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structural consistency. These degraded examples are automatically created by randomly
exchanging pairs of patches in an image’s convolutional feature map. We call this approach
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eXchange GAN (FX-GAN), in which the discriminator is trained not only to distinguish real
versus generated images, but also to perform the auxiliary task of distinguishing between
real images and structurally corrupted (feature-exchanged) real images. This auxiliary task
causes the discriminator to learn the proper feature structure of natural images, which in turn
guides the generator to produce images with more realistic structure. Compared with strong
GAN baselines, our proposed self-supervision approach improves generated image quality,
diversity, and training stability for both the unconditional and class-conditional settings.
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Abstract

We propose a self-supervised approach to improve the

training of Generative Adversarial Networks (GANs) via

inducing the discriminator to examine the structural con-

sistency of images. Although natural image samples pro-

vide ideal examples of both valid structure and valid tex-

ture, learning to reproduce both together remains an open

challenge. In our approach, we augment the training set

of natural images with modified examples that have de-

graded structural consistency. These degraded examples

are automatically created by randomly exchanging pairs of

patches in an image’s convolutional feature map. We call

this approach feature exchange. With this setup, we pro-

pose a novel GAN formulation, termed Feature eXchange

GAN (FX-GAN), in which the discriminator is trained not

only to distinguish real versus generated images, but also

to perform the auxiliary task of distinguishing between real

images and structurally corrupted (feature-exchanged) real

images. This auxiliary task causes the discriminator to

learn the proper feature structure of natural images, which

in turn guides the generator to produce images with more

realistic structure. Compared with strong GAN baselines,

our proposed self-supervision approach improves generated

image quality, diversity, and training stability for both the

unconditional and class-conditional settings.

1. Introduction

Generative adversarial networks (GANs) [9] learn com-
plex data distributions by pitting a generator and a discrim-
inator against each other in an adversarial game. The gen-
erator attempts to generate valid data from a learned data
distribution, while the discriminator is trained to distinguish
these generated data from samples of the true data distribu-
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tion. These two components are optimized in a min-max
game, towards an equilibrium where the discriminator is
unable to distinguish whether the generated data are real
or fake. Given that the key learning signal for training the
generator comes from the discriminator, the losses against
which the discriminator is trained implicitly guides effec-
tive training of the generator. Thus, training the discrimi-
nator to learn useful image properties may produce better
generators. This leads to more stable [21] and scalable [2]
optimization via suitably regularizing the otherwise unsta-
ble saddle-point seeking min-max game.

Discriminators in vanilla GANs [9] use only a single-bit
label, namely whether the input is real or fake. There have
been several previous attempts at providing the discrimina-
tor with meta-information regarding the real samples. For
example, conditional GANs [19] extend the generator and
discriminator to use auxiliary information, such as the class
label of an input image [30, 22], leading to better quality
generation [27]. Similarly, the style and structure of the
real images are used in Wang et al. [32], while photo real-
ism is captured in Huang et al. [11]. However, given the
huge amount of data needed for training GANs, auxiliary
tasks that require expensive labels would not be practical.

Another popular method for pre-training machine learn-
ing models is self-supervision [6, 20, 35], in which training
labels are derived automatically by defining a task over the
input data. For example, in [23, 28], the image patches are
shuffled, and the task is to recover the shuffling permutation,
under the implicit assumption that a network which is able
to perform well on this deliberate task should have learned
the structure of images adequately. Self-supervised learning
has also recently been explored for regularizing GAN train-
ing. For example, in Chen et al. [3], right-angle rotations
are applied to the input images [3], and the discriminator is
asked to predict the correct rotation angle. Such a loss on
the discriminator essentially equips it for recognizing global
structure in real data.



Figure 1. Overview of our proposed FX-GAN framework. In addition to the task of distinguishing between generated and real data samples,

we introduce the feature exchange operation and a new task of distinguishing between exchanged and original data samples(images). D1

and D2 are neural network layers of the discriminator. The feature maps produced by D1 from real images(second row) are duplicated.

The duplicated feature maps(third row) are being applied to the exchange operator and pass through D2 to produce a prediction for the two

tasks. The exchange operation exchanges feature blocks at two random spatial locations, as illustrated by the blue arrows.

In this paper, we propose a different task for self-
supervision, which we call Feature eXchange (hence the
name FX-GAN). In contrast to [3], our task requires the
discriminator to learn to distinguish local structural incon-
sistencies in its inputs. Such inconsistencies are introduced
into the input real images by swapping the feature vectors
at a pair of random spatial locations in the images’ inter-
mediate convolutional feature maps. The network frame-
work is illustrated in Figure 1. The CNN-based discrimi-
nator is split into two parts, denoted as D1 and D2 in Fig-
ure 1, in which D1 produces a spatial grid of channel-wise
feature maps for real image inputs. We randomly choose
two locations on this grid and exchange the features at the
chosen locations. The resulting exchanged feature map is
passed through the subsequent layers of the discriminator
network (D2). Our modified discriminator is trained with
two losses: (i) the standard adversarial loss that classifies
its inputs as real or fake, and (ii) an auxiliary loss that clas-
sifies the inputs as being exchanged or not. Our intuition
for the latter loss is that if the discriminator learns to clas-
sify exchanged feature maps on real images, then it will be
better at distinguishing such local structural inconsistencies
in the generated images. This improved discriminator can
indirectly signal the generator to produce more structurally
coherent content, i.e., more realistic synthesized images.
Note that in contrast to the rotation-based task in [3], our
proposed scheme captures global structural consistency in
a bottom-up manner via distinguishing local structural co-

herency at arbitrary image locations within the generated
images; our proposed task thus provides a stronger form of
self-supervision.

Our key motivation for the proposed methodology comes
from the observation [27, 34] that it is easier for GANs to
learn to generate texture elements and small scale features
than to generate objects with realistic structure (e.g., a dog’s
face must have the correct structural composition of eyes,
nose, and mouth). We conjecture that this is due to the usual
architectural choices for the discriminator, which is typi-
cally a CNN, and which is not readily amenable to learn-
ing feature representations that capture higher-order struc-
tural details in images. Recall that CNNs were originally
designed for tasks that demand various forms of structural
invariance (such as in object recognition, semantic segmen-
tation, etc.); as a result, long-range higher-order information
aggregation (as for image generation) can only occur grad-
ually across many layers. We believe our proposed self-
supervised task encourages a CNN-based discriminator to
learn structural consistency more directly.

To summarize, our contributions are as follows: (i) we
design a novel self-supervised task that creates structurally

inconsistent feature maps from real input images, (ii) we
propose a new discriminator architecture designed for this
self-supervised task, which in addition to distinguishing its
inputs as real vs. fake, should also classify whether or
not they are structurally corrupted. We provide extensive
experiments of our proposed multi-task GAN framework



on several datasets and achieve improved image genera-
tion results, as measured using both inception score and
Fréchet inception distance (FID), against strong baselines
used in [34]. Not only does our approach improve gener-
ation performance in the unconditional GAN setting tar-
geted by a concurrently developed self-supervised GAN
approach [3], but it also improves performance in class-
conditional GANs. We believe our work is an important
step towards exploring unsupervised learning of structured
generative models.

2. Related work

Self-supervised learning defines a set of methods that learn
useful feature representations from data by solving an in-
direct task for which labels can be easily and automati-
cally generated. There is emerging interest in applying self-
supervised learning to various tasks. Gidaris et al. [8] show
that the auxiliary task of learning to identify image rota-
tion can be beneficial for classification because the structure
of objects matters for predicting rotation. Image coloriza-
tion [35] and context encoder [25] attempt to recover image
color and missing regions for feature learning. Agarwal et

al. use motion cues [1], and Lee et al. use temporal ordering
in video sequences [15] as sources of self-supervision. In
ALI [7], a discriminative network is proposed that is trained
to distinguish between joint latent or data-space samples
from the generative network and joint samples from the in-
ference network. For image-conditioned GANs, CycleGAN
[37] introduces the cyclic loss that demands the generated
image has a one-to-one correspondence with its input. This
auxiliary task stabilizes GAN training in the unsupervised
learning regime via avoiding the problem of mode-collapse.
GAN coupled with auxiliary tasks can be useful for both
improved generation of complex images [30] and semi-
supervised learning [26]. Conditional GANs are currently
the most commonly used generative models capable of syn-
thesizing complicated multi-class datasets, such as Ima-
geNet. The AC-GAN was the first model to introduce an
auxiliary classification loss for the discriminator [24]. More
recently, the StarGAN, proposed by Choi et al. [4], applied
AC-GAN to multi-domain image translation. FUNIT in-
cludes one real/fake head per class [17]. This architecture
improves performance with fewer training samples from
each class.

As alluded to above, Chen et al. [3] propose a self-
supervised GAN model termed SS-GAN by rotating input
images by either 0◦, 90◦, 180◦, or 270◦ and introduce the
auxiliary self-supervision task of rotation prediction. This
task requires the model to learn something about the global
structure of real images, which improves the performance of
their unconditional GAN base model. However, they do not
address the problem of using self-supervision to improve
the performance of class-conditional GANs. In this paper,

we show that our FX-GAN method improves image gener-
ation not only in the unconditional settings of SS-GAN, but
also in the 1000-class conditional setting of ImageNet gen-
eration. Furthermore, our feature exchange task induces the
network to learn both the long-range global structure and
shorter-range local structure of images of objects.
Spatial structure of images for learning has been ex-
plored in several previous works. Villegas et al. [31] pro-
posed generating structure to guide subsequent image gen-
eration in a supervised setting. The method of Zhu et

al. [36] learns a discriminative model for the perception
of realism in composite images. Relation networks [29]
form explicit pairs of features for reasoning. Noroozi and
Favaro [23] showed that the task of solving jigsaw puz-
zles leads to useful feature representations for classification.
Liu et al. [18] showed that a CNN will not perform well
in tasks related to spatial reasoning by default. Traditional
convolutional GANs generate high-resolution details as a
function of only spatially local points in lower-resolution
feature maps. In the Self-Attention GAN (SAGAN) [34],
however, details can be generated using cues from all fea-
ture locations. Moreover, their discriminator can verify if
the highly detailed features in distant portions of the image
are consistent with each other. Furthermore, recent work
has shown that generator conditioning affects GAN perfor-
mance. In [16], selective transfer units are incorporated
with an encoder-decoder to adaptively select and modify
encoder features for enhanced attribute editing. Inspired by
these works, our model proposes the feature exchange (FX)
auxiliary task to force the GAN to focus on both the local
and global spatial structure of images. We are not aware of
any previous works that use feature exchange as proposed
for improving GAN training.

3. Method

In this section, we first review the standard GAN termi-
nology and introduce our notation, after which we present
the architecture of feature exchange GAN.

3.1. Generative Adversarial Networks

Let us first formally define the generator and discrim-
inator networks and the basic optimization setup used to
learn to generate realistic samples from random noise. The
generator neural network, G : Rv → Rd, takes as in-
put a v-dimensional random noise vector and outputs a
d-dimensional image. The discriminator neural network,
D : Rd → R1, takes in an image and produces a score. (In
contrast, FX-GAN’s dual-task discriminator produces two
scores, as we explain in Section 3.2.) The standard GAN
optimization problem using a hinge-loss can be stated as:

PD := min
D

E
z∼p(z) [1+D(G(z))]+ + E

x∼p(x) [1−D(x)]+

(1)

PG := max
G

E
z∼p(z)[D(G(z)], (2)



where the problems PD and PG are optimized over the
parameters of the discriminator and generator neural net-
works respectively. Here z is sampled from a noise distri-
bution, and x is sampled from the data distribution (a large
data set). The notation [ ]+ stands for the hinge loss, i.e.,
[ · ]+ = max(0, · ). In the setup defined above, the discrim-
inator’s target is to produce a score less than −1 on the fake
(generated) images, while producing a score greater than 1
for real images. As for the generator, its parameters are opti-
mized so as to make the discriminator produce higher scores
for generated images. The use of a margin (the value 1 in
Equations (1) and (2)) makes the training more robust, as
proposed in [21]. The generator and discriminator solve
two opposing requirements, and the optimization is a stan-
dard min-max game, although not a zero-sum one.

3.2. Feature Exchange GAN (FX-GAN)

Our main goal in this paper is to introduce self-
supervisory signals into the GAN training that can speed
up the convergence of the optimization and/or improve the
quality of the generated images. The key self-supervisory
signal we rely on is the image context; specifically, to em-
power the discriminator to recognize whether its input real

images have been structurally corrupted (by exchanging
patches of feature vectors in their feature space). Our hope
is that having such a quality for the discriminator will im-
plicitly influence the generator to produce fake samples that
are devoid of such structural anomalies, leading to more co-
herent and structured content.

The Exchange Operator: An overview of our algorithm is
provided in Figure 1. Formally, suppose X ∈ Rh×w×d de-
notes a feature map tensor, and let Xp,q ∈ Rd represent the
feature vector at spatial location (p, q). Then, we define the
exchange operator, ξ(X;π), which inputs X and outputs a
feature map tensor that is identical to X except that its fea-
ture vector at some spatial location (i, j) is exchanged with
that at location π(i, j), where π denotes a random permuta-
tion of the location index set K. That is, for some (i, j) ∈ K,

ξ(X;π)p,q =

⎧

⎪

⎨

⎪

⎩

Xi,j if (p, q) = π(i, j),

Xπ(i,j) if (p, q) = (i, j),

Xp,q otherwise.

Intuitively, the exchange operator exchanges the spatial lo-
cations of some elements of the input feature map tensor.

In Section 4.4, we experiment with varying the param-
eters of feature exchange. For example, in addition to ex-
changing a pair of individual feature vectors (referred to as
block size 1 × 1), we also experiment with exchanging a
small block of feature vectors

(

e.g., a 3× 3× d block cen-

tered at spatial location (i, j)
)

with a block of the same size
centered at spatial location π(i, j). However, we found that
exchanging a single pair of feature vectors (1 × 1 block)
performs best. (We also experimented with exchanging fea-

ture vectors at more than one pair of locations, but did not
observe an improvement.) This indicates that exchanging a
large number of feature vectors is not useful, because that
makes it too easy for the discriminator to recognize that an
exchange has occurred.

To simplify our subsequent notation, we will slightly
abuse the inputs to the exchange operator. For example, for
D(ξ(x)), we mean that as the input x feeds forward through
the discriminator neural network D, the intermediate feature
tensor (of dimension h×w× p) is extracted and exchanged

(using a random permutation π) en route to producing the
output of D.

The idea of feature exchange can be combined with a va-
riety of existing GAN algorithms and network architectures.
To do so, we divide an existing algorithm’s discriminator D
into a sequence of two parts, D1 and D2. The input to D

goes through D1 to produce a down-sampled feature ten-
sor, on which a possible exchange operator may be applied
if the input was a real image. The tensor is then passed
through D2 to produce the discriminator output. We apply
the exchange operator in a feature space of appropriate di-
mension with a suitable block size (see the discussion in
Section 4.4) to avoid making the task too easy or too dif-
ficult for the discriminator. In contrast, exchanging pixel
blocks in the raw pixel space would be prone to produce ar-
tifacts (such as discontinuous patch boundaries) that lead to
inferior training (i.e., the discriminator may trivially iden-
tify the exchange via learning a representation for low-level
texture rather than high-level semantic structure).

Dual-Task Discriminator: Our key insight is to strengthen
the discriminator D to recognize corrupted (exchanged) im-
ages, in addition to identifying whether its inputs are real
or fake. To this end, we modify the final linear layer of a
discriminator D so that instead of one scalar output, it has
two: (i) Dr/f , which has the standard discriminator goal of
recognizing whether its inputs are real or fake, and (ii) Dfx,
whose goal is to recognize whether or not its inputs have
been feature-exchanged. The FX-GAN loss functions in-
corporate the following dual objectives:

ℓfx(x) = [1 +Dfx(x)]+ + [1−Dfx(ξ(x))]+ , (3)

ℓr/f(x, z) =
[

1 +Dr/f(G(z))
]

+
+

[

1−Dr/f(x)
]

+

+ λ
[

1−Dr/f(ξ(x))
]

+
. (4)

The loss defined in (3) identifies whether the real input
images are feature-exchanged. Note that we only consider
exchanging features of the real images, because corrupting
the fake samples as they are being generated may not be
fruitful (this is corroborated by our experiments). The loss
ℓr/f in (4) is an extension of the loss in (1), but it differs in
that we also include a term for the feature-exchanged real
images (which are considered real). We found that using a
weighting λ for this new term is beneficial.

Letting D′ refer to the new dual-task discriminator, we



CelebA-HQ LSUN-bedroom

Figure 2. Training performance of unconditional GANs on two

datasets. Both forms of self-supervision, FX (red) and SS-Rot

(orange), make the training more stable and yield large improve-

ments. On both datasets, our FX self-supervision task yields re-

sults comparable to or better than the SS-Rot self-supervision pro-

posed in [3].

Dataset Method FID

CelebA-HQ

SS-GAN-Rot [3] 24.36
DG-SNGAN 42.20
DG-SNGAN + SS-Rot 20.50
DG-SNGAN + FX (FX-GAN) 19.25

LSUN-
bedroom

SS-GAN-Rot [3] 13.30
DG-SNGAN 112.30
DG-SNGAN + SS-Rot 24.21
DG-SNGAN + FX (FX-GAN) 12.90

CIFAR10
SS-GAN-Rot [3] 15.65
DG-SNGAN 26.33
DG-SNGAN + SS-Rot 26.36
DG-SNGAN + FX (FX-GAN) 24.63

Table 1. Comparison of unconditional GANs. Across all three

datasets in the unconditional setting, FX-GAN improves upon the

baseline model DG-SNGAN.
(

Results labeled as SS-GAN-Rot [3]

are those reported in [3] for their best-performing unconditional

model, SS-GAN(sBN)
)

.

can state the complete FX-GAN learning problem as:

P ′
D := min

D′

E
x∼p(x),z∼p(z)[ℓr/f(x, z) + γ ℓfx(x)] (5)

P ′
G := max

G
E
z∼p(z)[Dr/f(G(z))], (6)

where γ is another constant weight. The objective P ′
G for

the generator remains the same as PG provided in (2).

4. Experiments and Results

In this section, we evaluate the empirical benefits of FX-
GAN on several standard datasets. After reviewing the set-
tings in Section 4.1, we show the overall improvement with
FX-GAN on unconditional and conditional cases in Sec-
tions 4.2 and 4.3, respectively. Then we discuss other
aspects of FX-GAN in Section 4.4, including the feature-
exchange parameters and impact on training speed.

4.1. Setup of Experiments

To evaluate our approach, we extend the publicly avail-
able TensorFlow-based implementation of Self-Attention

GAN (SAGAN) [34] to incorporate feature-exchange func-
tionality. This implementation provides two strong baseline
GAN architectures, namely: i) the SAGAN itself, which
learns a self-attention layer inside the generator and the dis-
criminator that produces an attention map for each spatial
location in the feature tensor, and ii) the same architecture
as SAGAN, but without the self-attention layer. Because
this architecture applies spectral normalization (SN) [21] to
both the discriminator (D) and generator (G), we denote it
as DG-SNGAN.

Implementation Details: For all experiments, we used
Adam as the optimizer [13] with parameters β1 = 0 and
β2 = 0.9 [21], and used Two Time-scale Update Rule
(TTUR) [10] to stabilize the training. For our FX algorithm,
we set the weights of our feature-exchange terms in the loss
functions (4) and (5) as λ = γ = 0.1. The exchanged fea-
ture block size is 1×1 except in Sec 4.4. In all experiments,
only one pair of feature blocks are exchanged.

4.2. FX with unconditional GANs

We first verify the effectiveness of our approach on
unconditional image generation. We use the the same
datasets used by Chen et al. [3], including CelebA-HQ [12],
CIFAR10 [14], and the bedroom category of the LSUN
dataset [33]. To measure the performance of uncondi-
tional GANs, we use Fréchet Inception Distance (FID) [10],
where smaller FID is better. Here we only used DG-
SNGAN as the baseline model. (As both SAGAN and
FX can change the feature maps of convolution layers, the
combination will introduce extra parameters to test.) We
do evaluate SAGAN with FX below for conditional GANs.
Hereafter, we use FX-GAN to denote the combination of
DG-SNGAN + FX.

Implementation Details: For both the LSUN-bedroom and
CelebA-HQ datasets, we resized the images to 128×128×3
as in [3]. Our architecture, which is the same as SAGAN,
is described in Table 1 of the supplementary material. We
used 256 as the batch size, and used learning rates of
0.00005 for the generator and 0.0001 for the discriminator.
We apply FX on the feature maps of size 32 × 32 pixels.
For CIFAR10, since its image size is only 32 × 32 pixels,
we changed the architecture, as described in Table 2 of the
supplementary material. We also changed the batch size to
64, and set the generator and discriminator learning rates to
0.0004 and 0.0001, respectively.

LSUN-bedroom and CelebA-HQ Results: Figure 2
shows FID curves from training unconditional GANs on
the CelebA-HQ and LSUN-bedroom datasets. The top two
sections of Table 1 show the FID of the best performing net-
work for each dataset and model combination. In the first
row of each section (labeled SS-GAN-Rot [3]), we present
the results reported in [3] for their own implementation of
their best-performing unconditional model, SS-GAN(sBN).



DG-SNGAN + SS-Rot FX-GAN Real Images
Figure 3. Generated images of GANs trained on the LSUN-bedroom dataset. FX-GAN overall produces more realistic scene layouts and

local details.

For a fairer comparison, we also implement their rotational
self-supervision on top of our baseline DG-SNGAN; we
call the combination DG-SNGAN + SS-Rot. Our proposed
model is labeled FX-GAN (the DG-SNGAN baseline + FX
self-supervision).

The unconditional version of our baseline, DG-SNGAN,
is unstable on both the LSUN-bedroom and CelebA-HQ
datasets, and the training often diverges. For both forms
of self-supervision, our FX-GAN as well as DG-SNGAN +
SS-Rot, stabilize the training and significantly outperform
the baseline model. On the CelebA-HQ dataset, FX-GAN
just slightly outperforms the other self-supervised model.

On LSUN-Bedroom, our proposed method achieves a
much better FID score than the rotational self-supervision
DG-SNGAN + SS-Rot. The improvement may be because
our feature exchange introduces more subtle changes to the
original image or feature than the entire-image rotation of
SS-Rot. Feature exchange forces the discriminator in FX-
GAN to pay more attention to the consistency of neighbor-
ing features. Figure 3 demonstrates example generated im-
ages of both self-supervised GAN methods trained on the
LSUN-bedroom dataset. Overall, FX-GAN produces more
realistic scene layouts and local details.

CIFAR10 Results: The bottom section of Table 1 shows
the best FID obtained when training each unconditional
GAN model on the CIFAR10 [14] dataset without using
the class labels. Adding SS-Rotation self-supervision to
the baseline DG-SNGAN model does not improve the base-
line’s performance. In contrast, our FX-GAN model’s self-
supervision does improve over the baseline, reducing the
FID from 26.33 to 24.63.

A final note about the SS-Rot self-supervision. As im-
plemented by [3], the SS-Rot self-supervision improved
generation performance on two datasets (LSUN-bedroom
and CIFAR10), but actually degraded performance on the
third dataset (CelebA-HQ). In our implementation, SS-Rot

Base Method Self-Supervision
Inception

Score
FID

DG-SNGAN
None 47.6 21.3
FX (FX-GAN) 51.0 19.5

SAGAN
None 49.0 19.7
FX 49.8 18.9

Table 2. Performance of class-conditional GAN generators trained

on ImageNet.

exhibits a similarly uneven performance, improving results
on (a different) two of the datasets (CelebA-HQ and LSUN-
bedroom) and slightly degrading results on the third dataset
(CIFAR-10). In contrast, our proposed FX self-supervision
consistently improves upon the performance of the baseline
method on all datasets tested.

4.3. FX with Conditional GANs on ImageNet

We use ImageNet [5] to evaluate the benefits of the pro-
posed FX self-supervision on conditional GAN training. In
addition to measuring the FID, here we also measure the
inception score [27], which is commonly used to compare
image generation performance on this dataset.

Implementation Details: We resize and crop the images to
128 × 128 pixels as in [21], and use the same architecture
as for LSUN-bedroom and CelebA-HQ. We use 256 as the
batch size, 0.0001 as the learning rate for the generator, and
0.0004 as the learning rate for the discriminator. We tested
FX by exchanging a pair of 1×1 blocks in the feature maps
of 32 × 32 spatial dimension. For the model SAGAN, we
apply self-attention to the feature tensor of spatial dimen-
sion 32 × 32, which is the best model reported by [34]. As
both FX and self-attention access the same feature maps,
the order of FX and self-attention matters. We apply FX
before self-attention, because we found that training can be
unstable when using the reverse order.



DG-SNGAN FX-GAN

Figure 4. The generated images by DG-SNGAN and FX-GAN trained on ImageNet. FX-GAN generates images that are both more diverse

and more realistic.

DG-SNGAN SAGAN

Figure 5. Smoothed Inception score curves of the generators

trained without (blue) and with FX (red) on ImageNet. Feature

exchanged models lead to higher Inception score overall.

ImageNet Results: Figure 5 plots the inception scores
throughout 1 million iterations of training for each of the
baseline models, DG-SNGAN and SAGAN, both without
(blue) and with (red) FX self-supervision. For both base-
line models, the inception scores with FX are better (higher)
than without FX. Table 2 shows the maximum inception
scores and minimum FIDs achieved by each model during
the 1 million iterations of training. The table shows that FX
self-supervision boosts the performance of both baselines,

but especially improves upon DG-SNGAN. One reason for
explaining FX provides less improvement on SAGAN may
be that both FX and self-attention can change the feature
maps within the discriminator, and thus each might inter-
fere with the benefits of the other. Exploring their synergy
will be our future work.

Qualitative Results: Figure 4 shows example images of
four classes (monarch butterfly, crib, library, ptarmigan)
generated by the baseline DG-SNGAN and our proposed
FX-GAN model. Notice the improved diversity and realism
of the FX-GAN images. Figure 6 shows examples of inter-
polated samples between generated images from our class-
conditional FX-GAN. Each row of images corresponds to a
particular class. The ends of each row are images generated
from different random noise vectors, while the intermedi-
ate images are generated from vectors whose values were
interpolated linearly between the two noise vectors.

4.4. Discussion

Hyperparameters: Our feature exchange algorithm has
two hyperparameters: the scale of feature map at which the



Figure 6. Interpolation examples of FX-GAN generated images (one class per row). The images on the left and right ends of each row are

generated from random noise vectors. The intermediate images in each row are generated from vector values that were linearly interpolated

between the two end vectors.

Block size 1× 1 2× 2 3× 3
FID 24.63 26.33 25.90

Table 3. Effect of varying the block size to exchange within a

16x16 feature map. For each block size, the table shows the lowest

(best) FID obtained in 100,000 iterations of training our uncondi-

tional FX-GAN on CIFAR10.

Feature map size 4× 4 8× 8 16× 16
FID 37.22 25.96 24.63

Table 4. Effect of varying the feature map used for exchange. For

each feature map size, the table shows the lowest (best) FID ob-

tained in 100,000 iterations of training our unconditional FX-GAN

with block size 1× 1 on CIFAR10.

exchange is performed, and the size of the blocks of feature
vectors that are exchanged within that feature map. To eval-
uate the effects of these hyperparameters, we trained an un-
conditional FX-GAN on CIFAR10 with batch size 64 and
measured the minimal FID within 100,000 training steps.
Table 3 shows the results when the feature exchange oper-
ator is applied with different block sizes in the 16 feature
map. We can see that FID increases when the block size
is larger than 1. Table 4 shows the results of applying the
operator with 1 × 1 block size in different feature maps,
where 16 × 16 is the largest (highest-resolution) feature
map. It shows that when the feature map size is reduced,
FID increases. As each pixel in a larger feature map has a
smaller receptive field in the original image space, it poten-
tially makes the task of identifying structure inconsistency
more difficult. The results of both Tables 3 and 4 suggest
that a smaller feature block in a larger feature map leads to
more apparent benefit of FX self-supervision. This finding
suggests that the performance of the generator is affected
by the difficulty of training the “Exchanged?” task (see Fig-
ure 1). When the block size is large, it is easy to tell whether

or not the feature map is being exchanged. In this case, the
training loss is mainly related to the “Real?” task, and the
benefit of FX vanishes. However, when the exchange oper-
ator is applied directly to the real images, it creates artifacts
in images and leads to inferior results empirically.

Speed: Although FX introduces an extra stage, the addi-
tional overhead is relatively minor. In our experiments on
4 Titan XP GPUs, the training time per iteration was in-
creased by about 20%, from 1.86 seconds to 2.22 seconds,
when FX was enabled. The output of D1 for real images is
only computed once for the second and third rows of Fig-
ure 1. The additional computation comes from passing the
exchanged feature maps through the layers in D2.

5. Conclusion

We present Feature Exchange GAN (FX-GAN), a self-
supervised framework for improving GAN learning perfor-
mance. We extend the discriminator to indicate not only
whether the input image is real, but also whether there is
structural inconsistency. Based on our feature exchange op-
erator, a new loss function is proposed to train the multi-task
discriminator, which leads to a regularized feature repre-
sentation for the discriminator and hence a better generator.
Experimental results show that when combined with two
different strong GAN baselines, our feature-exchange self-
supervision can achieve improved generated image quality
and diversity on several datasets including ImageNet. FX-
GAN yields significant improvements in both image gen-
eration and training stability, in unconditional and class-
conditional GAN settings. Our analysis of different param-
eter settings of FX-GAN indicates a correlation between the
difficulty of identifying the structural inconsistency and the
improvement in generated image quality.
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1. Error analysis

Figure 1 shows the errors of the Exchanged? task pre-
diction (see Fig. 1 of the paper) when training on ImageNet
from iterations 300,000 to 900,000. Note that with self-
attention (SAGAN + FX), the error for task reduced to zero
more quickly than without self-attention (FX-GAN). This
is expected, because the goal of self-attention is to learn to
attend to regions that are semantically closely related. Be-
cause of this, the inconsistency caused by feature exchange
is easier for the discriminator to distinguish, so the proposed
feature-exchange loss, ℓfx, will not be as effective at regular-
izing the discriminator’s representation. For FX-GAN, the
error decreases much more slowly, which makes the reg-
ularization from ℓfx more effective and leads to larger im-
provements in the results. In future work, we could adap-
tively adjust the difficulty for learning the Exchanged? task.

2. Network architecture

For datasets ImageNet, CelebA-HQ, and LSUN bed-
room, our network architecture is the same as SAGAN [1].
In the discriminator, each image is first resized to 128×128

pixels, then passed through a sequence of residual blocks.
Each residual block downsamples each spatial dimension
by 2 and expands the number of channels. Table 1(a) de-
scribes the discriminator network architecture by giving the
size of the tensor in the spatial and channel dimensions, at
the input to the network and after each residual block. For
example, the input to the discriminator is a 128× 128-pixel
image with 3 channels. For the generator, the input noise
is first converted into a tensor of 4 × 4 × 1024 elements,
then passed through a sequence of deconvolution filters to
increase the spatial size and reduce the number of channels.
Table 1(b) lists the size of the tensor after each deconvolu-

†Work done while interning at MERL.

FX-GAN

Not Exchanged Exchanged

SAGAN + FX

Not Exchanged Exchanged

Figure 1. Errors made by the Exchanged? task predic-

tion(percentage of images misclassified per batch) when training

on ImageNet from iterations 300,000 to 900,000. Errors in the left

column are images whose features were not exchanged but were

misclassified as exchanged. Errors in the right column are images

whose features were exchanged but were misclassified as not ex-

changed. Top row: FX-GAN. Bottom row: SAGAN + FX.

tion. For CIFAR10, since the input size is smaller (32×32),
we adjust the network architecture to have fewer residual
blocks and fewer deconvolution layers, as described in Ta-
ble 2.

3. Qualitative results from FX-GAN versus
DG-SNGAN

In this supplementary material, we present example im-
ages that we generated using the two models that are eval-



Dimension Input size Size after each residual block

x, y 128 64 32 16 8 4 2 2

channels 3 64 128 256 512 1024 2048 2048

(a) Discriminator

Dimension Input size Size after each deconvolution

x, y 4 8 16 32 64 128 128

channels 1024 1024 512 256 128 64 3

(b) Generator

Table 1. The network architecture for LSUN-bedroom, CelebA-HQ, and ImageNet. The numbers represent the tensor shapes after the

residual blocks of the discriminator (a) and after the deconvolution blocks of the generator (b).

Dimension Input size Size after residual blocks

x, y 32 32 16 8 4

channels 3 64 128 256 512

(a) Discriminator

Dimension Input size Size after deconvolutions

x, y 4 8 16 32 32

channels 256 256 128 64 3

(b) Generator

Table 2. The network architecture for CIFAR10.

uated in the top section of Table 2 of the paper. The first
model is the baseline model, DG-SNGAN. The second is
our proposed FX-GAN model (a.k.a. DG-SNGAN + FX).
Both models were trained for 1,000,000 iterations on Ima-
geNet (1,000 classes) to perform class-conditional genera-
tion of 128×128-pixel images.

3.1. Images generated by our FX-GAN model

Figures 2, 3, and 4 show examples of class-conditional
image generation by our proposed model, FX-GAN. Each
figure shows 64 generated examples of one class. Each of
the 64 images was generated using a different random noise
vector.

3.2. Interpolated images generated by FX-GAN

In Figure 5, we show example interpolations of class-
conditional images generated by FX-GAN. Each row of im-
ages contains a separate interpolation corresponding to a
particular class. The ends of each row are images generated
from different random noise vectors, while the intermedi-
ate images are generated from vectors whose values were
interpolated linearly between the two noise vectors.

3.3. Qualitative comparison to DG-SNGAN

We qualitatively compare the class-conditional image
generation performance of our FX-GAN model vs. the
baseline DG-SNGAN model in Figures 6–12. These exam-
ples demonstrate subjective improvements in structural con-
sistency, detail, and/or image diversity for FX-GAN. Inter-
estingly, for some classes, as seen in Figures 10, 11, and 12,
the DG-SNGAN baseline seems to exhibit some form of
mode collapse (reduction), where greatly reduced image di-
versity is observed. Across all of the classes, we generally
observed that FX-GAN was far more resistant to this type
of mode collapse.
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Figure 2. FX-GAN generated examples for ImageNet class 15, “robin.”



Figure 3. FX-GAN generated examples for ImageNet class 914, “yawl.”



Figure 4. FX-GAN generated examples for ImageNet class 980, “volcano.”



Figure 5. FX-GAN generated image interpolation examples, one class per row. The images on the left and right ends of each row are

generated from random noise vectors. The intermediate images in each row are generated from vector values that were linearly interpolated

between the two end vectors.



DG-SNGAN FX-GAN

Figure 6. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 24, “great grey owl.” Note that FX-GAN has

learned to generate more realistic eyes than the baseline method.



DG-SNGAN FX-GAN

Figure 7. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 81, “ptarmigan.” Note that FX-GAN has

learned to generate more realistic body shapes than the baseline method.



DG-SNGAN FX-GAN

Figure 8. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 155, “Shih-Tzu.” Note that FX-GAN has

learned to generate more realistic facial arrangements than the baseline method.



DG-SNGAN FX-GAN

Figure 9. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 574, “golf ball.” Note that FX-GAN has

learned to generate more realistic golf ball colors and textures than the baseline method.



DG-SNGAN FX-GAN

Figure 10. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 323, “monarch butterfly.” Note that FX-GAN

has learned to generate better details and color variations than the baseline method.



DG-SNGAN FX-GAN

Figure 11. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 520, “crib.” Note that FX-GAN creates a

much greater variety of crib styles, textures, and colors.



DG-SNGAN FX-GAN

Figure 12. Comparison of DG-SNGAN vs. FX-GAN generated examples for ImageNet class 624, “library.” Note that FX-GAN creates a

much greater variety of bookshelf styles, textures, and colors.
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