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Abstract
Music source separation performance has greatly improved in recent years with the advent of
approaches based on deep learning. Such methods typically require large amounts of labelled
training data, which in the case of music consist of mixtures and corresponding instrument
stems. However, stems are unavailable for most commercial music, and only limited datasets
have so far been released to the public. It can thus be difficult to draw conclusions when com-
paring various source separation methods, as the difference in performance may stem as much
from better data augmentation techniques or training tricks to alleviate the limited availabil-
ity of training data, as from intrinsically better model architectures and objective functions.
In this paper, we present the synthesized Lakh dataset (Slakh) as a new tool for music source
separation research. Slakh consists of high-quality renderings of instrumental mixtures and
corresponding stems generated from the Lakh MIDI dataset (LMD) using professional-grade
sample-based virtual instruments. A first version, Slakh2100, focuses on 2100 songs, resulting
in 145 hours of mixtures. While not fully comparable because it is purely instrumental, this
dataset contains an order of magnitude more data than MUSDB18, the de facto standard
dataset in the field. We show that Slakh can be used to effectively augment existing datasets
for musical instrument separation, while opening the door to a wide array of data-intensive
music signal analysis tasks.
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ABSTRACT

Music source separation performance has greatly improved in re-
cent years with the advent of approaches based on deep learning.
Such methods typically require large amounts of labelled training
data, which in the case of music consist of mixtures and corre-
sponding instrument stems. However, stems are unavailable for
most commercial music, and only limited datasets have so far been
released to the public. It can thus be difficult to draw conclusions
when comparing various source separation methods, as the differ-
ence in performance may stem as much from better data augmenta-
tion techniques or training tricks to alleviate the limited availability
of training data, as from intrinsically better model architectures and
objective functions. In this paper, we present the synthesized Lakh
dataset (Slakh) as a new tool for music source separation research.
Slakh consists of high-quality renderings of instrumental mixtures
and corresponding stems generated from the Lakh MIDI dataset
(LMD) using professional-grade sample-based virtual instruments.
A first version, Slakh2100, focuses on 2100 songs, resulting in 145
hours of mixtures. While not fully comparable because it is purely
instrumental, this dataset contains an order of magnitude more data
than MUSDB18, the de facto standard dataset in the field. We show
that Slakh can be used to effectively augment existing datasets for
musical instrument separation, while opening the door to a wide
array of data-intensive music signal analysis tasks.

Index Terms— music source separation, sample-based virtual
instruments, synthesis, MIDI

1. INTRODUCTION

Source separation performance has greatly improved in recent years
thanks to the advent of approaches based on deep learning, starting
with speech enhancement in non-stationary background noise [1],
then expanding to separation of voices from simultaneous overlap-
ping speakers [2] and separation of music mixtures [3–5]. Such
methods typically require large amounts of labelled training data,
where the labels for a mixture are here the corresponding clean
sources prior to mixing: in the case of speech enhancement and
speech separation, where the target and interference are typically
not correlated (or only loosely via the Lombard effect, for exam-
ple), somewhat realistic data can be generated in large quantities by
mixing randomly sampled examples of speech and noise or other
speech. In the case of music, training data consists of mixtures
and their corresponding instrument stems. However, stems are un-
available for most commercial music, and only limited datasets have
thus far been released to the public. The largest publicly available
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dataset for music source separation, MUSDB18 [6], is relatively
small compared to datasets for other deep learning tasks: for exam-
ple, MUSDB18 only contains 10 hours (from 150 songs) of mixture
data, compared to 43 hours of mixtures in WSJ0-2mix, the most
commonly used dataset for speech separation [2].

Comparisons of methods that used data augmentation [7, 8] or
external data [4, 9] show that models trained on more data typically
perform higher on objective quality measures, such as source-to-
distortion ratio (SDR). In fact, 4 of the top 5 performing algorithms
at the SiSEC 2018 challenge [10] used additional training data. This
correlation between the amount and variety of training data and per-
formance underlines the need for more training data. The impact of
additional data on performance also underlines a fundamental prob-
lem regarding comparison across algorithms: is better performance
due to the model, which is usually the emphasized novelty, or to bet-
ter data augmentation and training tricks to alleviate data scarcity?

Furthermore, music features a large sonic variability, with a
wider range of sounds, timbres, and pitches than there is in speech,
for example. Existing datasets only partially address this problem,
using terse categorization schemes for the sources in the mixture.
For example, both MIR-1k [11] and iKala [12] only provide sources
for “Vocals” and “Accompaniment”. While these categories have a
historic impetus, they artificially circumscribe musical sources into
two classes. MUSDB18 [6] and its older sibling DSD100 [13]
both use slightly more descriptive categories (“Vocals”, “Bass”,
“Drums”, “Other”), but this segmentation of musical instrument
categories is still rudimentary. A large dataset with more granu-
lar categories could allow for source separation techniques that are
more reflective of real-world musical conditions.

Synthesizing a high-quality dataset could alleviate all of these
problems, by allowing for fine-tuned control of the desired parame-
ters. In fact, synthesized datasets have been shown to improve neu-
ral network performance on other music information retrieval tasks,
such as drum transcription [14], understanding of compositional
semantics and performance characteristics [15], synthesis of new
sounds [16], and frame-level recognition of instruments [17]. Previ-
ously, synthesized data was used in separating mixtures of stringed
instruments [18], but we are unaware of any work that synthesizes
audio for general music source separation.

In this paper, we present the synthesized Lakh dataset (Slakh),
an open dataset consisting of high-quality renderings of instrumen-
tal mixtures and sources generated from the Lakh MIDI dataset
(LMD) [19], and in particular a first public release focusing on 2100
songs, Slakh2100 (available at www.slakh.com). Using Slakh and
a similar dataset generated using a simpler synthesizer called Flu-
idSynth [20], referred to as Flakh, we analyze the impact of quantity
and quality of training data on separation performance.
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Figure 1: Number of mixtures in Slakh2100 that contain at least one
instrument from the following categories. Every mixture has piano,
bass, guitar, and drums (the four leftmost bars, shown in green.)

2. SLAKH DATASET CREATION AND ANALYSIS

We propose to generate a large dataset of realistic instrumental mix-
tures and their corresponding stems by rendering MIDI files using
high-quality sample-based synthesis. Recordings in Slakh are gen-
erated using professional-grade virtual instruments used by count-
less musicians and composers. The dataset we release, Slakh2100,
contains 2100 automatically mixed tracks and accompanying MIDI
files separated into training (1500 tracks), validation (375 tracks),
and testing (225 tracks) subsets, and totals 145 hours of mixtures.
Additionally, the technique described here can lead to a virtually
endless supply of high-quality mixtures and sources.

2.1. Selection from the Lakh MIDI dataset

The Lakh MIDI dataset (LMD) [19] is a collection of over 170,000
unique MIDI files scraped from the web. MIDI is a digital musical
score that contains information for every note in a song, including
information about what instruments should be used for each note.
The MIDI file format segments different instruments into tracks
similar to modern digital audio workstations (DAWs), which makes
the notes for each instrument easy to isolate, and then synthesize.

Because the files of the LMD originate from thousands of un-
known authors, there is no standardization between each file (in-
cluding metadata, amount of instruments, instrument types or fam-
ilies). We therefore rely on the built-in “instrument program num-
bers” from the MIDI specification. These values prescribe instru-
ment types and families to each track and are used to determine
what virtual instruments to use when rendering audio for a given
track. Using the instrument program numbers, we select only files
that contain instrument tracks for at least piano, bass, guitar, and
drums, where each of these four instruments plays at least 50 notes
throughout the song. This subset contains 20, 371 MIDI files, but
almost all of these selected files contain more than just those four in-
strument tracks. Once this subset is created, 2100 files are randomly
selected to be rendered . Note that the definition of this “band” (pi-
ano, bass, guitar, drums), and the minimum number of notes played
by each instrument is easily altered to create mixtures with different
characteristics. The number of mixtures that contain an instrument
type by category is shown in Figure 1.

2.2. Rendering and mixing

Once the MIDI files are selected, we split each file up by creating
a new MIDI file for each track in the original (or “mixture”) MIDI
file. The tracks are randomly assigned a patch that matches with

its instrument program number. For instance, the MIDI instrument
program numbers 0 and 1 correspond to “Acoustic Grand Piano”
and “Bright Acoustic Piano”, respectively. In this case, a patch is
randomly selected from a list of twelve patches that fit the descrip-
tion of an acoustic piano. We use 187 patches categorized into 34
classes. These categories lead to 21, 216 possible instrument con-
figurations for just the four instrument classes in our band; when we
include other instruments, the number of possible configurations is
immense. Many patches have effects built-in such as reverb, EQ,
and compression. MIDI program numbers that are sparsely repre-
sented in LMD, like those under the “Sound Effects” header, are
omitted. This selection and rendering process is repeated for ev-
ery applicable track in the MIDI file. All tracks are rendered into
separate monaural audio files at CD quality: 44.1kHz, 16-bit.

When making a recording in the studio, mixing is a time-
consuming process done by ear by a recording engineer. Because
we have neither the time nor budget to hire a professional to mix all
2100 songs, and because we want to use a method that could later
scale up even further, we mix using an automatic procedure. We first
normalize each track to be equal in terms of integrated loudness as
calculated by the algorithm defined in the ITU-R BS.1770-4 spec-
ification [21]. Each track is then summed together instantaneously
to make a mixture, and a uniform gain is applied to the mixture
and each track to ensure that there is no clipping. This method for
automatic mixing has been shown to be preferable to listeners in a
subjective evaluation of automatic mixing techniques [22]. Creat-
ing stereo mixtures would require a suitable auto-mixing system to
determine pan and delay for each track, which to the best of our
knowledge does not yet exist. We note that the isolated Slakh in-
strument data is available for remixing.

2.3. Flakh

To study the impact of the quality of synthesis engines, the same
2100 MIDI files selected for Slakh2100 are also rendered with Flu-
idSynth [20] using the ‘TimGM6mb.sf2’ sound font, the default in
pretty midi [23]. We refer to the resulting dataset as Flakh. As be-
fore, we similarly split the MIDI into individual tracks and render
these individually to make stems. But low-amplitude noise added
by FluidSynth (most likely for dithering) can be boosted to unnat-
urally loud levels when normalizing and mixing Flakh as we did
in Section 2.2. This makes it impossible to mix Flakh the same
way as Slakh. Instead FluidSynth renders the whole, unsplit MIDI
“mixture” as the resultant audio mixture. The rendering in Flakh is
arguably much simpler than that used in Slakh.

2.4. Details and analysis

The resulting Slakh2100 dataset is larger than all of the other exist-
ing, open multi-track music source separation datasets combined,
both when measuring by number of mixtures and amount of time.
The number of tracks in Slakh2100 ranges from 4 to 48, with a
median of 9, whereas MedleyDB is the only other dataset with a
variable amount of tracks, ranging from 1 to 26 with a median of
5. MedleyDB is the only dataset in Table 1 that is not explicitly for
source separation, but part of it has been repackaged in MUSDB18
for this purpose. The LMD and its subset described in Section 2.1
both contain a nearly bottomless well of MIDI data to potentially
generate more multi-track data. See Table 1 for a full comparison.

Figure 2 shows a comparison of the mean and standard devi-
ation over tracks of the normalized log-magnitude mixture spectra
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Table 1: Comparison of open multi-track music datasets with the
proposed Slakh2100 dataset. Size is measured in hours of mixture
data. Data for the original Lakh MIDI dataset are also displayed
to show the potential for further expansion of the Slakh dataset.
†MUSDB18 combines songs from DSD100 and MedleyDB.

Dataset # Songs Size (h) # Tracks # Instr. cat.
iKala [12] 306 2 2 2
MIR-1k [11] 110 2.25 2 2
DSD100† [13] 100 7 4 4
MedleyDB† [24] 122 7.2 1–26 82
MUSDB18† [6] 150 10 4 4
Slakh2100 2100 145 4–48 34
LMD (subset) 20,371 1793 4+ 129
All LMD [19] 176,581 10,521 1+ 129

from MUSDB18, Slakh2100, and Flakh2100. The average spec-
trum for a track is computed using an STFT with frame size of 4096
samples and 50% overlap, averaging over all frames, and normal-
izing each average spectrum to have unit energy, as in the analy-
sis of [25]. From Fig. 2, we note that the general spectral shape
of the three datasets is quite similar, however, the mid-range har-
monic peaks of the Slakh and Flakh datasets are much larger than
for MUSDB18, since we use consistent tuning for the synthesized
tracks. Also, the low-frequency bump (around 80-200 Hz) is largely
missing for Slakh and Flakh and they have a steeper drop in high fre-
quency energy (around 10 kHz) compared to MUSDB18. We also
note that MUSDB18 is distributed in a lossy format causing the lack
of energy above 16kHz.

The largest distinction between Slakh and existing datasets for
music source separation is the absence of sources containing iso-
lated vocals. This is due to the fact that the MIDI standard does not
support vocals. While composers certainly do add “vocal tracks”
using the available MIDI instrument programs, attempting to auto-
matically infer which track is a vocal melody is beyond the scope
of this paper. Although it might be obliquely possible to use this
dataset to improve vocal isolation performance in other datasets by
relegating vocals to a “residual” class, this limitation makes direct
comparisons with existing datasets incomplete.

3. EXPERIMENTAL VALIDATION

3.1. Model and setup

We here train a separate network to recover each target instrument.
Let X ∈ CF×T be the complex spectrogram of a mixture of C
sources Sc ∈ CF×T for c = 1, . . . , C. For simplicity, we fo-
cus here on methods which attempt to estimate a real-valued mask
M̂c ∈ RF×T for a single target source c by minimizing the trun-
cated phase sensitive approximation (tPSA) objective [1]:

LtPSA =
∥∥∥M̂c � |X| − T

|X|
0 (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
, (1)

where � denotes element-wise product, ∠Sc is the true phase
of source c, ∠X is the mixture phase, and T

|X|
0 (x) =

min(max(x, 0), |X|) is a truncation function ensuring the target
can be reached with a sigmoid activation function.

For all experiments, we use a stack of 4 bidirectional long short-
term memory (BLSTM) layers with 600 units in each direction fol-
lowed by a dense output layer with sigmoid non-linearity, and log-
magnitude spectrogram inputs. Other architectures such as chimera

Figure 2: Mean and standard deviation of all normalized
log-magnitude mixture spectra in MUSDB18, Slakh2100, and
Flakh2100. For easy visual comparison, Slakh2100 and Flakh2100
are intentionally offset along the y-axis.

networks [3], U-Nets [4], or DenseNets [5] have been shown to out-
perform such a simple architecture, but our focus is here on investi-
gating the influence of training data on performance in a controlled
setting, and we shall thus leave the investigation of these models’
performance using Slakh to future work.

The networks are trained on 400-frame segments using the
Adam algorithm, and dropout of 0.3 is applied to all BLSTM lay-
ers. All audio is downsampled to 16 kHz, and summed to mono
for MUSDB18. The STFT window length is 32 ms and the hop
size is 16 ms. The square root Hann window is employed as the
analysis window, and the synthesis window is designed to achieve
perfect reconstruction. The loss function from Eq. (1) is monitored
on a validation set, and the learning rate is halved if the validation
loss does not improve for 5 consecutive epochs. For MUSDB18,
86 tracks are used for training and 14 tracks for validation, while
the standard 50 tracks are used for test. Slakh2100 and Flakh2100
are split into 1500, 375, and 225 tracks in the training, validation,
and test sets, respectively. Performance is evaluated using the scale-
invariant source-to-distortion ratio (SI-SDR) [26] between the ref-
erence source and the estimated source for each track in the given
test set.

3.2. Training sets

We consider two ways to use the datasets to make training and val-
idation sets for each target. The most straightforward way consists
in considering the songs as they are: we refer to this case as “co-
herent”, because all instrument sources in a mixture come from the
same segment of a song and musically match with each other. In
the “coherent” case, we build each sample by selecting a 10-second
clip starting at some random offset within a randomly selected song.
The offset is constrained to be such that the target source had a pres-
ence above a certain RMS threshold in the clip, in this case -30 dB.
The clips of the other sources for the corresponding time interval
are then mixed (i.e., summed) together to create a submix of the in-
terference in the mixture. Unless otherwise labeled, all datasets are
mixed “coherently” using this procedure.

An alternative consists in performing data augmentation on
MUSDB18 by considering “incoherent” mixtures, where we no
longer constrain all instruments to come from the same segment
of the same song. This allows us to create large amounts of addi-
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Table 2: Bass and drums separation performance in terms of SI-
SDR [dB] averaged over the MUSDB18 test set for the unprocessed
mixture, models trained on various datasets, and oracle methods.

Training
data [h] Bass Drums

Unprocessed mixture - -6.0 -3.8
MUSDB18 5 -0.5 2.2
MUSDB18 + Slakh 48 1.3 3.6
MUSDB18 + Flakh 48 0.0 3.1
MUSDB18 + MUSDB18-incoh. 48 1.2 3.5
Slakh redux 5 -2.0 0.6
Slakh 43 -2.4 0.7
Oracle Methods:

IBM - 5.9 8.4
IRM - 5.7 8.1
Wiener-like - 6.9 9.1
Truncated phase sensitive - 7.9 10.1

tional (unrealistic) data. Specifically, we build each sample by ran-
domly selecting a 10-second (non-silent) clip for each MUSDB18
source (“Vocals”, “Other”, “Bass” and “Drums”) at some random
offset within some randomly selected song, where each source can
be taken from a different song at a different offset. The clips are
mixed by scaling each source for equal loudness as in Sec. 2.2.

3.3. MUSDB18 test set results

In this section, we examine how using Slakh2100, Flakh2100, and
a data augmented version of the MUSDB18 training set can lead
to better results over the original MUSDB18 training set. We
train models to separate “Bass” and “Drums”, because these are
the only two sources shared between Slakh and MUSDB18. Un-
less otherwise noted, all models use the MUSDB18 validation set
to assess convergence, and we explore the following six train-
ing sets: (1) MUSDB18 without augmentation, (2) MUSDB18
augmented with Slakh2100 mixtures (MUSDB18 + Slakh), (3)
MUSDB18 augmented with Flakh2100 mixtures (MUSDB18 +
Flakh), (4) MUSDB18 augmented with remixed “incoherent” mix-
tures (MUSDB18 + MUSDB18-incoh.), (5) a reduced version of
Slakh equal in size to the non-augmented MUSDB18, and using the
Slakh2100 validation set (Slakh redux), and (6) a larger subset of
Slakh2100 mixtures for both training and validation (Slakh).

Table 2 compares the SI-SDR averaged over the MUSDB18
test set for each of the six training sets mentioned above, as well
as the SI-SDR of the unprocessed mixture. Additionally, Table 2
compares oracle mask performance (i.e., masks obtained from the
ground truth signals) using the ideal ratio mask (IRM), ideal bi-
nary mask (IBM), Wiener filter-like mask, and the truncated phase
sensitive filter, the oracle that most closely matches the phase sen-
sitive objective function from Eq. (1) [1]. We see that augment-
ing MUSDB18 leads to improvement over the non-augmented case,
with Slakh2100 performing better than Flakh2100, showing that im-
proving the realism of the synthesis system is important for source
separation. However, the gains between the MUSDB18 + Slakh
and the simple augmentation in MUSDB18 + MUSDB18-incoh.
are quite small (0.1 dB difference for both bass and drums). While
Slakh has the advantage of being musically consistent data, the aug-
mented MUSDB18-incoh. data has the advantage of containing vo-
cals and being a closer timbral match to the MUSDB18 test set.
Finally, we note that training on Slakh data alone does not lead to
strong separation performance on the MUSDB18 test set, showing
that this model overfits to its training data and generalizes poorly.

Table 3: Separation performance in terms of SI-SDR [dB] averaged
over the Slakh2100 test set for the unprocessed mixture, models
trained on various datasets, and oracle methods.

Training
data [h] Bass Drums Guitar Piano

Unprocessed mixture - -6.5 -6.6 -6.9 -8.0
MUSDB18 5 -3.2 3.2 - -
MUSDB18 + Slakh 48 3.3 9.0 - -
MUSDB18 + Flakh 48 -10.2 4.1 - -
MUSDB18 + MUSDB18-incoh. 48 0.7 5.1 - -
Slakh redux 5 3.3 9.4 -3.0 -3.1
Slakh 43 3.9 9.9 -1.8 -2.2
Oracle Methods:

IBM - 5.3 10.0 5.2 4.1
IRM - 5.2 9.7 5.4 4.3
Wiener-like - 6.3 10.7 6.4 5.3
Truncated phase sensitive - 7.3 11.7 7.3 6.4

3.4. Slakh2100 test set results

Table 3 compares performance on the 225 tracks in the Slakh2100
test set. In addition to separating bass and drums, we also explore
separation of guitar and piano. These instruments have previously
been lumped into “Other” categories, but with Slakh we can eas-
ily benchmark existing source separation architectures on different
non-vocal sources. From Table 3, we see that as expected the Slakh
and Slakh redux models perform better than the models trained on
MUSDB18 for bass and drums separation. We also notice that gui-
tar and piano separation performance is quite low compared to bass
and drums. When listening to Slakh mixtures, the mid-frequency
range occupied by guitar and piano has many overlapping instru-
ments and it is difficult to clearly hear those sources. Currently we
only adjust levels when creating Slakh mixes as described in Sec-
tion 2.2, so introducing an automatic equalization system [27] may
help improve the quality of instruments such as guitar and piano
in Slakh mixtures. We also note from Table 3 that models trained
without Slakh data (MUSDB18 and MUSDB18 + Flakh) perform
poorly when separating bass. These results, along with similar re-
sults from Table 2 showing poor generalization, indicate that models
trained solely on one dataset have difficulties generalizing.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Slakh, a new open dataset for mu-
sic source separation research consisting of high-quality render-
ings of instrumental mixtures and corresponding stems synthesized
from MIDI using professional-grade sample-based virtual instru-
ments. We showed how Slakh can be used to increase the amount of
training data, which leads to improved performance, and also used
to consider separation of new instrument categories that were not
available in existing datasets. We note that with existing datasets,
one needs to rely on unrealistic augmentations to achieve similar re-
sults to those achieved with Slakh. We also note that there is much
room for growth with Slakh, such as synthesizing more mixtures
or adding new instruments and effects, while the augmentation of
existing datasets saturates comparatively quickly. Future work in-
cludes improving the quality and realism of Slakh mixes, for ex-
ample via better equalization, mixing in isolated vocals from other
datasets, and adding small deviations to note tuning. Future uses
for Slakh include benchmarking stronger source separation models,
as well as other data-intensive tasks like music transcription, instru-
ment identification, and remixing for multi-channel separation.
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[7] J. Schlüter and T. Grill, “Exploring data augmentation for im-
proved singing voice detection with neural networks.” in Proc.
International Society for Music Information Retrieval Confer-
ence (ISMIR), Oct. 2015, pp. 121–126.

[8] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Taka-
hashi, and Y. Mitsufuji, “Improving music source separation
based on deep neural networks through data augmentation and
network blending,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Mar.
2017, pp. 261–265.

[9] L. Prétet, R. Hennequin, J. Royo-Letelier, and A. Vaglio,
“Singing voice separation: A study on training data,” in Proc.
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), May 2019, pp. 506–510.
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