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Abstract
Localizing an autonomous vehicle in real-time is critical for robust autonomous driving. As
a standard approach, the mapbased localization is robust and fast; however, it is expensive
to create and maintain a large-scale high-definition map. In this paper, we propose an online
localization technique based on the vehicle-to-vehicle communication and traffic landmark
detection; called collaborative localization. This can potentially serve as a new complement
to the standard localization solutions. We theoretically show that multiple vehicles with
multiple traffic landmarks would significantly improve the localization performance. We then
propose a practical algorithm, which leverages graph matching to handle practical issues,
such as traffic landmark association. The experimental results validate the potential of the
proposed methods.

IEEE International Symposium on Circuits and Systems (ISCAS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2020
201 Broadway, Cambridge, Massachusetts 02139





COLLABORATIVE LOCALIZATION BASED ON TRAFFIC LANDMARKS FOR
AUTONOMOUS DRIVING

Siheng Chen 1 Ningxiao Zhang 1,2 Huifang Sun 1

1 Mitsubishi Electric Research Laboratories, Cambridge, USA
2 The Pennsylvania State University, State College, PA, USA

ABSTRACT

Localizing an autonomous vehicle in real-time is critical for
robust autonomous driving. As a standard approach, the map-
based localization is robust and fast; however, it is expensive
to create and maintain a large-scale high-definition map. In
this paper, we propose an online localization technique based
on the vehicle-to-vehicle communication and traffic landmark
detection; called collaborative localization. This can poten-
tially serve as a new complement to the standard localiza-
tion solutions. We theoretically show that multiple vehicles
with multiple traffic landmarks would significantly improve
the localization performance. We then propose a practical al-
gorithm, which leverages graph matching to handle practical
issues, such as traffic landmark association. The experimental
results validate the potential of the proposed methods.

Index Terms— Autonomous driving, localization, vehicle-
to-vehicle communication, graph matching, traffic landmarks

1. INTRODUCTION
Autonomous driving might fundamentally reduce traffic

accidents caused by driver errors and save parking spaces, es-
pecially in the urban areas [1, 2, 3]. Autonomous software
is a complicated system that includes multiple modules, such
as localization, perception, planning and control [4]. A ro-
bust autonomous vehicle requires each module to be reliable;
however, the current autonomous software is usually based on
machine learning techniques and can hardly achieve reliable
performances for those cases that are not included in the train-
ing dataset. It is thus believed that the communication tech-
niques, such as the vehicle-to-vehicle communication, can be
used to ease the designs of many autonomous modules and
make autonomous vehicles more reliable. In this paper, we
consider using communication techniques to improve the lo-
calization of an autonomous vehicle.

Localization is the task of finding the ego-position of an
autonomous vehicle relative to a reference position. This
module is crucial because an autonomous vehicle must lo-
calize itself to follow the correct lane and provide priors
for the perception, prediction, and planning modules. Since
GPS usually has huge variances in urban area, it cannot be
used to provide precise localization. A standard localization

Fig. 1: Collaborative localization. We consider multiple ve-
hicles are driving in the scene. Each vehicle is carrying sen-
sors to detect the ranges of the nearby traffic landmarks. Even
the locations of traffic landmarks are unknown, their pairwise
distances are fixed. We thus use graph matching to take ad-
vantage of this property and achieve localization. We also
allow vehicles to communication and share observation with
each other, further improving the localization performance.
In the plot, the pn denotes the locations of traffic landmarks,
the ĉ(t)m s denote the real-time locations of vehicles, and o

(t)
n,ms

denote the real-time range observation from vehicles to traffic
landmarks. We use a graph structure to represent the pairwise
distances between traffic landmarks. This unknown, yet fixed
graph structure is the key to localization.

solution for autonomous driving is the map-based localiza-
tion; that is, we aim to find the location of the best match in
an predesigned high-definition (HD) map [5]. Compared to
simultaneous localization and mapping (SLAM) [6, 7], the
map-based localization takes advantages of an offline HD
map, providing both fast and precise localization; however, it
is expensive to create and update a large-scale fully-annotated
HD map.

In this paper, we consider a hypothetical setting: multiple
autonomous vehicles are driving around an urban area; each
vehicle has the ability to accurately detect traffic landmarks,
such as traffic lights, traffic signs and land markings; and each
vehicle has the ability to communicate a small amount infor-
mation with its neighboring vehicle in real-time. Based on
this hypothetical setting, we propose collaborative localiza-
tion, which allows autonomous vehicles to localize each other
collaboratively; see Figure 1. We first theoretically show that



using multiple traffic landmarks with multiple autonomous
vehicles significantly benefit localization. We next take ad-
vantages of the fixed pairwise relationships between traffic
landmarks, and use graph matching to fix the practical issues,
such as the association of traffic landmarks and the alignment
of actors’ headings across time. We finally present a practi-
cal algorithm for the collaborative localization of autonomous
vehicles. In the experiments, we generate a simulation dataset
based on the bicycle model. Based on the simulation dataset,
we validate the proposed theory and the practical algorithm.

2. RELATED WORK

Simultaneous localization and mapping(SLAM). SLAM
is a technique to generate the map of a robot’s surroundings
and locates the robot in that map at the same time [6, 7]. The
related techniques have been widely used in autonomous
driving and many other robotic systems. Some popular
approaches include the Bayes-filter-based algorithms, and
graph-based algorithms. The Bayes-filter-based algorithms
solve the SLAM problem in an online fashion. They employ
Bayes filters to predict and optimize the map and LiDAR
poses iteratively based on the online sensor measurements.
The graph-based algorithms optimize all the poses together
by using all sensor measurements across time. They construct
a pose graph that models the relations among poses. They
thus convert the SLAM problem is thus to the minimization
of the total sum of the edge weights of a pose graph.

Map-based localization. The basic idea of the map-
based localization is to estimate the 6 degree-of-freedom
pose of a vehicle by matching the real-time sensing data
to the predesigned HD map. For autonomous driving, a
map-based localization system usually consists of two com-
ponents [5, 2]. The first component is the LiDAR-to-map
registration, which computes the vehicle pose by registering
real-time LiDAR data to the HD map. The second component
is the multisensor fusion, which estimates a confident pose
from the multisensor readings, including IMU, odometer,
and GPS, as well as the pose output from the LiDAR-to-map
registration. Compared to SLAM, the map-based localization
provides much more reliable and faster localization; however,
it is expensive to create and update a city-scale HD map.
Extracting the detailed traffic-related semantic features, such
as traffic lights and lane boundaries, heavily relies on human
supervision, which is both expensive and time-consuming.

Vehicle-to-everything (V2X). V2X is a series of com-
munication techniques that enable information transmission
from a vehicle to other entities that may affect the vehi-
cle. It incorporates multiple types of communication, such
as vehicle-to-infrastructure (V2I), vehicle-to-network (V2N)
and vehicle-to-vehicle (V2V) [8, 9]. It is believed to be
a powerful complement to machine learning techniques to
achieve autonomous driving [10]. The hypothetical setting
considered in this paper is based on V2V.

3. METHODOLOGY
In this section, we formulate the task of collaborative lo-

calization. We then introduce four hypothetical strategies to
achieve the localization. We finally use graph matching to
alleviate the constraints and propose a practical algorithm.

3.1. Problem Formulation
The overall goal of collaborative localization is to allow

multiple actors to localize themselves through sharing a small
amount of observation information to each other. Consider
M actors in a scene and c

(t)
m ∈ R2,h

(t)
m ∈ [−π,π) be the

ground-truth position and heading of the ith actor at time t,
respectively. Consider each actor is carrying sensors, such
as LiDAR and camera, and has the ability to detect all fixed
traffic landmarks from predesigned categories in a scene in
real-time, such as traffic lights and traffic signs [11, 12]. We
can then convert the detections to the corresponding range ob-
servations.

Let {pn ∈ R2}Nn=1 be a set of traffic landmarks, where pn
is the position of the nth traffic landmark. Let o(t)m,n ∈ R2 be
the observation from the mth actor to the nth traffic landmark
at time t. We thus have

o(t)m,n = R(h(t)m ) (pn − c(t)m + ε(t)m,n) ∈ R2, (1)

where R(⋅) ∈ SO(2) is the rotation matrix and ε(t)m,n is the
observation noise. The observation noise comes from the de-
tection error, which could be related to the size of the traffic
landmarks and the relative range between an actor and a traf-
fic landmark. In this paper, we simply consider the Gaussian
noise model; that is, ε(t)m,n ∼ N (0, σ2). We consider that the
actors can share the information about their initial positions
and headings, c(0)m and h

(0)
m , as well as the observations, o(t)m,n

in real-time. We aim to estimate all the actors’ positions and
headings, c(t)m and h

(t)
m , in real-time.

3.2. Hypothetical localization strategies
To ease the problem, we first make two assumptions to

achieve some theoretical insights. Suppose that (1) the asso-
ciations of traffic landmarks across frames are known; and (2)
the headings of all the actors are known. Based on these, we
consider the following four localization strategies.

Single-actor-single-landmark (SASL)-based strategy.
We first consider that each actor uses its own observation
without any communication and there is only a single land-
mark; that is, M = 1 and N = 1.

Theorem 1. Let the estimated position of the actor at time t
be

ĉ
(t)
1 = c

(0)
1 +R(−h(0)1 )o(0)1,1 −R(−h(t)1 )o(t)1,1. (2)

The localization error is E ∥ĉ(t)1 − c
(t)
1 ∥

2

2
= 2σ2.

Proofs are omitted to conserve space.
Single-actor-multiple-landmark (SAML)-based strat-

egy. We next consider that there are multiple landmarks; that
is, M = 1 and N > 1.



Theorem 2. Let the estimated position of the actor at time t
be
ĉ
(t)
1 = c

(0)
1 +

1

N

N

∑
n=1

(R(−h(0)1 )o(0)1,n −R(−h(t)1 )o(t)1,n) . (3)

The localization error is E ∥ĉ(t)1 − c
(t)
1 ∥

2

2
= 2σ2/N .

Comparing Theorems 1 and 2, we see that leveraging mul-
tiple landmarks significantly reduce the localization error.

Multiple-actor-single-landmark (MASL)-based strat-
egy. We next allow multiple actors to communicate with each
other and there is a single landmark; that is,M > 1 andN = 1.

Theorem 3. Let the estimated center position of the mth ve-
hicle at time t is

ĉ(t)m = 1

M

M

∑
i=1

(ĉ(0)i +R(−h(0)i )o(0)i,1 ) −R(−h(t)m )o(t)m,1. (4)

The localization error is E ∥ĉ(t)m − c(t)m ∥
2

2
= (1 + 1

M
)σ2.

Comparing Theorems 1 and 3, we see that allowing multi-
ple actors to communicate also reduces the localization error.

Multiple-actor-multiple-landmark (MAML)-based
strategy. We finally allow multiple actors to communicate
with each other and there are multiple landmarks; that is,
M > 1 and N > 1. The multiple-actor-multiple-landmark-
based localization strategy is as follows.

Theorem 4. Let the estimated center position of the mth ve-
hicle at time t is

ĉ(t)m = 1

M

M

∑
i=1

(c(0)i +
1

N

N

∑
n=1

(R(−h(0)i )o(0)i,n −R(−h(t)m )o(t)m,n)) .

(5)

The localization error is E ∥ĉ(t)m − c(t)m ∥
2

2
= (1 + 1

M
) σ2

N
.

Theorem 4 shows that leveraging multiple actors and
landmarks can significantly reduce the localization error.
3.3. Practical algorithm

Theorems 1, 2, 3, and 4 show the potential benefit of
using collaborative localization via traffic landmarks; how-
ever, the unknown association of traffic landmarks across
frames and the unknown headings in real-time prevent those
strategies from being practical. Here we present a graph-
matching-based technique to associate the traffic landmarks
across frames and estimate actors’ headings.

Traffic landmark association. At each frame, an actor
can detect several traffic landmarks; however, the index for
the same traffic landmark could be changed across frames.
We need to associate the same traffic landmarks. Here we use
graph matching to achieve the traffic landmark association.
The intuition behind this idea is that the relative positions be-
tween traffic landmarks are fixed. A graph can be constructed
to reflect the pairwise distances between traffic landmarks at
each frame. We can permute the order of nodes at one frame
to match that at another frame, thus converting the association
task into graph matching.

For the mth actor at time t, we can construct a graph
A(t)m ∈ RN×N to model the pairwise relationships between
traffic landmarks, whose nodes are traffic landmarks and
edges are pairwise distances. The (n,n′)th element is

(A(t)m )n,n′ = ∥o(t)m,n′ − o
(t)
m,n∥

2

2
. (6)

To find an appropriate permutation to match graphs con-
structed at different frames, we need to solve the following
optimization problem about the permutation matrix J.

Ĵ
(t)

m = arg min
J∈{0,1}N×N

∥A(0)m −JA(t)m JT ∥
2

2
, (7)

subject to J1N = 1N ,J
T 1N = 1N .

The solution permutes the order of the traffic landmarks at
time t to match the order at time 0 for the mth actor. The op-
timization problem (7) is a standard graph matching problem,
which can be solved by many existing packages [13].

Heading alignment. The heading of an actor can be ro-
tated all the time, which changes the coordinate system of
observations. We can leverage the pairwise relationships be-
tween traffic landmarks to find the relative rotation from a
given frame to the reference frame for the same actor. To find
an appropriate rotation to synchronize the headings across
frames, we need to solve the following optimization problem.

R̂
(t)

m = arg min
R∈SO(2)

∑
n,n′

∥R(o(t)m,n − o
(t)
m,n′) − (o(0)m,n − o

(0)
m,n′)∥

2

2

(8)
The detailed algorithm of solving (8) sees [14]. The solu-

tion R̂
(t)

m estimates the relative rotation from the frame t to
the reference frame, R(h(t)m − h(0)m ). We thus can obtain the
estimation of the heading at time t; that is,

ĥ(t)m = R−1 (R̂(t)m R(h(0)m )) . (9)

Note that (1) we need no less than three traffic landmarks to
solve (8); and (2) since we are dealing with multiple traffic
landmarks, we need to do traffic landmark association first.

Localization algorithms. Based on the traffic land-
mark association and the heading alignment, we are able to
make the single-actor-multiple-landmark-based strategy and
the multiple-actor-multiple-landmark-based strategy practi-
cal. Note that two single-landmark-based strategies are not
feasible because we cannot align the headings of an actor
across time. see Algorithm 1 for the complete procedures
for the multiple-actor-multiple-landmark (MAML)-based al-
gorithm. The single-actor-multiple-landmark (SAML)-based
algorithm is a special case of the multiple-actor-multiple-
landmark-based algorithm when we set the number of actors
to one.

4. EXPERIMENTAL RESULTS
In this section, we generate a simulation dataset. Based

on the simulation dataset, we first validate our hypothetical
strategies and then test two practical algorithms.



Algorithm 1 Multiple-actor-multiple-landmark (MAML)-
based localization algorithm

Input t frame ID
c
(0)
m initial position of the mth actor

h
(0)
m initial heading of the mth actor

o
(t)
m,n observation of the mth actor to the nth landmark at time t

Output ĉ
(t)
m real-time position of the mth actor

ĥ
(t)
m real-time heading of the mth actor

Function for m = 1 to M

construct a graph A
(t)
m via (6)

obtain the permutation matrix Ĵ
(t)
m via (7)

associate traffic landmarks, Ĵ
(t)
m A

(t)
m (Ĵ

(t)
m )

T

obtain the relative rotation, R̂
(t)
m , via (8)

estimate the heading at time t, ĥ(t)m , via (9)
estimate the position at time t, ĉ(t)m , via (5)

return ĉ
(t)
m , ĥ(t)m

Simulation dataset. We randomly sample N positions
from the unit square [0,1]2 to generate N traffic landmarks.
To generate the real-time trajectory for each one of N actors,
we consider a dynamic model as follows [15].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

center ∶ c
(t+τ)
m = c

(t)
m + ∫

t+τ
η=t v

(η)
i u

(η)
m dη ∈ R2,

speed ∶ v
(t+η)
m = v

(t)
m + ∫

t+τ
η=t a

(η)
m dη ∈ R,

heading vector ∶ u
(t)
m = [cos(h(t)m ) sin(h(t)m )]

T
∈ R2,

heading ∶ h
(t+τ)
m = h

(t)
m + ∫

t+τ
η=t w

(η)
m dη ∈ R.

We randomly generate the initial position, speed and heading
of each actor, c(0)m ,v

(0)
m ,h

(0)
m , as well as the acceleration pro-

file and angular speed profile, a(t)m and w
(t)
m . The variance of

the observation noise is σ2 = 0.1.

(a) M = 5. (b) N = 5.

Fig. 2: Validation of hypothetical strategies. Plots (a) shows
the localization errors as a function of the number of traffic
landmarks. Plots (b) shows the localization errors as a func-
tion of the number of traffic actions. We see that the simula-
tion matches the theory well.

Validation of hypothetical strategies. Here we assume
the association of traffic landmarks and the real-time headings
are known. We aim to validate the effectiveness of using mul-
tiple actors and traffic landmarks. Figure 2 shows the local-
ization performances with various pairs of M,N under four

strategies. The localization performance is evaluated based
on the mean square error averaged across all the actors and
all the frames. We see that (1) given a fixed number of ac-
tors (M = 5), the MASL and MAML-based strategies sig-
nificantly outperforms when the number of traffic landmarks
increases; and (2) given a fixed number of traffic landmarks
(N = 5), the SAML and MAML-based strategies significantly
outperforms when the number of actors increases; (3) the
MAML-based strategy outperforms the other three strategies
across all the scenarios. These three observations all match
the theoretical analysis in Theorems 1, 2, 3, and 4. To summa-
rize, using multiple actors and traffic landmarks can improve
the real-time localization performance in theory.

(a) M = 5. (b) N = 5.

Fig. 3: Test of practical algorithms. Enabling multiple actors
to communicate with each other makes the localization error
decrease by around 20% in average.

Test of practical algorithms. Now we consider that the
association of traffic landmarks and the real-time headings are
unknown as in a practical scenario and use graph matching to
find the association and align the heading. We test the practi-
cal localization performances of using the SAML-based and
MAML-based localization algorithms. Figure 3 shows the lo-
calization performances with various pairs ofM,N under the
SAML and MAML algorithms. The localization performance
is evaluated based on the mean square error averaged across
all the actors and frames. We see that (1) given a fixed number
of actors (M = 5), the SAML and MAML-based algorithms
significantly outperforms as the number of traffic landmarks
increases; and (2) given a fixed number of traffic landmarks
(N = 5), the SAML and MAML-based algorithms stay sim-
ilarly as the number of actors increases; and (3) the MAML-
based algorithm outperforms the SAML-based algorithm by
20% in average.

5. CONCLUSIONS
In this paper, we propose collaborative localization that

allows autonomous vehicles to localize themselves by detect-
ing traffic landmarks and communicating with each other. We
theoretically show that multiple vehicles with multiple traffic
landmarks would significantly improve the localization per-
formance. We then propose practical algorithms. The experi-
mental results validate the potential of the proposed methods.
This technique could potentially serve as a complementary
approach to the current solution.
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