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Abstract—In this paper, we propose a variational Bayesian
inference approach for a low-complexity symbol detection for
massive MIMO systems with symbol-dependent transmit-side
impairments. This study is motivated by observations that real-
world communication transceivers are often affected by the
hardware impairments, such as non-linearities of power ampli-
fiers, I/Q imbalance, phase drifts due to non-ideal oscillators,
and carrier frequency offsets. Particularly, symbol-dependent
perturbations are fully accounted into the designed hierarchical
signal model as unknown model parameters. The developed
variational Bayesian symbol detector is able to learn the unknown
perturbations in an iterative fashion. Numerical evaluation con-
firms the effectiveness of the proposed approach.

Index Terms—Massive MIMO systems, hardware impair-
ments, BPSK, variational Bayesian inference.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a
promising technology to meet the ever growing demands
for higher throughput and better quality-of-service of next-
generation wireless communication systems. Massive MIMO
systems are equipped with a large number of antennas at
base station (BS) simultaneously serving a number of single-
antenna users sharing the same time-frequency slot. By ex-
ploiting the asymptotic orthogonality among channel vectors
associated with different users, the massive MIMO system can
achieve almost perfect inter-user interference cancelation with
a simple linear precoder and receive combiner, and thus have
the potential to enhance the spectrum efficiency by several
orders of magnitude [1].

Despite all these benefits, the massive MIMO system poses
new challenges for system design and hardware implementa-
tion. For example, the hardware cost and power consumption
become prohibitively high as the number of antennas at the
BS is large and high-resolution analog-to-digital convertors
(ADCs) are employed. Extensive studies have considered
channel estimation and symbol detection for the massive
MIMO system with low-resolution ADCs (e.g. 1-3 bits) [2],
[3]. In addition, transmit impairments have been recently
received attention for the massive MIMO system. In fact, real-
world communication transceivers are often affected by the
hardware impairments such as non-linearities of power ampli-
fiers, I/Q imbalance, phase drifts due to non-ideal oscillators,
and carrier frequency offsets [4]–[17].

In this paper, symbol-dependent perturbations due to trans-
mit impairments are modeled as unknown parameters [4], [6],

Fig. 1. The signal model of symbol detection for massive MIMO systems
with transmit-side impairments.

[11], [18]. Specially, we introduce a truncated Gaussian mix-
ture prior distribution to effectively transmitted symbols. As
shown in Section IV, this prior distribution has the capability
to push the solution towards unknown but fixed boundaries
which can be used for later symbol detection. As a result, a
hierarchical Gaussian mixture signal model on the perturbed
transmitted symbol is used to enforce the finite alphabet
nature, and the framework of variational Bayesian inference
is employed to develop an iterative detection algorithm. One
key challenge here is that, to update the model parameters
such as the unknown boundaries, we need to compute the
expectation of the logarithm of the normalization factor over
the posterior distribution, which is difficult to derive in a
closed-form expression. To address this issue, we propose an
approximate, closed-form updating rule by finding the optimal
the adjustment of the two boundaries for the next iteration.
The performance is numerically evaluated by using the Monte-
Carlo simulation.

The remainder of this paper is organized as follows. In
Section II, the signal model of the massive MIMO system
is introduced to account for the hardware impairment. We
briefly review the boxed-LASSO approach in Section III. The
iterative Bayesian approach with a new scheme of updating
boundary parameters is proposed in Section IV. Simulation
results are provided in Section V, followed by the conclusion
in Section VI.

II. SIGNAL MODEL

Consider a massive MIMO system with Nt transmit and Nr
receive antennas. The transmitted symbols take values from a
finite constellation set A (e.g., PSK or QAM). Without loss
of generality, we assume A = {±1}. Let s ∈ ANt denote
the nominal transmitted vector and H ∈ CNr×Nt denote



Fig. 2. An example of symbol-dependent perturbations on the transmitted
symbol due to transmit-side impairments on BPSK modulation, where u1 =
−0.1 and u2 = −0.2.

the channel gain matrix, whose entries are assumed to be
independent and identically distributed (i.i.d.) Gaussian with
zero mean and unit variance. The received vector y ∈ CNr×1

is given by

y = Hx + v = H(s + e) + v, (1)

where x is the effectively transmitted vector due to the
transmit impairment, e is the transmit perturbation vector, and
v is the Gaussian distributed noise with zero mean and an
unknown variance β−1, i.e., v ∼ N (0, β−1INt). Moreover,
the nominal transmitted symbol sn ∈ {−1, 1} follows a
Bernoulli distribution,

p (sn;π) = (π)
(1+sn)/2

(1− π)
(1−sn)/2

, (2)

where π = 0.5. Moreover, the transmit hardware impairment
introduces a symbol-dependent permutation vector e,

en =

{
u1 sn = 1

u2 sn = −1
, (3)

where u1 and u2 are unknown variables.
The problem of interest is, given the received vector y, to

detect the symbol s by taking into account the binary nature
of s and in the case of unknown symbol-dependent transmit-
impairments e.

III. PRIOR ARTS

In the following, we briefly review existing approaches for
symbol detection for massive MIMO systems.

A. The Maximum-Likelihood Decoder

The maximum likelihood (ML) decoder maximizes the
probability of error (assuming {1,−1} are equally likely) is
given by

x̂ = arg min
x∈{±1}Nt

‖y −Hx‖2, (4)

which is often computationally intractable, especially when
the dimension Nt is large.

B. Decorrelator

A simple relaxation of the ML decoder is to relax the
feasible set to the N dimensional space RNt

x̂ = arg min
x∈RNt

‖y −Hx‖2, (5)

which essentially removes the constraints and converts the
discrete optimization problem into a continuous one. It is easy
to show that

z = (HTH)−1HTy (6)

and the decorrelator takes the sign of the above solution as

ŝ = sign{z} (7)

C. Box Relaxation

The constraint set of (4) consists of corner points of the unit
hypercube (box). Another solution is to relax the constraint
set to cover the whole hypercube and convert (4) to a convex
programming problem

x̂ = arg min
x∈[−1,1]Nt

‖y −Hx‖2. (8)

Both the cost function and the constraint set in (8) are convex.
Thus, it has a unique minimum. However, the optimum point
does not have a closed form and one should use iterative meth-
ods to find the solution. Then the solution to (8) (denoted as
x̂BR) is hard-thresholded to produce the final binary estimate.

ŝ = sign{x̂BR}. (9)

Numerous low-complexity implementations of (8) have been
proposed in the literature.

IV. PROPOSED VARIATIONAL BAYESIAN SYMBOL
DETECTION

In this section, we propose a low-complexity symbol de-
tector for the massive MIMO system with symbol-dependent
transmit impairments. Specifically, we utilize the variational
Bayesian inference (VBI) framework to recover x with a
special design of the hierarchical prior on the binary vector
x and introduce a new scheme to update unknown boundaries
of the effectively transmitted symbols.

A. Hierarchical Signal Model

It is noted that the element of x takes either of the binary
values {v2 = −1 + u2, v1 = 1 + u1}. In order to explore
this binary nature, we impose independent truncated Gaussian
mixture prior distributions on the elements of x,

p (xn|αn1, αn2, cn; v1, v2) , xn ∈ [v2, v1], (10)

=

[
N
(
xn; v1, α

−1
n1

)
ηn1

]cn
·

[
N
(
xn; v2, α

−1
n2

)
ηn2

]1−cn

,

where cn ∈ {0, 1} is a binary label variable for the n-th
element xn, and ηn1 = 0.5 − Φ

(
−2v
√
αn1

)
and ηn2 =

−0.5 + Φ
(
2v
√
αn2

)
are the normalization factors with v =

1 + (u1−u2)/2 and Φ(·) denoting the cumulative distribution
function of the standard normal distribution.



Fig. 3. Truncated Gaussian mixture prior p(xn) for the effectively transmitted
symbol xn ∈ [v2 = −1.5, v1 = 0.9] with different prior precisions α1 and
α2, when u1 = −0.1, u2 = −0.5 and π = 0.5.

In addition, the binary label vector c = [c1, . . . , cN ]T

follows an i.i.d. Bernoulli distribution with parameter π,

p (cn;π) = (π)
cn (1− π)

1−cn . (11)

With (10) and (11), the prior distribution of xn is given as

p (xn|αn,1, αn,2; v1, v2)

=
∑

cn∈{0,1}

p (xn|αn,1, αn,2, cn; v1, v2) p (cn;π)

= π
N
(
xn; v1, α

−1
n1

)
ηn1

+ (1− π)
N
(
xn; v2, α

−1
n2

)
ηn2

(12)

where xn ∈ [v2, v1]. Fig. 3 shows the truncated Gaussian
mixture prior p(x) when the symbol-dependent perturbations
are given as u1 = −0.1 and u2 = −0.5 (resulting in
[v2, v1] = [−1.5, 0.9]) with different prior precisions α1 and
α2. As shown in the figure, larger prior precisions (α1 and
α2) push the prior distribution of xn towards its boundaries
and hence it captures the binary nature of xn.

Furthermore, we treat the perturbation precision, αn1 and
αn2, as i.i.d. random variables and specify the the Gamma
distribution as hyperpriors over these precision variables,

p (α1,α2; ζ1, ζ2) =

2∏
i=1

N∏
n=1

Gamma (αni|ζ1, ζ2) , (13)

where α1 = [α11, . . . , αN1]T, α2 = [α12, . . . , αN2]T, and

Gamma (α|ζ1, ζ2) = Γ (ζ1)
−1
ζζ12 αζ1−1e−ζ2α (14)

with ζ1 and ζ2 are set as small values, e.g., ζ1 = ζ2 =
10−6, for non-informative hyperpriors on α1 and α2. Overall,
the hierarchical truncated Gaussian mixture model can be
described in a graphical representation shown in Fig. 4,
where hidden random variables (red circles) are given as
{x, c,α1,α2}, unknown model parameters include the two
unknown boundary parameters {v1, v2} and noise variance
β−1, and pre-determined hyperparameters include the prior
symbol probability of π = 0.5 and the hyper-prior parameters
ζ1 = ζ2 = 10−6.

B. Variational Bayesian Symbol Detection

According to the above hierarchical signal model, we utilize
the variational Bayesian inference for the posterior distribu-
tions of hidden random variables {x, c,α1,α2} and updating

Fig. 4. A graphical representation of the signal model for the massive MIMO
system with symbol-dependent impairments. y, the measurement at the
receiver side, is an observable random variable denoted by blue circles. Red
circles represent hidden random variables including the effectively transmitted
symbol x, the nominal symbol c and the precision parameters of impairment-
induced perturbation α1 and α2. Squares denote the unknown deterministic
model parameters including the perturbation boundaries {v1, v2} and the
noise variance β−1. And diamonds denote pre-determined hyperparameters,
i.e., the prior probability of the nominal symbol π = 0.5 and the hyper-prior
parameters ζ1 = ζ2 = 10−5.

rules for unknown model parameters, i.e., the deterministic
perturbation parameters {v1, v2} and noise variance β−1.

Decoupled Transmit-Channel-Based Likelihood Func-
tion: The receiver-channel-based likelihood function of y is
given by

p (y|x;β) =
1

(2πβ−1)Nr/2
e−

β‖y−Hx‖22
2 , (15)

where the measurement ym at each receive channel in-
cludes contributions from all effectively transmitted symbols
{xn}Ntn=1 due to the mixing channel matrix H. In order to
derive the posterior distributions, it is necessary to factorize
the receiver-channel-based likelihood function to a decou-
pled transmit-channel-based likelihood function. This can be
done by using the GAMP framework which approximates
the likelihood function as a product of approximate marginal
likelihoods:

p (y|x;β) ≈
Nt∏
n=1

p(xn|r̂n, τ̂n) =

Nt∏
n=1

1√
2πτ̂n

e−
(xn−r̂n)2

2τ̂n .

(16)
As a result, the receiver-channel-based likelihood function is
approximately decoupled in the transmit-channel sense (with
respect to the transmitting antenna index n). For each transmit-
channel, we have an equivalent Gaussian marginal likelihood
with mean r̂n and variance τ̂n. The detailed derivation of mean
and variance can be found in Appendix. It is worth noting
that this decoupling process of (16) has been used in the
massive MIMO symbol detection [1], [14], [19] and the peak-
to-average power ratio reduction for MIMO-OFDM systems
[20].

Posterior Distributions of Hidden Random Variables:
Then, with the decoupled likelihood function of (16), the
variational expectation-maximization (EM) algorithm is used
to derive the posterior distribution of the hidden random
variables, i.e., {x,α1,α2, c}.



Posterior of the effectively transmitted symbol x: We first
start with the derivation of the posterior distribution of the
effectively transmitted symbol vector x. With (10) and (16)
and by only keeping terms related to xn, we have

ln q (x) = 〈ln p (y,x,α1,α2, c;θ)〉q(α1)q(α2)q(c) + const

=〈ln [p(y|x;β)p(x|α1,α2, c; v1, v2)]〉q(α1)q(α2)q(c) + const

=− 1

2

Nt∑
n=1

[
τ̂−1
n (xn − r̂n)2 + 〈cn〉〈αn1〉(xn − v1)2

+(1− 〈cn〉)〈αn2〉(xn − v2)2
]

+ const

=− 1

2

Nt∑
n=1

(
τ̂−1
n + 〈cn〉〈αn1〉+ (1− 〈cn〉)〈αn2〉

)
x2
n

− 2
(
τ̂−1
n r̂n + 〈cn〉〈αn1〉v1 + (1− 〈cn〉)〈αn2〉v2

)
xn

+ const, if xn ∈ [v2, v1],
(17)

where v1 = v+ b and v2 = −v+ b. This implies the posterior
distribution of x can be factorized into independent truncated
Gaussian distribution,

q (xn) =

{
N (µ̃n,σ̃

2
n)

η̃n
xn ∈ [v2, v1]

0 elsewhere
, (18)

where the posterior mean µ̃n and variance σ̃2
n are given as

µ̃n =
(
τ̂−1
n r̂n + 〈cn〉〈αn1〉v1 + (1− 〈cn〉)〈αn2〉v2

)
σ̃2
n,
(19)

σ̃2
n =

(
τ̂−1
n + 〈cn〉〈αn1〉+ (1− 〈cn〉)〈αn2〉

)−1
, (20)

with the normalization factor

η̃n = Φ
(
σ̃−1
n (v1 − µ̃n)

)
− Φ

(
σ̃−1
n (v2 − µ̃n)

)
(21)

Posterior of precision variables {α1,α2}: With (13) and
(16) and by only keeping terms related to αn1, we have

ln q (α1) = 〈ln p (y,x,α1,α2, c;θ)〉q(x)q(α2)q(c) + const

= 〈ln [p(x|α1,α2, c; v1, v2)p(α)]〉q(x)q(α2)q(c) + const

=

Nt∑
n=1

[(0.5〈cn〉+ ζ1 − 1) lnαn1

−
(
0.5〈cn〉〈(xn − v1)2〉+ ζ2

)
αn1 − 〈cn〉 ln ηn1

]
+ const,

≈
Nt∑
n=1

[(0.5〈cn〉+ ζ1 − 1) lnαn1

−
(
0.5〈cn〉〈(xn − v1)2〉+ ζ2

)
αn1

]
+ const,

where we have used the updated value ln η
(t)
n1 to replace ln ηn1

and make it irrelevant to the posterior distribution of αn1. As
a result, the posterior distribution of α1 can be factorized into
independent Gamma distribution, i.e.

q (αn1) = Gamma
(
αn1|ãn1, b̃n1

)
, (22)

where

ãn1 = ζ1 + 0.5〈cn〉, (23)

b̃n1 = ζ2 + 0.5〈cn〉〈(xn − v1)2〉. (24)

Similarly, the posterior distribution of α2 can be factorized
into independent Gamma distribution, i.e.

q (αn2) = Gamma
(
αn2|ãn2, b̃n2

)
, (25)

where

ãn2 = ζ1 + 0.5(1− 〈cn〉), (26)

b̃n2 = ζ2 + 0.5(1− 〈cn〉)〈(xn − v2)2〉. (27)

Posterior of the label variable c: For the last class of hidden
variables, the binary label variable c ∈ {0, 1}, its posterior
distribution can be inferred as

ln q (c) = 〈ln p (y,x,α1,α2, c;θ)〉q(x)q(α1)q(α2) + const

=〈ln [p(x|α1,α2, c; v1, v2)p(c)]〉q(x)q(α1)q(α2) + const

=

Nt∑
n=1

(`n1 − `n2)cn + const, (28)

where `n1 = lnπ + 0.5〈lnαn1〉 − 〈ln ηn1〉 − 0.5〈αn1〉〈(xn −
v1)2〉 and `n2 = ln(1 − π) + 0.5〈lnαn2〉 − 〈ln ηn2〉 −
0.5〈αn2〉〈(xn−v2)2〉. The computation of the posterior quanti-
ties 〈ln ηn1〉 and 〈ln ηn2〉 is quite involved and can be replaced
by their updated values ln η

(t)
n1 and ln η

(t)
n2 from the previous

iteration. As a result, c has independent posterior Bernoulli
distribution with the parameter π̃n = (1 + e`n2−`n1)−1

q (cn; π̃n) = (π̃n)
cn (1− π̃n)

1−cn . (29)

Compared with the prior distribution of cn in (11), the poste-
rior distribution is no longer identical since the parameter π̃n
is now dependent on the index n.

Computation of Posterior Quantities: To update the above
posterior distributions, we need to compute the following
posterior quantities:

〈xn〉 = µ̃n −
σ̃n
η̃n

[
φ

(
v1 − µ̃n
σ̃n

)
− φ

(
v2 − µ̃n
σ̃n

)]
,〈

x2
n

〉
= µ̃n 〈xn〉+ σ̃2

n

− σ̃n
η̃n

[
v1φ

(
v1 − µ̃n
σ̃n

)
− v2φ

(
v2 − µ̃n
σ̃n

)]
,

〈αn1〉 = ãn1/b̃n1, 〈αn2〉 = ãn2/b̃n2

〈lnαn1〉 = ψ (ãn1)− ln b̃n1, 〈lnαn2〉 = ψ (ãn2)− ln b̃n2

〈cn〉 =
1

1 + e`n2−`n1
,

where φ(x) is the standard normal probability density function
at the value of x, and ψ (a) = ∂ ln Γ (a)/∂a is the digamma
function [21].

Update of Deterministic Model Parameters: In the fol-
lowing, we obtain the updating rules for three deterministic
parameters θ = {β, v1, v2}. The general rule is to maximize
the Q-function with respect to the unknown parameters [22]{
θNEW} = argmax

θ
〈ln p (y,x,α1,α2, c;θ)〉q(x)q(α1)q(α2)q(c)

where the Q-function is obtained as the expectation of the
logarithm of the complete likelihood function (y,x,α1,α2, c)



with respect to the posterior distributions of all hidden vari-
ables {x,α1,α2, c}.

First, the corresponding Q-function of β can be expressed
as

Q(β, β(k)) =

Nr∑
m=1

〈ln p(ym|dm;β)〉p(dm|y;β) + const, (30)

where ym = dm + vm and dm is the m-th element of the
noiseless measurement d = Hx whose posterior distribution
p(dm|y;β) can be found in Step 2 of the Appendix. In
other words, the equivalent variable d can summarize all
contributions from the hidden variables {x,α1,α2, c}. Then
it is straightforward to show that

Q(β, β(k)) = −1

2

Nr∑
m=1

[lnβ + β〈(ym − dm)2〉] + const, (31)

which yields

β(k+1) =
Nr

Nr∑
m=1
〈(ym − dm)2〉

, (32)

where the expectation is taken over the posterior distribution
of dm.

Next, to update the two unknown boundary values {v1, v2},
the corresponding Q-function of {v1, v2} is difficult to find
a closed-form expression. Alternatively, we consider a least-
square updating procedure. Specifically, we minimize the
following cost function

[∆b̂,∆v̂] = arg min
∆b,∆v

‖y −A(x̂(k) + ∆b1 + ∆vh)‖22 (33)

where 1 is the all-one vector and hn = h(n) = 1 if x(k)
n > b̂(k)

or hn = −1 if x(k)
n ≤ b̂(k) with b̂(k) = (v̂

(k)
1 + v̂

(k)
2 )/2

denoting the estimated middle point of the unknown interval
at the k-th iteration. It can be seen that the updating rule of
{v1, v2} is converted to the updating of the middle point b
and the marginal distance v to the current estimate of bounds
by finding the optimal adjustments {∆b,∆v}. More precisely,
(33) minimizes the data fitting error using the current estimate
of x, i.e., x̂(k), the adjustment of the mean ∆b and its marginal
distance ∆v to the two boundaries. The exact solution of
{∆b,∆v} is given as[

∆b(k+1)

∆v(k+1)

]
=
(
QTQ

)−1
QT (y −Ax̂(k)) (34)

where Q = A[1,h]. Finally, the two boundaries {v1, v2} can
be updated as

v
(k+1)
1 = v

(k)
1 + (∆b(k+1) + ∆v(k+1)),

v
(k+1)
2 = v

(k)
2 + (∆b(k+1) −∆v(k+1)). (35)

Fig. 5. Recovered transmitted symbol xn ∈ [−0.3, 1.5] with u1 = 0.5,
u2 = 0.7 using various methods when SNR = 20 dB.

(a) (b)
Fig. 6. Performance comparison in terms of (a) BER and (b) normalized
MSE as a function of SNRs.

V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate
the proposed symbol detector. Specifically, we consider the a
MIMO system of Nt = Nr = 32 transmit and receive antennas
with BPSK modulation. The symbol-dependent perturbation is
u1 = 0.5 and u2 = 0.7 which results in [v2, v1] = [−0.3, 1.5].
The channel matrix is generated as the Gaussian matrix with
zero mean and unit variance. The SNR is defined on a basis
of per receive-antenna, i.e., SNR = ‖Ax‖2/(Mσ2). We
compare the proposed symbol detector with the boxed-LASSO
approach of (8) with 1) under-relaxed bounds [−1, 1], 2)
over-relaxed bounds [−2, 2], and 3) known bounds [−0.3, 1.5]
which serves as the performance benchmark for all methods.

Fig. 5 shows an illustrative example of the recovered
transmitted signal xn for all considered methods when SNR =
20 dB. It is shown that the boxed-LASSO approach with
mismatched bounds gives more fluctuating estimates of xn
over the proposed estimates. On the other hand, the proposed
variational Bayesian symbol detection gives similar results to
those of the boxed-LASSO with known bounds.

Fig. 6 (a) shows the bit error rate (BER) for all considered
methods when SNR varies from 10 dB to 30 dB. It is clear
that the boxed-LASSO approach with known bounds provides
the best performance while the ones with mismatched (under-
relaxed and over-relaxed) bounds give worse performance.
The proposed VBI approach gives better performance than
the boxed-LASSO with either under-relaxed or over-relaxed
bounds. Fig. 6 (b) shows the normalized MSE ‖x̂−x‖22/‖x‖22



for all considered methods. Similar observations can be made
from the normalized MSE criterion.

VI. CONCLUSION

In this paper, we proposed the variational Bayesian symbol
detection for the massive MIMO system which is subject
to symbol-dependent transmit-side impairments. Specifically,
we imposed a truncated Gaussian mixture prior distribution
to the perturbed transmitted symbol to capture the binary
nature. With a hierarchical signal model, we obtained the pos-
terior distributions of all hidden variables, e.g., the effectively
transmitted symbols, and closed-form updating formulas for
unknown model parameters, e.g., the unknown impairment-
induced perturbation parameters.

VII. APPENDIX

To get the approximate likelihood function of (16), we
need to compute the approximate mean r̂n and variance
τ̂n, which can be obtained by using the GAMP algorithm
[23] with inputs from the means x̂n = 〈xn〉q(xn), variances
τxn = 〈(xn − x̂n)2〉q(xn), and the noise variance β−1. Partic-
ularly, to compute the decoupled likelihoods N (xn|r̂n, τ̂n)
and the posterior likelihood of the noiseless measurement
N (dm|d̂m, τ̂wm), we follow the steps below:
• Initialize ŝm = 0, m = 1, · · · , Nr;
• Step 1: for all m = 1, · · · , Nr:

τ̂xm =
∑
n

H2
mnτ

x
n , p̂xm =

∑
n

Hmnx̂n − τ̂xmŝm,

where Hmn is the (m,n)-th element of H.
• Step 2: for all m = 1, · · · , Nr, compute the pos-

terior mean and variance of dm with respect to
p(dm|ym, τ̂xm, p̂xm), i.e.,

d̂m = 〈dm〉p(dm|ym,τ̂xm,p̂xm),

τ̂dm = 〈(dm − d̂m)2〉p(dm|ym,τ̂xm,p̂xm),

and update

ŝm =
d̂m − p̂xm
τ̂xm

, τ̂sm =
1− τ̂dm/τ̂xm

τ̂xm
,

• Step 3: for all n = 1, · · · , Nt, compute the mean and
variance of the decoupled likelihood function

τ̂n =

(∑
m

H2
mnτ̂

s
m

)−1

, r̂n = x̂n + τ̂n
∑
m

Hmnŝm.

REFERENCES

[1] C. Jeon, R. Ghods, A. Maleki, and C. Studer, “Optimality of large
MIMO detection via approximate message passing,” in 2015 IEEE
International Symposium on Information Theory (ISIT), June 2015, pp.
1227–1231.

[2] P. Wang, J. Li, M. Pajovic, P. T. Boufounos, and P. V. Orlik, “On angular-
domain channel estimation for one-bit massive MIMO systems with
fixed and time-varying thresholds,” in 2017 51st Asilomar Conference
on Signals, Systems, and Computers, Oct 2017, pp. 1056–1060.

[3] F. Liu, H. Zhu, J. Li, P. Wang, and P. V. Orlik, “Massive MIMO channel
estimation using signed measurements with antenna-varying thresholds,”
in 2018 IEEE Statistical Signal Processing Workshop (SSP), June 2018,
pp. 188–192.

[4] B. Goransson, S. Grant, E. Larsson, and Z. Feng, “Effect of transmitter
and receiver impairments on the performance of MIMO in HSDPA,” in
2008 IEEE 9th Workshop on Signal Processing Advances in Wireless
Communications, July 2008, pp. 496–500.

[5] H. Suzuki, T. V. A. Tran, I. B. Collings, G. Daniels, and M. Hedley,
“Transmitter noise effect on the performance of a MIMO-OFDM hard-
ware implementation achieving improved coverage,” IEEE Journal on
Selected Areas in Communications, vol. 26, no. 6, pp. 867–876, August
2008.

[6] C. Studer, M. Wenk, and A. Burg, “MIMO transmission with residual
transmit-RF impairments,” in 2010 International ITG Workshop on
Smart Antennas (WSA), Feb. 2010, pp. 189–196.

[7] E. Björnson, P. Zetterberg, and M. Bengtsson, “Optimal coordinated
beamforming in the multicell downlink with transceiver impairments,”
in 2012 IEEE Global Communications Conference (GLOBECOM), Dec.
2012, pp. 4775–4780.

[8] J. Qi and S. Aissa, “On the power amplifier nonlinearity in MIMO trans-
mit beamforming systems,” IEEE Transactions on Communications, vol.
60, no. 3, pp. 876–887, March 2012.

[9] B. Maham and O. Tirkkonen, “Transmit antenna selection OFDM sys-
tems with transceiver I/Q imbalance,” IEEE Transactions on Vehicular
Technology, vol. 61, no. 2, pp. 865–871, Feb. 2012.

[10] E. Björnson, P. Zetterberg, M. Bengtsson, and B. Ottersten, “Capacity
limits and multiplexing gains of MIMO channels with transceiver
impairments,” IEEE Communications Letters, vol. 17, no. 1, pp. 91–
94, January 2013.

[11] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive
MIMO systems with non-ideal hardware: Energy efficiency, estimation,
and capacity limits,” IEEE Transactions on Information Theory, vol. 60,
no. 11, pp. 7112–7139, Nov. 2014.

[12] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “Uplink per-
formance of time-reversal MRC in massive MIMO systems subject to
phase noise,” IEEE Transactions on Wireless Communications, vol. 14,
no. 2, pp. 711–723, Feb. 2015.
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