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Abstract

We consider angular-domain channel estimation in massive MIMO systems using one-bit
analog-to-digital converters (ADCs) with various thresholding schemes at the receivers. We
first derive the performance bounds for estimating angulardomain channel parameters, in-
cluding the angles-of-arrival (AoA), angles-of-departure (AoD) and the associated path gains.
Specifically, we derive 1) the deterministic Cramer-Rao bound (CRB) when all of the angular-
domain channel parameters are treated as deterministic unknowns; 2) the hybrid CRB when
some parameters have known prior probability density functions(pdfs) while the rest are as-
sumed to be deterministic unknowns;3) the Bayesian CRB when all of them have known prior
pdfs. We also consider using the maximum likelihood (ML) method for channel estimation
and a computationally efficient relaxation based cyclic algorithm (referred to as 1bRELAX)
to obtain the ML estimates. When the prior information is available, the maximum a pos-
teriori (MAP) and joint ML-MAP (JML-MAP) estimators are derived. We also use the
one-bit Bayesian information criterion (1bBIC) to determine the number of scattering paths.
Numerical examples are provided to verify the derived performance bounds with different
thresholding schemes and demonstrate the performance of the proposed channel estimation
algorithms.
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Abstract—We consider angular-domain channel estimation in
massive MIMO systems using one-bit analog-to-digital converters
(ADCs) with various thresholding schemes at the receivers. We
first derive the performance bounds for estimating angular-
domain channel parameters, including the angles-of-arrival
(AoA), angles-of-departure (AoD) and the associated path gains.
Specifically, we derive 1) the deterministic Cramér-Rao bound
(CRB) when all of the angular-domain channel parameters are
treated as deterministic unknowns; 2) the hybrid CRB when
some parameters have known prior probability density functions
(pdfs) while the rest are assumed to be deterministic unknowns;
3) the Bayesian CRB when all of them have known prior pdfs.
We also consider using the maximum likelihood (ML) method
for channel estimation and a computationally efficient relaxation
based cyclic algorithm (referred to as 1bRELAX) to obtain
the ML estimates. When the prior information is available, the
maximum a posteriori (MAP) and joint ML-MAP (JML-MAP)
estimators are derived. We also use the one-bit Bayesian infor-
mation criterion (1bBIC) to determine the number of scattering
paths. Numerical examples are provided to verify the derived
performance bounds with different thresholding schemes and
demonstrate the performance of the proposed channel estimation
algorithms.

Index Terms—Massive MIMO, angular-domain channel esti-
mation, one-bit quantization, antenna-varying thresholds, time-
varying thresholds, deterministic CRB, hybrid CRB, Bayesian
CRB, ML, JML-MAP, MAP, 1bRELAX, 1bBIC.

I. INTRODUCTION

Millimeter-wave  (mmWave) massive  multiple-input
multiple-output (MIMO) systems can offer significant
throughput increase for wireless communications by taking
advantage of the large available bandwidth at the mmWave
frequency band [1]-[4]. Due to the small wavelengths and
antenna sizes, hundreds of antennas can be fitted into a small
space to provide a large array gain to compensate for the
significant path losses at the mmWave band. However, the
prohibitive cost and power consumption needed by a large
number of high-resolution (e.g., 8-12 bits) analog-to-digital
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converters (ADCs) at the antenna outputs make the system
impractical.

One promising solution is to use low resolution ADCs
(e.g., 1-4 bits) at the receivers [5]-[11], to drastically reduce
the power consumption and cost of massive MIMO systems.
Compared with the unquantized (i.e., infinite precision quan-
tization) case, the capacity loss using one-bit ADCs is only
1.96 dB at low signal-to-noise ratios (SNRs) [12], [13].

Channel estimation has been studied for one-bit massive
MIMO systems in [6], [14]-[18]. In [6], a least squares (LS)
estimator was proposed by simply treating the quantization
noise as additive Gaussian noise. A maximum likelihood
(ML) estimator was developed in [14] by imposing a channel
norm constraint on a convex optimization problem. In [16], a
Bussgang decomposition based linear minimum mean-squared
error (BLMMSE) estimator was proposed for one-bit uplink
massive MIMO channel estimation. [7] proposed a Bayes-
optimal joint channel-and-data (JCD) estimation algorithm,
where the reliably detected payload data is in turn used to
iteratively refine the channel estimate. In all of the afore-
mentioned works, fixed zero-threshold is used for one-bit
ADCs and the noise variance is assumed known. For non-
zero thresholding schemes, [19] showed that an unknown
non-zero threshold has a negative effect on the achievable
channel estimation accuracy, especially at high SNRs. An
adaptive quantization (AQ) scheme was proposed in [20],
where the thresholds for the one-bit ADCs are assumed known
and dynamically adjusted to converge to the optimal ones,
to significantly improve the channel estimation performance.
However, a large number of expensive high-resolution digital-
to-analog converters (DACs) may be needed to generate the
thresholds required by the AQ scheme.

All of the aforementioned methods focus on estimating each
element of the channel matrix directly for one-bit massive
MIMO systems. They can be regarded as non-parametric
approaches. However, due to the sparse nature of the channel
at mmWave bands (e.g., 28 GHz), the channel matrix can be
represented in the angular domain in a parametric way with a
much smaller set of parameters, i.e., angles-of-arrival (AoA),
angles-of-departure (AoD) and path gains, which can be esti-
mated with much shorter pilots. In this parametric approach,
more accurate channel estimates can be expected since the
number of unknown parameters is dramatically reduced. In
addition, these angular states can be used for beamforming to
compensate for the high path losses at mmWave bands [21].



Hence, the angular-domain channel estimation is of significant
interest. In [9], a generalized approximate massage passing
(GAMP) based algorithm was proposed by turning the one-bit
angular-domain mmWave massive MIMO channel estimation
problem into a noisy quantized compressed sensing problem,
to provide a superior performance-complexity tradeoff.

In this paper, we focus on the angular-domain chan-
nel estimation for one-bit mmWave massive MIMO sys-
tems. Specifically, we consider zero-theresholding and
time-varying/antenna-varying thresholding schemes for the
one-bit ADCs, and propose computationally efficient one-
bit angular-domain channel estimation algorithms. Our main
contributions are summarized as follows:

o We derive the deterministic Cramér-Rao bounds (CRBs)
for estimating the AoA, AoD and the associated path
gains for various thresholding schemes. We pay particular
attention to the practical case of unknown noise variance
and highlight the ambiguity between the path gains and
noise variance'.

o For knowledge-aided channel estimation, we model the
AoA, AoD and path gains as random parameters with
known prior probability density functions (pdfs) and
derive the performance bounds. In particular, we derive
two hybrid CRBs when a subset of channel parameters
have known prior pdfs while the remaining parameters
are treated as deterministic unknowns. A Bayesian CRB
is also derived by assuming all angular-domain channel
parameters have known prior pdfs. We characterize the
channel estimation performance of using different thresh-
olding schemes.

e We consider the maximum likelihood (ML) estimator
for channel estimation to deal with the deterministic
unknowns. A computationally efficient relaxation based
cyclic algorithm, referred to 1bRELAX, is used to obtain
the ML estimates.

« For the knowledge-aided case, the maximum a posteriori
probablity (MAP) and joint ML and MAP (JML-MAP)
channel estimation methods are derived.

e We use a simple and effective Bayesian information
criterion (BIC), referred to as 1bBIC, to estimate the
channel path number.

The rest of this paper is organized as follows. An angular-
domain channel model for mmWave massive MIMO sys-
tems with one-bit ADCs is introduced in Section II. The
deterministic CRB for angular-domain channel estimation is
derived in Section III. The hybrid and Bayesian CRBs for
knowledge-aided channel estimation are provided in Section
IV. In Section V, we present the ML, IML-MAP and MAP
algorithms for channel estimation and the 1bBIC rule for
channel path number determination. The numerical examples
are given in Section VI and we conclude the paper in Section
VIL

Notations: j = +/—1. Bold lower letters denote vectors.
Bold uppercase letters denote matrices. I 5 denotes an N x NV

Part of these results were presented in [22] and [23]. Different from [20],
the noise variance is considered as an unknown deterministic parameter in
our angular-domain CRB analysis. To avoid the ambiguity problems, non-zero
thresholds are necessary, especially low-cost practical thresholding schemes.

identity matrix. a,, denotes the m™ element of a vector a, and
Ap:kq denTotes tge (p, q)th_?lement of a matrix A. Super§cripts
()%, ()7, ()7 and (-)” " represent the complex conjugate,
transpose, conjugate transpose and inverse operations, respec-
tively. || - ||2 and || - ||[r denote the Euclidean and Frobenius
norms, respectively. f(-) and (-) denote taking the real
and imaginary parts, respectively. ® denotes the Kronecker
product. A ® B denotes the Khatri-Rao product between
matrices A and B, which is given by [a1 ®b1, -+ ,any @by],
where a,,, and b,,, denote, respectively, the m® columns of A
and B. vec (A) denotes the vectorization operation of stacking
the columns of A on top of each other. E, [] denotes the
expectation operation with respect to (w.r.t.) x.

II. SYSTEM MODEL

A. Angular-Domain mmWave Massive MIMO System Model

Consider a massive MIMO system with NV; transmit anten-
nas at the mobile station (MS) and N,. receive antennas at the
base station (BS) in Fig. 1. In the training phase, a pilot signal
of length K is sent from the MS to the BS. Then the received
signal Y € CN»*X at the BS has the form:

Y=HX+V, (1)

where H e CN*Nt s the channel matrix, X =
[€1,--- ,xx] € CNeXE js the pilot signal with average
transmit power E [z @] = p,1 <k < K, and V € CN-*K
is the circularly symmetric complex-valued white Gaussian
noise with i.i.d. CN (0,02) entries.
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Fig. 1. One-bit massive MIMO system diagram.

Consider the channel model parameterized via spatial angles
and gains associated with different propagation paths [24].
Assume that there are N, active scatterers between the MS
and the BS. Denote oy as the complex gain of the [ scattering
path, 6; and y; as the associated AoA and AoD, respectively.
Then for a uniform linear array (ULA), the steering vectors
for the ™" scatterer at the BS and MS are, respectively,

D dy. ) . d. 1T
ass (el) — |:17 61271' sm(Gl)T7 . ,6J<NT_1)27T Sm(Gl)T] (28.)
and
o d ) ) 1T
aus (SOZ) _ |:1’ I3 SIU(W)Tt7 . ’e](Ntfl)Qﬂ' Slﬂ(Wl)Tt] (2b)

where )\ is the wavelength, and d,. and d; are the inter-element
spacings of the ULAs at the BS and MS, respectively. Then



the channel matrix H is given by:

N

H=> wass () atis (p1)2Aps (0) HaAs (), (3)

=1
where 8 = [01,--+ ,0n.]7, © = [p1, -+, n.]T and Hy =
diag{a, - ,an,}. Also, the [ columns of Aps(0) €
CNr*Ns and Ays (@) € CNe*Ns are given as aps (6;) of
(2a) and ays (p;) of (2b), respectively. It’s worth noting that
the angular-domain channel model of (3) is similar to that
encountered in MIMO radar systems [25], [26]. Plugging (3)
into (1), we can represent the received signal with the angular-
domain parameters, 6, ¢, {al}f\];l, as:

Y=Ags () HaAps () X+V. “4)
Let y= vec (Y). Then we have:

y= vec (ABS (6) HaALs (o) X) +v

= [(X"Alis () © Ans (8)] a+v ®)
2T (6, o) atv,
where v=vec (V) and a = [ay,--- ,ap.]T. It is seen from

(5) that the angular parameters 8 and ¢ are embedded in I in
a nonlinear fashion, while the channel path gains o appear
as linear parameters. As shown in Fig. 1, the in-phase (I)
and quadrature (Q) components of the received signal can be
collected in a vector as:

- |YrR| _ 1 _ —
=[] ~reeass. ®
where & = [k, af]T € RV:x1 v = [vEVIT €
R2KNT><1 and
= _|'r -TI7 2K N, x2N,
F(ea‘P)—[FI FR]GR )

with Xp = R{X} and X; = 3{X}. Note that the dependence
of T on 6 and ¢ may be neglected for notational brevity.
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Fig. 2. The diagram for one-bit sampling.

B. One-Bit Quantization

In one-bit massive MIMO systems, two one-bit ADCs are
used at the output of each receive antenna to quantize both
I and Q components of the received signal. As shown in
Fig. 2, the one-bit quantized data zg,; (i.e., =1) is obtained
by comparing the unquantized analog signal ygr,; to the
thresholds ng1:

zr = sign (yr — Mr), (7a)

zr = sign (yr — 1), (7b)

where
Yr =Trar —Trar + vg, (8a)
yr =Trar +Trar + vy, (8b)

and nr € REN-*1 and n; € REN-X1 are the given threshold
vector used at the N, pairs of the I and Q channels over
K pilots, respectively. sign (x) is the element-wise one-bit
quantization function, which returns —1 if z < 0 and 1
otherwise.

All real-valued unknown parameters can be grouped as
X = [HT, c,oT,ozg7 aﬂT € R*Ns*1 when the noise variance

03 is known. When the noise variance is unknown, the un-
T

known parameter vector can be expanded as ¢ = [x”,0,]" €

R#N-+1)x1 The problem of interest herein is to estimate x

with the quantized output z = [zg, zﬂ " anda given threshold

vector 7 = [n, nIT]T

III. DETERMINISTIC CRB

A. Log-Likelihood Function
Note that vg ~ N (0,02/2) and v; ~ N (0,02/2). By

)
invoking the independence of the signed measurements z over
K pilots, N, receive antennas and between the I and Q

channels, the log-likelihood function of z is given by:

KN,
Inp(zlx) = Y [P (zrmCrm) + @ (21mCrm)], )
m=1
where . .
Rm — T|Rm
m= 10a
CR, N (102)
KI,m — MNI,m
m = 10b
Cr, N (10b)
with

/{R,méfg (m)aRfI‘? (m) ar, (11a)

kim 2T7 (m)agr + Tk (m) ar, (11b)

denoting the real and imaginary parts of the noise-free regeive
signal, respectively. In addition, ® (z) = —= [* e 12t
is the standard normal cumulative distribution function (cdf)
and I‘g/l (m) is the m™ row of T'g/;.

B. Fisher Information Matrix

1) Known Noise Variance: The (p, q)th element of the
Fisher information matrix (FIM) can be calculated as:

A lnp(ilx)} 7

12
OxpOXq (12

500, =B |

o)

where By, represents the partial derivative w.rt. the p®
element of X. Given the grouped channel parameters, the FIM
has the following block structure:

Fo,o Fo,, Fooap Foeo;
T
J | Fo,p, Foo Fooar Foa RANsx4N,
r(x) = T T € .
F9,0¢R FLP,OLR FaRsaR FOLRaOLI
T T T
FG,OLI F‘PP‘I FOLRYQI FO‘IJII

(13)



The CRB matrix is given by the inverse of the FIM:

CRB(x) = [Jr(x)] ™" (14)
The (p,p)" element of the CRB matrix establishes the best
performance bound of an unbiased estimator.

To derive the FIM, we note that

1 1 1
b {q>2 (ZR,WICR,m) } ) (CR,m) + o (_CR,m)7 (15a)

1 1 1
jol - , 15b
{ o2 (ZI,"LCI,’"L) } o (Clnn) + d (_Clnn) ( > )

where we have used the fact that the quantized outputs zp n,
(21,m) are binary (f1) random variables with probability
D (£Cr,m) (P (£(r,m)), respectively.

Combining (9), (12) and (15), we have the exact expression
of the FIM?:

KN,

>

m=1
851,m 8"4/1,777,
Oxp  Oxq

1

o2

aKR,m 6K/R,m

T (0], = S

{f (Cr,m)

+f (Cr,m)

} , 1<p,qg<4N;,
where
1 1

and the detailed expressions of the partial derivatives are given
in Appendix A.

)) e SR/Lm, (17)

2) Unknown Noise Variance: When o2 is unknown, the
FIM for estimating ) is:

Fx.o,
Ir () = B%(X) nga} e RUNFIXANFD (1)

where J(x) is given by (13), the p element of the 4N, x 1
vector F, . is calculated as:

9’ Inp(zx)
OxpOoy
KN,

= 8/‘GR,'m RRm —
T wo2 mE::l {f (Ch.m) Oxp o

aKJI,m Riom — NI,m
Oxp Oy

Fxo], = Ex [

NR,m (19)

+f(<-17m) :|7 1§pS4Nsv

and the scalar F,_ ,, is calculated as:

_ 9°Inp(z|x)
00,00,
KN,

1
:7r012, Z

2
{f (Crom) <mm0¢> 20)
m=1

2
) <M) ] _

Ov

Fo, 0, =Ez {

Then, the CRB matrix for estimating the angular-domain
channel parameter vector x is given by:

CRB(X) = [Jr(x) ~ Fx.o. Fy. o, Fx

] @n

2The more detailed derivations can be found in the supplementary material.

C. Remarks

1) Singularity of the FIM: When the noise variance is
unknown, the FIM J (%)) is singular when zero or optimal
thresholds [20] are used, which means that there does not
exist unbiased estimates with finite variances [27]. For the
optimal thresholds, i.e., 7 = Ta, the singularity comes from
the fact that F, , and F, . in the FIM Jp(1)) are zero
vector and scalar, respectively, according to (19) and (20).
When zero-thresholds are used, the FIM is singular due to the
ambiguity between the path gains and noise variance. That is,
according to (9), the parameter vector [sa, so,], s # 0, yields
the same log-likelihood function as [e, o] for given one-bit
measurements Z. This ambiguity can be removed when known
non-zero thresholds are used.

2) Conversion to CRB for Channel Matrix: The channel
matrix H can be recovered using the estimated angular-
domain parameters x. The channel matrix model in (3) can
be vectorized as

N

vec (H) = Z lams (¢1) ® ass (01)] au
=1 (22)
=[Ans (p) © Aps (0)]
2 h(x).
Let "
We have [28]:
= _ oh(x) dh(x)
CRB(h) = a7 CRB(x) ax (24)
where CRB() is given in (14) for the known o2 case and
2 oh(x)

in (21) for the unknown o case. The partial derivatives
can be calculated similarly as those in Appendix A. The CRB
for the channel matrix is trace [CRB(h)].

IV. HYBRID AND BAYESIAN CRBS
A. Hybrid CRB with Prior Knowledge on Channel Path Gains

We then consider the case where the path gains have known
prior pdfs while the angles are treated as deterministic un-
knowns. Specifically, we use a channel model for the 28-GHz
outdoor mmWave channel [21], where the path gains have i.i.d.
Gaussian distributions with known means and variances. The
prior knowledge of channel path gains can be obtained from
previous channel measurements for stationary channels.

The hybrid CRBs (HCRBs) establish the best performance
bounds for both the deterministic and random parameters.
‘When 012) is known, we rewrite the parameter vector as x =
[Xd,Xr]T with xq = [OT,goT]T denoting the deterministic
angle vector and x, = [a%,aIT]T grouping the real and
imaginary parts of the random path gains. Then we assume:

Xr ~ N(ma7 Ca) ’ (25)

_ T

where m, = [mp1,--",MrN,, M1, ,MIN,] €
2N, x1 _ 2 2 2 3

R?Ns*1l and C, = dlag{JR17 TR NGO ,ULNS} €

R2N=x2N= with mp,;,; and 012%/1 , denoting the known mean

and variance of ap/r;, respectively. Therefore, the (p, q)th



element of the hybrid information matrix (HIM) Jg(x) is
given by:

82 111]9 27 Xr|X
00, = Bae s |~ X )|
e _9%Inp (2xr, Xa)
Z,Xr|Xd aXanq (26)
& Inp (X,-|Xd):|
+E T ovoov.
Xr|Xd |: aXanq
=[], T TP, 4

where E; |, [-] denotes the conditional expectation operator
w.r.t. both z and x, for given x4, p (X+|Xx4) is the known
prior pdf of x, for given x4 and Inp (z|x,, xq) is given in
(9). Recall from the FIM expression of (12), we have:

3500 = B s B 00) = [ 3600 p 00 ) b, 2D

and
E _22mpxrlxa) | | _ 22 Inp(xr|xa)
Ip(x) = Xr|Xxd axa0xy Xr|Xd Oxr0x7
A _mrtelxa] g _ 9% pCxrlxa)
Xr|Xa dxa0x L Xr|Xa xr0xT

When the random vector ), does not depend on the deter-
ministic unknown vector x4, Jp(x) reduces to:

0 0 } € RAN=x4N:

00=[o o

Note that in (26), Jp(x) and J p(x) represent the information
from the data and the prior distribution, respectively. Then, the
HCRB matrix is given by:

HCRB(x) =

(29)

Ta ()l

Unfortunately, there is no analytical expression for Jp(x) due
to the nonlinear function f (C R/ Lm) of (17) involved in J ¢ (x)
of (16). In the following, approximate expressions of Jp(x)
are derived to avoid numerical integrations.

(30)

Fig. 3. f () of (17) compared with g () = 4e~(1=%)2”,

1) A Loose Lower Bound with Low SNR Approximations:

For low SNR (i.e., Cryrm — 0) f (Cryrm) in [Jr(x)],,
is close to 4 (see Fig. 3), and we can obtain an approximate

[Jr(x)],, by simply replacing f (Cry1,m) with 4:
KN, KN,
B _ 4 8"‘{/R m 8"ﬁR m < al‘ﬁl,m a"fl,m
[JF(X)L,q N ﬂo% mZ: Oy 71’0’12) Z:: My  OXq
2 Jrr()] + [JF,I(X)] :
p,q p,q
(3D
and hence, an approximate expression of [Jp(x)], , of (27)
can be obtained accordingly:
[jD(X)] = [jD,R(X)] + [jD,I(X)] ) (32)
p,q p,q p,q

where

N 8&3 m 8/‘{]{ m
[JD’R( ]p q - 7703 Z: OXq

and [Jp 1(x)]pq can be obtained 51m11arly According to
(64) in Appendix A, the partial derivatives 0;:
functions of the path gain vector x,.. Also, since p () is the
Gaussian pdf of the random path gain vector, the analytical
expressions of the integral in (33) can be obtained easily by

plugging (64) into (33) (omitted here).

(XT) dX"’7 (33)

are linear

Note that in the unquantized case, Jp(x) remains un-
changed and Jp (x) is calculated using the FIM for unquntized
systems®, where f (C R/I m) is replaced by a constant of 27.
Hence, an exact analytical expression of Jy(x) can be ob-
tained for the said case using the aforementioned derivations.

2) Tighter Lower Bounds: In [29], g (z) = 4e=(1=3)7" i
proved to be an upper and close bound of f (z) (see Fig. 3).
Then, with f (Cg/r,m) in (16) replaced by g (Cg/1,m), We can

obtain a much closer approximation of [Jp r(x)], ,:

KN,
\ 8"‘f/R,m al‘fR,m

OMxp  OXq

g9 ((R,'m) p (XT) dXT

(34)
Fortunately, it turns out that g (Cr,m) P (Xa) can be reformu-
lated into the Gaussian pdf of the random path gain vector X,
but with a different mean vector and covariance matrix, de-
pendent on m (see Appendix B). Hence, a tighter approximate
expression of Jp(x) in (32) can be derived similarly, and the
resulting HCRB provides a lower bound to the true HCRB of
(30).

3) Unknown Noise Variance: Note that when 0’ is de-
terministic unknown, we can rewrite the expanded hybrid
parameter vector ) as: 1 = [1/)T,1/)d]T with v, = x, and
Ya = [x7, Jv]T. In this case, the HIM component Jp(x) in
(28) is expanded to Jp(7)) as

3o(w) = |71 §Y

And Jp (), Ju(¢p) can be obtained straightforwardly and
HCRB(x) can be calculated similarly to (21). The approxi-

mate HCRBs for the unknown o2 case can be derived similarly
to its counterpart of known o?2.

8:| c R(4Ns+1)><(4Ns+1). (35)

3The derivation of the unquantized FIM is given in the supplementary
material.



B. Hybrid CRB with Prior Knowledge on Angular Parameters

It is shown in [30] that the out-of-band information (mainly
the angular information) extracted by the sub 6-GHz commu-
nication systems can provide useful channel characteristics for
mmWave band channels. Here we study the case where the
path gains are deterministic unknowns and the angles form
a Gaussian random vector with known mean vector my and
covariance matrix C,. When o2 is known, the angular-domain
channel parameter vector can be rearranged as x = [xr, Xd]T
with x, = [OT, cpT}T denoting the random angle vector and

xa = [oF, aIT]T. Then, we assume:
Xxr ~ N (mg, Cy). (36)

The corresponding HIM can be calculated similarly with (26),
where
-5
00

In this scenario, there are no analytical or approximate ex-
pressions for Jp(x), and we calculate Jp () using numerical
integrations. When 03 is unknown, the HIM and HCRB can
be similarly derived (omitted here).

Ey., |:7 a2 IHP(Xr)] 0

OxrOxE

Jr(x) = o 0

(37)

C. Bayesian CRB

1) Bayesian CRB for Channel Parameters: Here we assume
that o2 is known, and the path gains as well as the angles are
independent Gaussian random vectors with known mean vec-
tors m,, mg and covariance matrices C,, C,, respectively.
Then the (p,q)" element of the Bayesian information matrix
(BIM) J () is given by [28]:

[ 9Inp(zx)
[JB(X)]p,q =Bz x {—W :

Since Inp (z,x) = Inp (z|x) + Inp (x), where p(x) is the
known prior pdf of x, we have:

Je(x) =JIp(x) +Ir(x),
where Jp(x) = Ey [Jr(x)] and
0? lnp(x)] _ {C;l 0
Ixox”T 0 c;t

Jp(x) is obtained by numerical integrations (note that the
invloved numerical integrations w.r.t. the random path gains
can be avoided using the approximations in Section IV-A).
The Bayesian CRB (BCRB) matrix is computed as:

BCRB(x) = [Jz(x)] "

(38)

(39)

Jr(x) = Ex { } € R*™WeXNe - (40)

(41)

For unknown o2, the BCRB reduces to the HCRB with the
only deterministic unknown given by o,. The derivation of
this HCRB is similar to that in Section IV-A3.

2) Conversion to Bayesian CRB for Channel Matrix:
Similar to Section III-C2, the BCRB for the channel matrix
estimation is obtained as [28]:

BCRB(h) = E, Pg)ﬁf)] BCRB(x)Ey {a%;")} .42

where h is given in (23), and the expectations of the par-
tial derivatives w.r.t. the random path gains have closed

form expressions while the expectations w.r.t. the random
angles can only be obtained via numerical integrations. For
any Bayesian estimate H, its performance lower bound is
trace [ BCRB(h)].

V. ANGULAR-DOMAIN CHANNEL ESTIMATION
A. ML Estimator

For the case of known o2, the ML estimates are obtained
by minimizing the negative log-likelihood function of (9):
KN,

XML = arg min — Z n® (zr,mCrm) +In® (z1,mCr,m)],
x

m 43)
where (g1, of (10) are nonlinear w.rt. the angles AoA
and AoD and linear w.r.t. the real-valued path gains ap
and ay. Given 6 and ¢, ap and aj can be estimated by
minimizing the cost function of (43) as an unconstrained
convex optimization problem [31].

When o2 is unknown, we can reparameterize (43) by
defining ¢ = 1, Br = 2£, and B; = L. With ¢ =
[OT, el ,Bg, BT, 5] T, the ML estimation problem can be cast
as:

KN,

P = arg rrgn = > @ (zr,mlrm) + M@ (21,mCrm)]
m (44)
where
Crom = V2 [Fg (m)Br —T'T (m)Br — snR,m] , (45a)
Crom = V2 [r? (m) Br + Tk (m) Br — sm,m] . (45b)

For given 6 and ¢, the cost function in (44) is, again, convex
w.r.t. Bgr, Br and e. Note that when nz,; = 0, i.e., when the
zero-thresholds are used, € in (45) vanishes and one can only
estimate Br and (3, i.e., the ratio between ar/; and o,.
For the case of unknown noise variance, we could discretize
the AoA and AoD in the set of (—7 /2, w/2]. Then, for a given
pair of (0, ), we can estimate the corresponding Br, Br,
and ¢ by solving (44) using the Newton’s method. We can
then repeat the previous step over all possible combinations
of @ and ¢, and then select the ML estimates giving the
minimum cost in (44). The path gains and noise variance can
be recovered as &y = '(%R, & = % and 62 = %.
This direct ML approach, however, requires a 2N,-
dimensional coarse search over the angular parameter space.
With Ly discretized grid points for the AoA and L, discretized
grid points for the AoD, we need to solve the convex optimiza-
tion problem Lév '*Lf,y ¢ times. As a result, the resulting ML
estimator is computationally prohibitive even for small N.

B. IbRELAX Algorithm for ML Estimation

We introduce below an extension of a computationally
efficient relaxation based cyclic algorithm (RELAX), which
was originally proposed for sinusoidal parameter estimation
[32], to obtain the ML channel estimates. The extension is
referred to as the 1bRELAX channel estimation algorithm.

The 1bRELAX algorithm breaks down the joint 2N,-
dimensional searches with iterative 2-dimensional searches.



Denote x; = [Hl,gol,aR,l,a[’l]T as the angular-domain pa-
rameter vector corresponding to the /" path. IbRELAX begins,
in Step 1, by assuming there is only one dominating scattering
path between the BS and MS and solving the following
problem:

KN,
X1,0v] = arg min — Ind (z ml‘l +Ind zml’l R
(X1 ] thGv mzzjl [ ( R, CR,m) ( I, CI,m)]
(46)
where (59 and (7’7 are defined, respectively, as:
P
l Zz¢ RRm + KR pm — NRm
p.q =1,l#q
R, Jv/\/§
and »
Z l%le + K(},m, —Ni,m
pa _ l=11%q
m (47b)
ok Jv/\/§
with z z z
RR,m = YRmAR,l — VI m¥I,l, (483)
and z l z
Kl m = YI,mOR,l + VYR,mOI 1 (48Db)

denoting the real and imaginary parts of the received signal
from the I path, respectively. The ~'(6;,¢;) is given in
(63) and the /%ﬁ,% /Im is the reconstructed received signal
using the estimated angular-domain channel parameter vec-
tor x; in the previous iteration step. Equation (46) can be
solved by a two-dimensional coarse search over (61, 1) and
followed by using the gradient method for (ag 1,1 1,0).
Let {01,¢1,aR 1,0 1,0,} denote the estimated parameters
that minimize the cost function of (46). Then we perform a
grid-less fine search over the AoA interval [0} — 7-, 07 + -]
and AoD interval [p] — 7~, ¢ + L%,] by using the interior
point based bounded optimization method (e.g., “fmincon” of
MATLAB) to find the estimate {x1,5,} of {x1,0.}.

In Step 2, we assume that there are two scattering paths,
ie., Ny = 2. The 1bRELAX algorithm finds the parameters
of the second strongest path by minimizing the cost function
below:

KN,

X2 = arg min — Z [ln@ (ZR,mC?{Qm) +Ind (z;mC?fn)] ,

X2
(49)
where Cffm and (?fn can be computed from (47) with I%}%’m
and /%}m reconstructed with the estimated angular-domain

channel parameters corresponding to the strongest path from
Step 1:

m=1

A1

RRym = :Yll-?,,m(ély P1)a&Rr,1 — ;Y},m(ély $1)ér, (50a)
BT = A1m (01, 61) 6,1 + VR (01, $1)6r1. (50b)

In a similar fashion, (X1, J,) is refined using the X2 to solve
the problem below via a fine search:

KN,
[X1,00] = arg ;111’1511] — mzzjl [lné (zR,mgfilm) +In® (zfmg?jn)] .

(51
This procedure of iteratively refining parameter vectors
{X1,6} and x2 of the two strongest paths with fine searches

continues until convergence.

Step 3 of IbRELAX assumes N, = 3, and the algorithm
continues by solving the problem below to estimate the
parameter vector of the third strongest channel path using X2
and {x1,6,} from Step 2:

KN,
X3 = arg rr)ilgn — Z [ln ) (zmmgf?,’in) +Ind® (ZImC?fn)} .
(52)
Then {X1,6,}, X2 and X3 are iteratively refined with
fine searches until convergence. The algorithm continues until
the parameter vectors of all paths are estimated.

m=1

1) Computational Complexity: Compared to the direct ML
method, 1bRELAX requires only one two-dimensional search
over the parameter space of AoA and AoD for each path
in each step, resulting in significantly reduced computational
complexities. To obtain the coarse estimates, the 1bRELAX
algorithm needs to calculate the corresponding path gains for
LyL, angular grid points via, e.g., the Newton’s method for
each of the IV paths. In each iteration of the Newton’s method,
the computational load is dominated by the calculation of a
2 x 2 Hessian matrix and a 2 x 1 gradient vector, which needs
to construct the unquantized received signal kr,; and has
a computational cost of O (KN, N;). Our numerical results
show that typically the Newton’s method can converge in less
than 5 iterations. For the refinement steps in 1bRELAX, the
computational cost of the interior point based method can be
neglected compared with the coarse searches. As a result, the
total computational complexity for the 1bRELAX algorithm
is on the order of O (N;KLgL,N,N;), where Ly and L,
are several times (e.g., 2) larger than N, and Ny, respectively.
In comparison, the computational costs of the recently pro-
posed algorithms BLMMSE and GAMP are on the order of
O (K3N?) and O (K max (N, Ny, N, log(N,), Ny log(Ny))),
respectively.

C. 1bBIC for Path Number Determination

When N; is unknown, the Bayesian information criterion
(BIC) can be used with 1bRELAX to provide a consistent
estimate of the channel path number [33], [34]. Below we
derive the customized BIC rule, referred to as the 1bBIC, to
determine the number of channel paths.

By assuming that the prior pdf of 1, p (¢), is flat around
the ML estimate ’l/:’ML and does not depend on the K, N, and
Ny, the channel path number estimate according to the BIC is
obtained by minimizing the criterion below [33], [34]:

—2Inpg, (ZWML) +In ’j (27"/:’ML) ; (53)

where DK, (i\z/A)ML) is the likelihood function under the

hypothesis that the path number is N, and |-| denotes the
determinant of a matrix. The second term is a penalty term
that penalizes an overestimated path number with J (2, UM
defined as:
I 0 Inpy, (2
J(Z7'¢’ML) __ @lnpn, (zl¢)

DO (54)

"'J’—J’ML



Algorithm 1 1bRELAX with 1bBIC
Input: Measurements z, threshold vector 7, pilot signal X,
maximum path number Np,x
Output: Channel path number N., angular parameters and
noise variance 1/3
Set L = 1, obtain Ey = [x1,6,] via a coarse search
followed by a fine search
Compute the 1bBIC cost function value C'(1) from (59)
with (g /1,m obtained from [x1, 5]
for L = 2 to Npax do
Obtain x, via a coarse search followed by a fine search
and set k =1
repeat
if £k =1 then
Update [x1,05,] via a fine search
else
Update xj via a fine search
end if
k=(k mod L)+1
until the ML cost function of (43) converges
- 1L AT
=L = [{Xl}l:l; Uu]
Compute the 1bBIC cost function value C(L) with
éR/I,m obtained from {x;}%, and &,
end for
) = Ey, where N, = argmin; C(1)

Under mild conditions [33], the matrix J (Z, @ML> is shown
to have the following asymptotic relationship with the FIM

Jr () of (18):
[P*IJF(lp)P*1 e | (z,z[;ML) P’l] 50 as N — oo,
(55)
where N’ 2 {K,N,, N;} and P is a normalization matrix
dependent on N’. Equation (55) implies that, after a proper
normalization, J Z,1,ZAJML can be substituted by Jp(v)

asymptotically. This can be used to obtain a simpler expression
for the penalty term in (53).

We now find a normalization matrix P to satisfy:

P Jr(p)P ' V2ZF01). (56)

As shown in the supplementary material, when the pilot se-
quences are orthogonal to one another (i.e., XX = %I N
a proper normalization matrix P is found to be:

1
N, N?K=1y,
3
NZKzIy,
1
N;7? K%12N5+1

P= (57)

Given the normalization matrix of (57) and invoking (55) with
J(z, 1) replaced by Jg (1)), the penalty term of (53) is
given by

In ’j (Z,zf)MLN =In|P?| +In ’P’lj (z,qﬁML) P’l‘ (58)
— (6N, + 1)In (N)) + (4N, + 1) In (K)
+ 2N, In (N¢) + O (1).

As a result, the 1bBIC rule of (53) reduces to:

KN,

N, —arg H]}]in{—Q Z [lnq) (zR,méR,m) +In® (zf,méf,m)}
s m=1

+ 6N, In (N,) + 4N, In(K) + 2N, In (N))}. (59)

To use 1bBIC with 1bRELAX, we can compute the cost
function in (59) at the end of each step of 1bRELAX for
up to a prescribed maximum possible path number Ny,,x. We
give a flow chart in Algorithm 1 to show the detailed steps of
IbRELAX and how the 1bBIC is integrated into 1bRELAX.

D. JML-MAP and MAP Estimators

For the hybrid case, we utilize the prior pdf of random
parameters and introduce the JML-MAP estimator for both
the random and deterministic parameters:

XMLMAP = arg min — [Inp (z|xr, Xa) + Inp (xr|xa)].  (60)
X

For the case of all random unknowns, on the other hand, we
introduce the MAP method to estimate the random parameters:

XMAP = arg)fnin— Inp (z|x) +1Inp(x)]. (61)
It can be shown that the above two problems are also uncon-
strained convex optimization problems to find the optimal path
gains for given AoA and AoD, and hence the cost functions
in (60) and (61) can be efficiently minimized via 1bRELAX
procedures with small modifications.

When the noise variance 012, is unknown, the formulation of
(44) cannot be utilized if the prior knowledge is on the channel
path gains due to the definition of 3z and 3;. In this case,
one can estimate 03 first during an idle period [20], [35], i.e.,
when there is no transmission between the BS and the MS.
The relevant ML problem is:

KN,

€ = arg min — Z [lnfp (—\/iezR,mnR,m)

m=1
+In® (_\/§€Z[7mn]’m):| .

Then 62 can be calculated as 62 = 2. Note that (62) is a one-
dimensional unconstrained convex optimization problem for
7] # 0, which can be solved efficiently via, e.g., the Newton’s
method. After that, we can solve (60) and (61) by replacing
o2 with 62.

(62)

VI. NUMERICAL EXAMPLES

Numerical examples are provided below to compare the
CRBs using different thresholding schemes and verify the
effectiveness of the proposed 1bRELAX algorithm for channel
estimation and 1bBIC for path number determination. We
consider a massive MIMO system model with N, = 64,
N; = 32. Unless otherwise specified, the path number N; is
set to 4 and random QPSK symbols are used as the pilot signal.
The channel matrix is normalized as E [|H|Z] = N, N; and
the transmit signal power is normalized as p = 1. The mean-
squared error (MSE) of the channel matrix estimate is defined
as E[||H — H|2]/(N,.N;). The MSEs are compared with the
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Fig. 4.

CRBs (i.e., tracelCRB(h)] and tracelBCRB(h)]) normal-
ized by N, N,;. The average SNR at each receive antenna
output is defined as SNR = E [|Ta||3] /(K N,02) = 1/02.

We consider the following thresholding schemes: 1) zero-
thresholding (ZT) (i.e., 7 = 0); 2) optimal thresholding
(OT), which requires the knowledge of noise-free signals (i.e.,
n = T'a); 3) time-varying thresholding (TT) [36], which
selects the thresholds randomly from a predefined discrete
set, €.2., [—hmax, —Pmax + 2, -+, hmax — 2, hmax| at each
sampling instant with h,,,x being the dynamic range and
A being the stepsize; 4) antenna-varying thresholding (AT),
which selects the thresholds from the discrete set randomly
once and fixed at all times for each antenna output. For the
AT and TT schemes, the thresholds are selected randomly from
8 discrete values uniformly distributed in [—hmax, Amax] With
hmax = 0.5. Due to the randomly selected thresholds, the
CRBs for the AT and TT schemes are obtained by averaging
over 100 realizations of the randomly selected thresholds. The
CRBs for unquantized systems are also considered here for
comparison purposes. To compute the HCRBs and BCRBs,
the first terms of HIM and BIM (i.e., Jp(x) and Jp (1))
are obtained by averaging the corresponding FIM (i.e., Jr(x)
and J (1)) over 10* realizations of the random parameters
according to the prior distributions.
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Fig. 5. Deterministic CRB for the AT scheme as a function of pilot length
K when SNR = —10, 0, 10 dB.

A. Channel Estimation Performance Bounds

1) Comparison of Deterministic CRBs: Consider the fol-
lowing deterministic parameters, which are generated ran-
domly once and fixed at all times.

o AoA vector 8 = [40°,41°, -70°, —65°]T,

5
SNR (dB)

(b) Path gain ag 1

Deterministic CRB comparison as a function of SNR with K = 32 and known o7.

10 15 20 25 -15 -10 10 15 20 25

0 5
SNR (dB)

(c) Channel matrix H

2

« AoD vector ¢ = [-25°, —42.5°,55° 52°]T,
o Path gain vector a« = [0.5775 — 0.17334,—0.3119 +
0.25997,0.2714 — 0.45054, 0.4331 + 0.0866]7 .

Fig. 4 shows the CRBs for estimating the angular-domain
parameters (e.g., AoA (0y) and ag ;) and channel matrix
(i.e., H) as functions of SNR for o2 known. Fig. 4 shows
that the CRB curves for the OT scheme and the unquantized
case (Unqt) are log-linear w.r.t. SNR. With a loss of 1.96 dB
compared with the unquantized CRB, the OT scheme provides
the lowest bounds among all one-bit thresholding schemes,
as expected. At low SNRs, the one-bit CRBs converge due
to the dominating noise effect. Compared with the fixed ZT
scheme, the random thresholding schemes (i.e., the AT and TT
schemes) provide slightly worse results for the AoA estimation
in Fig. 4(a) but much better results for the path gain estimation
in Fig. 4(b) as well as for the overall channel matrix estimation
in Fig. 4(c). AT gives almost identical performance to its TT
counterpart, but with a lower system complexity and cost.
AT and ZT have similar hardware cost, but ZT suffers for
ambiguity problems when o2 is unknown. Therefore, we focus
on AT hereafter.

Fig. 5 shows the CRBs as functions of pilot length K using
the AT scheme. First, it is observed that the CRB curves are
log-linear w.r.t. the pilot length. Secondly, from Fig. 5, the
unknown o2 has almost no impact on the angle CRB, but
leads to higher CRBs for the path gain.

2) Hybrid CRB with Prior Knowledge on Channel Path
Gains: Assume that the path gains have known Gaussian
pdf with mean m, = /357[1,---,1]" € R*Ne*! and
covariance matrix C, = 27]7\-{312 ~, with 7 = 0.1. The angles
are deterministic unknowns, given as follows:

e AoA vector § = [62°, —36°, —45°,15°]T,

o AoD vector ¢ = [—45°,34°,25° —70°]7.

Fig. 6 compares several versions of the path gain HCRB with
the AT scheme as a function of SNR when o2 is unknown.
Specifically, we consider the numerically implemented HCRB
via Monte-Carlo trials (denoted as MC HCRB), the unquan-
tized HCRB computed using the exact analytical expressions
(denoted as Unqt HCRB), the low-SNR approximate HCRB
in Section IV-A1 (denoted as LowHCRB), the tighter approxi-
mate HCRB in Section IV-A2 (denoted as ApproxHCRB) and
the expection of the deterministic CRB (ECRB) which serves
as a tight bound for the prior-aided estimate in the asymptotic
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Fig. 6. Comparison of HCRB for acg 1 using the AT scheme as a function

of SNR with prior knowledge on path gain for K = 15 and unknown o2.

region (i.e., SNR — oo or K — o0) [28]. The ECRB is
obtained by averaging the deterministic CRB over its random
realizations. Fig. 6 shows that LowHCRB is looser than MC
HCRB when the SNR > —5 dB. ApproxHCRB is almost the
same as MC HCRB in all SNRs we consider. At low SNRs, the
ECRB is much higher than its HCRB counterparts due to the
lack of prior knowledge, and the one-bit HCRBs coincide with
the unquantized HCRB since the prior knowledge dominates
over the information from data.
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Fig. 7. MSE of ML estimate for the AT scheme as a function of SNR with
K =32 and unknown o2.
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Fig. 8. MSE of ML estimate for the AT scheme as a function of pilot length
K with SNR = 0 dB and unknown o2.

B. ML, JML-MAP and MAP Parameter Estimation

We now evaluate the performance of the ML, JML-MAP
and MAP channel estimates, all obtained via the variations of
the 1bRELAX algorithm, where the number of the discretized
grid points over the angle range (—m/2,7/2] is Ly = 192 for
the AoA and L, = 96 for the AoD. The MSEs are obtained
by averaging over 300 Monte-Carlo trials.
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Fig. 9. MSE of ML channel matrix estimate for the AT scheme as a function
of the iteration number in the fine search step of 1bRELAX when K = 32
and SNR = 0 dB.

TABLE I
AVERAGE RUNNING TIME OF 1BRELAX

Aver. Run. Time (s) ‘ K =10 ‘ K =20 ‘ K =40
Ny =2 8.69 13.67 24.59
Ny =4 18.89 28.84 49.76

1) ML Estimation for Deterministic Unknown Parameters:
We assume that the path number Ng is known and use the
same deterministic channel parameters as those in Section
VI-Al. Note that the angle separations between the AoA of
the first and second paths as well as the AoD of the thrid
and fourth paths are less than the corresponding Rayleigh
resolutions. The MSEs of the ML estimates are compared
to the corresponding CRBs in Fig. 7 as functions of SNR
and in Fig. 8 as functions of the pilot length K, when o2
is unknown. It is seen that the MSEs of the ML estimates
obtained via IbRELAX can approach the corresponding CRBs
at high SNRs or with long pilot sequences. It is also observed
that there is a threshold effect (e.g., SNR = —6 dB in Fig. 7
and K = 11 in Fig. 8) below which the MSEs deviate abruptly
from the corresponding CRBs.

Fig. 9 shows the MSE of ML channel matrix estimate as
a function of the iteration number in the fine search step of
1bRELAX when the path number is Ny = 2 and N, = 4. The
iteration number here refers to the iterations needed in the final
step of refining the parameters of Ny paths. It is seen from
Fig. 9 that IbRELAX algorithm can converge with 4 iterations
for N; = 2 and 6 iterations for N, = 4, respectively. Fig. 9
also revals that the grid-less refinement step is necessary to
enhance the channel estimation performance of 1bRELAX.
We give the average running time of 1bRELAX for different
pilot lengths in Table I. The simulations are conducted on a
PC with Intel(R) Core(TM) i7-6700 CPU (3.40 GHz) and 64.0
GB RAM.

Then we compare the channel estimation performance of
1IbRELAX with those of BLMMSE [16] and GAMP [9] in
Fig. 10. Note that both the BLMMSE and GAMP algorithms
need a prior knowledge on the noise variance, and hence o2 is
assumed to be known for all methods. It is shown in Fig. 10
that GAMP provides a performance gain of at least 5 dB over
BLMMSE. 1bRELAX significantly outperforms the other two
algorithms, especially at high SNRs. For example, IbRELAX
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Fig. 11. Comparison of BER performance using the AT scheme with
imperfect CST as a function of SNR when o2 is known.

outperforms GAMP and BLMMSE by more than 20 dB when
SNR = 15 dB. Fig. 11 plots the average bit-error rate (BER)
curves obtained via the one-bit ML detector in [14] using
imperfect channel state information (CSI) obtained from the
aforementioned three algorithms, respectively. For simplicity,
we consider a typical case where there is only one independent
QPSK data stream between the transmitter and the receiver.
The transmitted data signal has the same power as the pilot
signal. It is shown in Fig. 11 that, as expected, IbRELAX
can provide a much better BER performance than GAMP and
BLMMSE at high SNRs.
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SNR (dB)

(b) Path gain ar 1

Fig. 12. MSE of JML-MAP estimate for the AT scheme with prior knowledge
on path gains as a function of SNR for K = 15 and known o2.

2) JML-MAP Estimation for Hybrid Parameters: For the
knowledge-aided JML-MAP and MAP estimators, we assume

LX<, [e-wmcHcre o -©-MC HCRB
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Fig. 13. MSE of JML-MAP estimate for the AT scheme with prior knowledge

on angular parameters as a function of SNR when K = 15 and known o2.

that the noise variance o2 is known. We first consider the
case where the path gains have known prior pdfs and the
angular parameters are deterministic unknowns. The simula-
tion parameters used here are the same as those in Section
VI-A2. Fig. 12 shows the MSEs of the JML-MAP estimates
and the deterministic ML estimates for the AT scheme. It is
shown in Fig. 12(b) that the JML-MAP path gain estimates
are better than the ML estimates, especially at low SNRs. The
ApproxHCRBs can provide reasonable lower bounds for the
JML-MAP estimates for the SNRs we consider.

We then assume the angles have known truncated Gaus-
sian distributions with angle intervals constructed by the
three-sigma rule, i.e., all the random realizations of 6; €
N(mg,,05) are in the interval [mg, — 309,,ms, + 309,].
Specifically, we consider the following parameters:

o AOA intervals: 6; € [—74.5°,—69.5°], 05 € [31°,36°],

03 € [—-52.5°, —47.5°], 04 € [59.5°,64.5°],

o AoD intervals: @1 € [63.5°,68.5°], o € [—45°, —40°],

p3 € [17.5°,22.5°], @4 € [—27.5°,—22.5°],

o Path gain vector ¢ = [0.4058 + 0.31707, —0.2536 +

0.44385,0.5706 — 0.12685, —0.1014 — 0.34875]T.

We plot the MSEs of JML-MAP estimates for the AT
scheme in Fig. 13. Since no analytical expression for the
HCRB exists in this case, we compute the HCRB via Monte-
Carlo trails. It is seen that the threshold effect for angle
estimation is suppressed due to the prior knowledge for the
JML-MAP, which has a much better performance than the
ML for low SNR. Moreover, since accurate angle estimates
are available for all SNRs, the threshold effect of JIML-MAP
path gain estimate also vanishes and the corresponding MSE
can approach the MC HCRB.

3) MAP Estimation for Bayesian Parameters: Finally, con-
sider the case where the channel path gains have the same
Gaussian distribution as in Section VI-A2 and the AoA and
AoD angles have the same truncated Gaussian distributions
as in Section VI-B2. We plot the MSE of the MAP channel
matrix estimate for the AT scheme in Fig. 14. It is observed
that the MSE of MAP channel estimates cannot approach the
corresponding MC BCRB. The gap between them is about 5
dB.

C. IbBIC for Path Number Determination

We now use the 1bBIC for channel path number determi-
nation for the same deterministic channel parameters as in
Section VI-A and unknown o2. Two different pilot sequences



,5< . . . . . . .

0l e -6-MC BCRB ||
X -%-MSE: MAP

A5r RS - X -MSE: ML

SNR (dB)
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Fig. 15. Correct determination probability of 1bBIC when o2 is unknown,
(a) as a function of SNR and (b) as a function of pilot length.

are considered here: random QPSK pilots (QPSK) and random
orthogonal pilots (Ortho). The maximum possible path number
Nmax 1 set to 8. We compare the correct determination
probability of 1bBIC with the two different pilot sequences
as functions of the SNR in Fig. 15(a) when the pilot length
K = 32 and as functions of the pilot length in Fig. 15(b)
when SNR = —10 dB. It can be seen from Fig. 15 that for
both pilot sequences, the probability of correct path number
determination reaches 1 for SNR > —5 dB in Fig. 15(a) or
K > 80 in Fig. 15(b).

VII. CONCLUSIONS

We have focused on the angular-domain channel estimation
for one-bit mmWave massive MIMO systems. In particular,
we have derived the deterministic CRB and the knowledge-
aided hybrid and Bayesian CRBs, for estimating the AoA,
AoD and the associated path gains. We have also presented
the ML estimator for deterministic channel parameter esti-
mation. When the prior information is available, the JML-
MAP and MAP estimators have been derived for the hybrid
and Bayesian parameter estimation, respectively. Variations
of the computationally efficient 1bRELAX algorithm have
been used to obtain the ML, JML-MAP and MAP channel
estimates. A simple and effective rule, referred to as 1bBIC,
has been derived for path number determination. Numerical
examples have been given to compare the performance bounds
using different one-bit thresholding schemes and to verify the
effectiveness of the parameter estimators and the 1bBIC rule.

We have demonstrated that accurate channel parameter
estimates can be obtained using our estimators. The correct
determination probability of 1bBIC approaches 1 even for a
low SNR or a moderate pilot length. In addition, we have
found that the simple and inexpensive antenna-varying thresh-
olding scheme allows for the noise variance to be unknown
and outperforms its zero-thresholding counterpart, especially
at high SNRs. We have also shown that the prior knowledge
of the angular-domain parameters can lead to significantly
improved channel estimation performance, especially at low
SNRs.

APPENDIX A
DERIVATION OF THE PARTIAL DERIVATIVES:

KR/I,m
IXp

Recall from the unquantized received signal model in (5),
the complex-valued signal I' (8, ¢) « is the superposition of
the signals from N paths:

N
> [(XTa&s (w)) ® aps (91)} el
' (63)

s

L'0,¢)

[l
=D

7 (01, 1) au,
1

where 7! (6, ¢;) € CEN-*1 We ignore the dependence of ~'
on #; and ¢; for notation brevity in the following. The partial
derivatives of kg n, W.I.t. the I™ elements of 6, ¢, ag and oy
in (16) can be computed, respectively, as:
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where a‘gzl( 2 and angzgw) are given by:
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respectively.
The partial derivatives of x ie, dum Oftm  OKLm
P Im, LG, 90, ° B¢, > Odan,
OKI.m . ..
and ;I = can be obtained similarly.
QgL



APPENDIX B
REFORMULATION OF g (Cr,m) P (Xr)

Recall from the definition of kg ., in (11a), and according
to (63), we can reformulate Kg , as:

N

Frm = 3 [thom@nrs = Hmari] 2 3mxe, (69)
=1
_ N, N,
where Ym = [’711{1mu U 7P)/R;m7 _7},7717 T _PYI,m]T' Plug_

ging (65) into (10a), we have:

9 (Crom) = 4e~ (7 F)Chm

_ 4671577?:“,1 .67%(X2(2tAm)X7‘7p;1;X7‘)

(66)

)

where t = (1 — 2) % Am = Y5 and P = 4R mVm.

m ?ﬁ’
Then,
9 (Crm) P (Xr)
4€_t7]R,m
(2m)*" |Ca| ;
7
.67%(XZ(ZtAm)Xr*pTT:LXr*F(Xr*ma)TCZI(ermQ)) (©7)
e 1 TR T LSS
V @2m)* Q|
where
5. —4,]1Qml ¢~ Om 3 mIC  macten
|Cal
1 —1 T 1
em =3 (2C. 'ma + Pm) Qm (2C1'ma + pm) ,
1 _
Um = §Qm (2Ca1ma + pm) )

Qm = (2tAn +C3') 7.

According to (67), g (Cr,m) p (xr) has been reformulated to a
constant of J,,, times a Gaussian pdf of x, with mean vector
u,, and covariance matrix Q,,.

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74-80, Feb. 2014.

[2] A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino,
“Millimeter-wave massive MIMO: The next wireless revolution?” IEEE
Commun. Mag., vol. 52, no. 9, pp. 56-62, Sep. 2014.

[3] Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir,
“Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-
dense network,” IEEE Wireless Commun., vol. 22, no. 5, pp. 13-21,
Oct. 2015.

[4] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M.

Sayeed, “An overview of signal processing techniques for millimeter

wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10,

no. 3, pp. 436453, Apr. 2016.

A. Mezghani, F. Antreich, and J. A. Nossek, “Multiple parameter esti-

mation with quantized channel output,” in International ITG Workshop

on Smart Antennas (WSA), Bremen, Germany, Feb. 2010, pp. 143-150.

[6] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO with 1-bit
ADC,” arXiv preprint arXiv:1404.7736, 2014.

[71 C. Wen, C. Wang, S. Jin, K. Wong, and P. Ting, “Bayes-optimal
joint channel-and-data estimation for massive MIMO with low-precision
ADCs,” IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2541-2556,
May 2016.

[8] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“Throughput analysis of massive MIMO uplink with low-resolution
ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 40384051,
Jun. 2017.

[5

[ty

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. Mo, P. Schniter, and R. W. Heath, “Channel estimation in broadband
millimeter wave MIMO systems with few-bit ADCs,” IEEE Trans.
Signal Process., vol. 66, no. 5, pp. 1141-1154, Mar. 2018.

J. Zhang, L. Dai, X. Li, Y. Liu, and L. Hanzo, “On low-resolution
ADCs in practical 5G millimeter-wave massive MIMO systems,” I[EEE
Commun. Mag., vol. 56, no. 7, pp. 205-211, Jul. 2018.

M. Sarajli¢, L. Liu, and O. Edfors, “When are low resolution ADCs
energy efficient in massive MIMO?” [EEE Access, vol. 5, pp. 14837-
14853, Jul. 2017.

A. Mezghani and J. A. Nossek, “On ultra-wideband MIMO systems with
1-bit quantized outputs: Performance analysis and input optimization,”
in IEEE International Symposium on Information Theory (ISIT), Nice,
France, Jun. 2007, pp. 1286—1289.

J. Mo and R. W. Heath, “Capacity analysis of one-bit quantized MIMO
systems with transmitter channel state information,” IEEE Trans. Signal
Process., vol. 63, no. 20, pp. 5498-5512, Oct. 2015.

J. Choi, J. Mo, and R. W. Heath, ‘“Near maximum-likelihood detector
and channel estimator for uplink multiuser massive MIMO systems with
one-bit ADCSs,” IEEE Trans. Commun., vol. 64, no. 5, pp. 2005-2018,
May 2016.

S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“One-bit massive MIMO: Channel estimation and high-order modula-
tions,” in IEEE International Conference on Communication Workshop
(ICCW), London, United Kingdom, Jun. 2015, pp. 1304-1309.

Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst,
and L. Liu, “Channel estimation and performance analysis of one-bit
massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 15,
pp- 4075-4089, Aug. 2017.

C. Mollén, J. Choi, E. G. Larsson, and R. W. Heath, “Uplink perfor-
mance of wideband massive MIMO with one-bit ADCs,” IEEE Trans.
Wireless Commun., vol. 16, no. 1, pp. 87-100, Jan. 2017.

J. Zhu, H. Cao, and Z. Xu, “A two-stage approach to estimate CFO and
channel with one-bit ADCs,” Signal Process., vol. 168, Mar. 2020.

M. S. Stein, S. Bar, J. A. Nossek, and J. Tabrikian, “Performance analysis
for channel estimation with 1-bit ADC and unknown quantization
threshold,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2557-2571,
May 2018.

F. Wang, J. Fang, H. Li, Z. Chen, and S. Li, “One-bit quantization design
and channel estimation for massive MIMO systems,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10921-10934, Nov. 2018.

M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1164-1179, Jun. 2014.

P. Wang, J. Li, M. Pajovic, P. T. Boufounos, and P. V. Orlik, “On angular-
domain channel estimation for one-bit massive MIMO system with fixed
and time-varying thresholds,” in 51th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, Oct. 2017.

F. Liu, H. Zhu, J. Li, P. Wang, and P. V. Orlik, “Massive MIMO channel
estimation using signed measurements with antenna-varying thresholds,”
in 2018 IEEE Statistical Signal Processing Workshop (SSP), Freiburg,
Germany, Jun. 2018, pp. 188-192.

O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” I[EEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499-1513, Mar. 2014.
J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106-114, Sep. 2007.

J. Li and P. Stocia, Eds., MIMO radar signal processing.
Wiley & Sons, 2009.

P. Stoica and T. L. Marzetta, “Parameter estimation problems with
singular information matrices,” IEEE Trans. Signal Process., vol. 49,
no. 1, pp. 87-90, Jan. 2001.

H. L. Van Trees, Detection, estimation, and modulation theory, part I:
detection, estimation, and linear modulation theory. John Wiley &
Sons, 2004.

G. Zeitler, G. Kramer, and A. C. Singer, “Bayesian parameter estimation
using single-bit dithered quantization,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 2713-2726, Jun. 2012.

N. Gonzalez-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-wave
communication with out-of-band information,” IEEE Commun. Mag.,
vol. 55, no. 12, pp. 140-146, Dec. 2017.

S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, United
Kingdom: Cambridge University Press, 2004.

J. Li and P. Stoica, “Efficient mixed-spectrum estimation with applica-
tions to target feature extraction,” IEEE Trans. Signal Process., vol. 44,
no. 2, pp. 281-295, Feb. 1996.

NIJ: John



(33]

[34]

(351

(36]

P. Stoica and Y. Selen, “Model-order selection: a review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36-47,
Jul. 2004.

G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6,
no. 2, pp. 461-464, May 1978.

J. Fang and H. Li, “Adaptive distributed estimation of signal power from
one-bit quantized data,” IEEE Trans. Aerosp. Electron. Syst., vol. 46,
no. 4, pp. 1893-1905, Oct. 2010.

C. Gianelli, L. Xu, J. Li, and P. Stoica, “One-bit compressive sampling
with time-varying thresholds: Maximum likelihood and the Cramér-
Rao bound,” in 50th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, Nov. 2016, pp. 399-403.

Fangqing Liu received the B.E. degree in com-
munication engineering from the Xidian University,
Xi’an, China in 2017. He is currently pursuing the
Ph.D. degree with the Department of Electronic
Engineering and Information Science, University of
Science and Technology of China, Hefei, China. His
current research interests include spectral estimation,
array signal processing and their applications to
communication and radar systems.

Heng Zhu received the B.S. degree in physics from
the University of Science and Technology of China
in 2017. Since September 2017, he has been working
towards his M.S. degree in electrical engineering
with the University of Science and Technology of
China. His current research interests include statis-
tical signal processing and compressed sensing.

Changheng Li received the B.S. degree in applied
mathematics from the University of Science and
Technology of China, Hefei, China, in 2017, where
he is currently working toward the M.S. degree
at the Department of Electrical Engineering and
Information Science. His research interests include
spectral estimation, statistical signal processing, and
their applications.

Jian Li (F’05) received the M.Sc. and Ph.D. de-
grees in electrical engineering from The Ohio State
University, Columbus, OH, USA, in 1987 and 1991,
respectively. She is currently a Professor with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA. Her
current research interests include spectral estimation,
statistical and array signal processing, and their
applications to radar, sonar, and biomedical engi-
neering. Her publications include Robust Adaptive
Beamforming (2005, Wiley), Spectral Analysis: the
Missing Data Case (2005, Morgan and Claypool), MIMO Radar Signal
Processing (2009, Wiley), and Waveform Design for Active Sensing Systems
A Computational Approach (2011, Cambridge University Press).

Dr. Li is a Fellow of IET and also a Fellow of the European Academy
of Sciences (Brussels). She was the recipient of the 1994 National Science
Foundation Young Investigator Award and the 1996 Office of Naval Research
Young Investigator Award. She was an Executive Committee Member of the
2002 International Conference on Acoustics, Speech, and Signal Processing,
Orlando, FL, USA, May 2002. She was an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING from 1999 to 2005, an
Associate Editor for the IEEE SIGNAL PROCESSING MAGAZINE from
2003 to 2005, and a member of the Editorial Board of Signal Processing,
a publication of the European Association for Signal Processing, from 2005
to 2007. She was a member of the Editorial Board of the IEEE SIGNAL
PROCESSING MAGAZINE from 2010 to 2012. She is currently a member
of the Sensor Array and Multichannel Technical Committee of the IEEE
Signal Processing Society. She is a co-author of the paper that has received
the M. Barry Carlton Award for the best paper published in the IEEE
TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS in
2005 and also a co-author of a paper published in the IEEE TRANSACTIONS
ON SIGNAL PROCESSING that has received the Best Paper Award in 2013
from the IEEE Signal Processing Society.

Pu Wang (S°05-M’12-SM’18) received the Ph.D.
degree in Electrical Engineering from the Stevens In-
stitute of Technology, Hoboken, NJ, USA, in 2011.

He is now a Principal Research Scientist at the
Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA, where he was an intern in the
summer of 2010. Before returning to MERL, he
was a Research Scientist at the Schlumberger-Doll
Research, Cambridge, MA, contributing to devel-
opments of next-generation logging-while-drilling
Acoustics/NMR products. His current research in-
terests include signal processing, Bayesian inference, statistical learning, and
their applications to (mmWave and THz) sensing, wireless communications,
networks and automotive applications.

Dr. Wang was selected as a Distinguished Speaker of the Society of
Petrophysicists and Well Log Analysts (SPWLA) in 2017 for the work
“Dipole Shear Anisotropy Using Logging-While-Drilling Sonic Tools”. He
was a recipient of the Conrad Schlumberger Award for Technical Depth
twice in 2017 and 2015 from the Schlumberger (North America) Reservoir
Symposium, the IEEE Jack Neubauer Memorial Award from the IEEE
Vehicular Technology Society in 2013, and the Outstanding Paper Award from
the IEEE AFICON Conference in 2011. He also received the Outstanding
Doctoral Thesis in Electrical Engineering Award in 2011, the Edward Peskin
Award in 2011, the Francis T. Boesch Award in 2008, and the Outstanding
Research Assistant Award in 2007 from the Stevens Institute of Technology.
He is an Associate Editor for /IEEE Signal Processing Letters.



Philip V. Orlik (M’97-11, SM’12) was born in New
York, NY in 1972. He received the B.E. degree in
1994 and the M.S. degree in 1997 both from the
State University of New York (SUNY) at Stony
Brook. In 1999 he earned his Ph.D. in electrical
engineering also from SUNY Stony Brook.

Since 2000 he has been with Mitsubishi Electric
Research Laboratories Inc. located in Cambridge,
MA where he is currently the Manager of the Signal
Processing Group. His primary research focus is
on advanced wireless and wired communications,
sensor/IoT networks. Other research interests include vehicular/car-to-car
communications, mobility modeling, performance analysis, and queuing the-
ory.

15



	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-009.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15


