic
shaping for the nonlinear channels was thus investigated for
multi-span long-haul links using constant composition distri-
bution matching (CCDM) [13], [14] and enumerative sphere
shaping (ESS) [15], [16]. Furthermore, significant shaping gain
exceeding the theoretical gain for the linear channels was
demonstrated for single-span links by optimally combining
linear and nonlinear shaping gain contributions using shell
mapping with very short shaping lengths [17].

Huffman-coded sphere shaping (HCSS) was recently pro-
posed as an algorithm for a finite-length probabilistic shaping
architecture [18]. The HCSS architecture approximates the
optimal sphere bound [19] and provides good power efficiency
with low rate loss for a given shaping sequence length. This
architecture is amenable to implementation with reduced-
complexity CCDM mapping algorithms such as subset ranking
(SR) and multiset ranking (MR) [20].

In this work, we experimentally compare three shaping
schemes employing dual-polarization 64-ary quadrature am-
plitude modulation (DP-64QAM) in an extended-reach single-
span link: uniform signaling, shaping with an ideal MB dis-
tribution and HCSS. We used short shaping sequence lengths
for HCSS such that the decrease in power efficiency compared
with infinite-length MB shaping is more than offset by the
increase in signal-to-noise ratio (SNR) in the nonlinear trans-
mission regimes [17]. This allows us to achieve performance
better than that of MB shaping, at a sequence length suitable
for implementation with look-up-tables (LUTs) for storage of
pre-computed multinomial coefficients.

II. HUFFMAN-CODED SPHERE SHAPING (HCSS)

The sphere bound utilizes all constellation points for sig-
naling on a specified multi-dimensional lattice satisfying
a maximum energy constraint. By definition, this scheme
achieves the best possible energy efficiency for a given rate
(i.e. number of constellation points), lattice (e.g. the square
lattice modulation of uniform QAM), and dimension (i.e.
sequence length) [19]. Huffman-coded sphere shaping restricts
the number of constellation points utilized for each unique
composition to be a power of two, and then introduces
a minimal number of additional compositions with higher
power to ensure a dyadic distribution of compositions [18].
This enables the use of a variable length binary prefix to
uniquely address compositions in the shaping architecture. The
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Fig. 1. Transmission experimental setup. Insets: (a) Signal spectrum (2 GHz resolution), (b) Uniform constellation, (c) Maxwell–Boltzmann shaped
constellation, (d) Huffman-coded sphere shaped constellation at L = 32.
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Fig. 2. Block diagram of HCSS algorithm using multiset ranking and LUT.

remaining payload bits in the binary input word are then used
to address a unique permutation of the specified composition.
If the MR algorithm is used as described in [18], [20], the
lexicographical rank of the selected sequence corresponds to
the payload bits. Additionally, we note that sequence ranks
may be computed without multiplication operations by pre-
computing multinomial coefficients and storing them in an
LUT. Therefore, both mapping in Fig. 2(a) and demapping
in Fig. 2(b) are performed iteratively on a per symbol basis,
using LUTs, and integer comparison and addition operations.

To investigate system performance employing short-length
HCSS in comparison with uniform signaling and infinite-
length MB shaping, three HCSS shapers were considered
– each with shaping sequence lengths of L = 16, 32, 48
amplitudes at a shaping rate of RS = 1.75 bits/amplitude (with
the corresponding number of compositions used: 275, 1293,
3548). The LUT size required for L = 16, 32, 48 is approx-
imately 30 kbit, 100 kbit and 1 Mbit, respectively [20]. We
note that a granularity in shaping rates of 1/L bits/amplitude
can be achieved, and LUT size does not change with shaping
rate, but only with shaping sequence length.

In all cases, each 4 consecutive amplitudes from a sin-
gle shaped sequence were mapped onto the 4 simultane-
ous quadratures of the modulated 4D-symbols of the DP-
64QAM format. This approach results in a 4D amplitude
distribution. Hence, rate loss is calculated in b/4D as Rloss =

H(X) − D · (RS + 1), where H(X) is the entropy of 4D-
symbols X , D accounts for mapping dimensionality (D = 4)
and “1” accounts for the sign bit per dimension. This 4D
mapping effectively shortens the length of the shaped 4D-
symbol sequence in the time-domain, compared with a 1D
or 2D mapping [14], without increase in the rate loss.

For the MB shaping case, signals were drawn from an
MB distribution with the entropy of 1.75 bits/amplitude [11].
We note that symbols in the transmitted signal were drawn
independently and identically on the underlying probability
mass function (PMF). This method may be considered to give
a finite-length sample of an infinite-length shaped sequence,
which incurs no rate loss.

III. TRANSMISSION EXPERIMENT

A. Experimental setup

The experimental setup is shown in Fig. 1. Transmission
of 9 channels modulated by DP-64QAM (with root-raised
cosine pulse shaping with 10% roll-off factor) and operating
at 56 GBd on a 62.5 GHz grid was carried out over a
210 km single-span link of SSMF (SMF-28 with approximate
parameters at 1550 nm: dispersion, 17 ps/nm/km; attenuation,
0.19 dB/km; nonlinear coefficient, 1.3 /W/km). All channels
used the same shaping scheme under investigation. The signal
spectrum is shown in inset (a) of Fig. 1.

The central channel under test (CUT) was generated using
a pluggable CFP2 analog coherent optics (ACO) transceiver
(integrated laser with 100 kHz linewidth) and a 92 GSa/s
digital-to-analog converter (DAC). Eight interfering channels
were divided into two groups of 4 channels and generated
by two pairs of DP Mach–Zehnder in-phase/quadrature (IQ)
modulators and DACs, where 4 external cavity lasers with 100
kHz linewidth combined with a polarization maintaining cou-
pler were used for each modulator/DAC pair. The two groups
of interfering channels were then pre-amplified by erbium-
doped fiber amplifiers (EDFAs), and spectrally interleaved
and combined with the CUT via a programmable wavelength
selective switch (WSS).

At the input of the link a booster EDFA and variable optical
attenuator (VOA) were used to control the total launched
power. After transmission, the signal was pre-amplified by
an EDFA with a noise figure of 5.5 dB, then the CUT was
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filtered by a WSS and received by a CFP2-ACO transceiver
(an external laser with 100 kHz linewidth was used as a local
oscillator) followed by a 92 GSa/s analog-to-digital converter
(ADC). For back-to-back (BtB) test, the output of transmitter-
side WSS was directly connected to the receiver-side WSS.

Digital signal processing (DSP) was performed offline ac-
cording to the generic flow in Fig. 1 as follows: chromatic
dispersion was compensated, clock recovery was performed by
a frequency-domain Gardner algorithm, conventional complex-
valued decision-directed least-mean squares (DD-LMS) 2× 2
multiple-input multiple-output (MIMO) equalization was per-
formed in conjunction with carrier phase recovery (CPR) in
fully data-aided mode, and post-equalization was done using
real-valued DD-LMS 2× 2 MIMO equalizers to enable com-
pensation of residual transmitter IQ impairments [21]. Soft-
demapping assumed a circularly symmetric Gaussian channel
[11], and transmission performance metrics were averaged
over approximately 5× 106 symbols.

Constellation diagrams for uniform signaling, MB shaping
and HCSS (at L = 32) in BtB are shown in insets (b)–(d) of
Fig. 1. We note that no significant visual difference can be
observed between HCSS and MB shaped constellations.

B. Performance metrics
AIR for bit-metric decoding (BMD) impacted by the rate

loss associated with finite-length shaping scheme [6] is calcu-
lated in b/4D as

AIR =

[
H(X)−

m∑
i=1

H(Bi|Y )

]
−Rloss, (1)

where X are the transmitted symbols, Y are the received
symbols after signal recovery algorithms, Bi (i = 1, ...,m)
are the binary labels. For uniform signaling and infinite-length
MB shaping, we have Rloss = 0 and, hence, the AIR is given
by the generalized mutual information [22].

Effective SNR [11] is estimated as

SNReff =
Var[X ′]

Var[Y −X ′]
, (2)

where Var[·] denotes the variance, and X ′ are the adjusted
transmitted symbols, such that constellation points x′

i (i =
1, . . . ,M ) represent centroids of corresponding received sym-
bols. We note that effective SNR accounts for both linear and
nonlinear noise contributions, including transceiver noise floor.

IV. RESULTS

A. Back-to-back
Fig. 3 shows a BtB characterization of the system under

consideration. Fig. 3(a) shows AIR as a function of optical
SNR (OSNR). Infinite-length MB shaping achieves superior
performance with a 0.48 b/4D AIR gain compared with
uniform DP-64QAM over an operating SNR range of 11–
13 dB. HCSS shaping gains are 0.32, 0.22, 0.08 b/4D for
L = 48, 32, 16, respectively. From Fig. 3(b) we conclude that
the difference in the effective SNR is negligible between uni-
form and shaped signals, indicating that the shaping algorithms
do not introduce a significant implementation penalty in the
operating SNR region of interest and with chosen shaping rate.
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Fig. 3. Performance vs. OSNR in back-to-back configuration: (a) AIR in
b/4D, (b) Effective SNR in dB.

B. Transmission over 210 km

Fig. 4 shows the characterization of nonlinear transmission
performance over a link comprising a single span of 210 km
SSMF. According to Fig. 4(a), in the linear regime (power
per channel below 8 dBm), AIR performance is consistent
with the observation of the BtB measurements. However,
in the nonlinear regime, MB shaping suffers from severe
nonlinear impairment, achieving only 0.22 b/4D AIR gain
at the optimum input power, compared with 0.42, 0.40 and
0.30 b/4D for HCSS with L = 48, 32, 16, respectively. The
reason for this is apparent in Fig. 4(b), as the peak effective
SNR is reduced by more than 0.6 dB compared with uniform
signaling, while HCSS elicits a gain of up to 0.3 dB.

For a linear channel, HCSS with longer shaping sequence
length can achieve better power efficiency for a fixed rate,
hence providing increased AIR as demonstrated for the BtB
case in Fig. 3. However, for a nonlinear channel, shorter
shaping sequence lengths provide a higher nonlinear tolerance,
as demonstrated by the effective SNR gain with reducing
shaping length in Fig. 4(b). By choosing appropriate shaping
length, optimal combination of linear and nonlinear gains
can be achieved [17]. We note that in the highly nonlinear
regime the advantage of shorter shaping length is even more
pronounced – the linear gain contribution becomes smaller and
nonlinear gain is more significant.

It is expected that optimal shaping length for single-span
links with short nonlinear memory is in the range of tens
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Fig. 4. Performance vs. optical launch power for transmission over 210 km:
(a) AIR in b/4D, (b) Effective SNR in dB.

of amplitudes for sphere shaping schemes (as theoretically
predicted in [17] using shell mapping). For HCSS the opti-
mal shaping sequence length is determined by the trade-off
between improved nonlinear tolerance due to shorter shaping
length and associated increased rate loss (with corresponding
decrease in power efficiency). According to Fig. 4(b), HCSS
with L = 16 provides the highest effective SNR gain of 0.9 dB
over infinite-length MB shaping, however, in terms of AIR
it performs worse than longer sequence lengths due to the
increased rate loss. While HCSS shaping with L = 32, 48
achieve similar performance, indicating the region of optimal
shaping sequence length, L = 32 may be considered prefer-
able due to its reduced complexity. We note that as L increases
HCSS performance approaches that of MB shaping.

V. CONCLUSIONS

In this paper, the improved nonlinear tolerance of HCSS
for extended-reach single-span links was characterized. Short-
length HCSS provides both linear gain, and improved effec-
tive SNR in the nonlinear region, enabling superior perfor-
mance over infinite-length MB shaping. For transmission over
210 km, an AIR gain of 0.4 b/4D over uniform signaling and
0.18 b/4D over MB shaping was achieved, using a shaping
sequence length of L = 32, with a corresponding improvement
in effective SNR of 0.2 dB and 0.8 dB, respectively. We
note that HCSS algorithms may be implemented without

multiplications, and with modest LUT sizes, e.g., for L = 32
the size is no more than 100 kbit.
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