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Abstract
We present an interactive perception system that enables an autonomous agent to deliberately
interact with its environment and produce 3D object models. Our system verifies object
hypotheses through interaction and simultaneously maintains 3D SLAM maps for each rigidly
moving object hypothesis in the scene. We rely on depth-based segmentation and a multigroup
registration scheme to classify features into various object maps. Our main contribution lies
in the employment of a novel segment classification scheme that allows the system to handle
incorrect object hypotheses, common in cluttered environments due to touching objects or
occlusion. We start with a single map and initiate further object maps based on the outcome
of depth segment classification. For each existing map, we select a segment to interact with
and execute a manipulation primitive with the goal of disturbing it. If the resulting set of
depth segments has at least one segment that did not follow the dominant motion pattern
of its respective map, we split the map, thus yielding updated object hypotheses. We show
qualitative results with a Fetch manipulator and objects of various shapes, which showcase
the viability of the method for identifying and modelling multiple objects through repeated
interactions.
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Detection, Tracking and 3D Modeling of Objects
with Sparse RGB-D SLAM and Interactive Perception

Diogo Almeida1, Esra Ataer-Cansizoglu2 and Radu Corcodel3

Abstract— We present an interactive perception system that
enables an autonomous agent to deliberately interact with its
environment and produce 3D object models. Our system verifies
object hypotheses through interaction and simultaneously main-
tains 3D SLAM maps for each rigidly moving object hypothesis
in the scene. We rely on depth-based segmentation and a multi-
group registration scheme to classify features into various object
maps. Our main contribution lies in the employment of a novel
segment classification scheme that allows the system to handle
incorrect object hypotheses, common in cluttered environments
due to touching objects or occlusion. We start with a single
map and initiate further object maps based on the outcome of
depth segment classification. For each existing map, we select a
segment to interact with and execute a manipulation primitive
with the goal of disturbing it. If the resulting set of depth
segments has at least one segment that did not follow the
dominant motion pattern of its respective map, we split the map,
thus yielding updated object hypotheses. We show qualitative
results with a Fetch manipulator and objects of various shapes,
which showcase the viability of the method for identifying and
modelling multiple objects through repeated interactions.

I. INTRODUCTION

Robotic manipulators can exploit their ability of interact-
ing with the environment to enrich their perception. While
many perception tasks are under-constrained and ambiguous
from the point of view of a passive sensor, robotic inter-
action with the environment can be leveraged to resolve
ambiguities in the measurements. This type of interaction-
guided perception is often dubbed interactive perception (IP)
[1], [2]. IP has been used to improve the performance of
computer vision segmentation algorithms, as the outcome of
interactions such as pushing or pulling an object can confirm
or negate a segmentation hypothesis. This approach has been
implemented, e.g., by tracking features during interaction or
by comparing the outcome of an action with a previously
observed state.

In this work, we focus on an object detection and grasping
task, where a robotic agent firstly interacts with a set of
objects in clutter on top of a table and grasps the detected
object hypotheses. Unlike related IP works, which limit
their scope to the detection and tracking of objects, we
leverage a Simultaneous Location and Mapping (SLAM)
technique to accumulate visual information on the object
hypotheses. Each hypothesis is tracked by an independent
SLAM map. Due to clutter, an object hypothesis might
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Fig. 1: Overview of our Interactive Perception system: a fetch manipulator
observes a scene and obtains RGB-D keyframe observations. These are
registered using sparse-SLAM agains a set of existing maps. Our proposed
segment classification and map management algorithms work to split the
maintained maps into different object hypothesis.

contain more than one object. We introduce a novel map
management algorithm which leverages interaction to enable
our system to recursively detect these incorrect hypotheses.
The corresponding maps are then split into two independent
maps. Our contributions are threefold:

1) An algorithm for detecting and tracking several object
hypotheses in the context of a feature-based SLAM
framework, driven by IP.

2) A segment classification method which allows the
system to split object hypotheses and prevents con-
tamination between object models.

3) A proof of concept of our integrated system, which
leverages the proposed methods to detect and recon-
struct several objects in an unstructured environment,
and uses the generated models to inform a grasp pose
detector. We show qualitatively that the accumulated
visual information helps the detector to provide better
grasp candidates. This is achieved without the need to
resort to additional cameras or changing the robot’s
point of view.

II. RELATED WORK

Our main contribution is related to employing a sparse-
SLAM method to drive an IP system. Thus, we firstly present
related works in IP, followed by a short discussion on object
tracking and reconstruction through SLAM methods.

A. Interactive Perception for segmentation

IP for improving object segmentation is a recurring theme
in robotics articles. In [3], [4] a brick sorting system is
proposed, in which groups of Lego bricks are segmented and
an interactive algorithm is proposed, where a robot disturbs



the groups repeatedly until bricks are singulated, and thus
easily graspable. A similar pipeline is proposed in [5] for
different objects, where the decision of whether an object
is singulated is made through a classification of cumulative
likelihood ratios.

Other methods aim at achieving an accurate scene seg-
mentation without necessarily relying on singulation. An
earlier study [6] tests object hypotheses through pushing, but
results were limited to two objects. In [7], image features are
tracked during robotic interaction, and a clustering algorithm
is applied to group features which move with a consistent
rigid-body motion, allowing for multiple objects in clutter
to be detected. The method was extended to textureless
objects by using depth features [8]. Katz et al. [9] track
RGB-D segments from consecutive robotic interactions to
grasp objects which were observed to move rigidly between
two consecutive RGB-D frames. Iterative Closest Point (ICP)
algorithms were also used to track object hypotheses in IP
systems [10] and in [11] a probabilistic approach to the
segmentation algorithm provides a robust solution to the
problem.

In this work, we present an IP system which is not lim-
ited to detection and tracking, but simultaneously maintains
multiple, independent maps of each detected object, through
a sparse SLAM method, enabling the system to use more
than the current immediate visual data to, e.g., plan for an
object grasp. We show qualitatively that the accumulated
visual information enables a grasp pose detection method
to produce better grasp candidates.

B. Object tracking and reconstruction

The reconstruction of a scene observed by a 3D sensor,
such as an RGB-D camera, is an instance of the SLAM prob-
lem, and has been addressed in many different forms. Dense
methods [12]–[14] fuse several consecutive depth frames reg-
istered through ICP and are able to leverage all the available
visual data to improve the reconstruction quality. In [15], a
change detection method is present to enable segmentation of
objects which moved in between observations of the same
scene and [16] employs some interaction to disambiguate
segmentation results. More recently, [17] proposes a method
which is able to independently model dynamic sections of
a dense map, enabling object reconstruction. However, this
method struggles with small objects, such as the ones we are
interested in interacting with.

Other methods [18]–[22] augment their maps with object
information, obtained through diverse segmentation strate-
gies, and employ the detected objects as map landmarks.
Over several observations, changes are detected in the ob-
tained RGB-D maps, which are used to define dynamic
sections and enable the production of object models.

In our work, we employ a sparse-SLAM method [23] to
track and reconstruct detected objects. We rely on interaction
as the primary means of object detection and observation,
that is, while adopting a static viewpoint, non-prehensile
manipulation allows us to observe different views of an
object and use SLAM to accumulate information. This is a
significant difference w.r.t the previously mentioned methods,

as they rely mostly on observing the same scene multiple
times over different viewpoints, and require external distur-
bances on a scene to detect objects. Additionally, instead of
maintaining a single map, augmented by object data, we start
with a single map, which is recursively split into new maps as
tracked features in a map fail to register after an interaction.
Previous work [24] explored this idea of modelling objects in
separate maps, however it relies on external interaction for
object discovery and is unable to deal with contamination
between maps and thus cluttered environments. We employ
a classification algorithm to address this issue and prevent
contamination between maps due to clutter.

III. METHOD

We propose to detect and track multiple objects, simul-
taneously and independently, by leveraging a sparse SLAM
algorithm which registers points and planes in the 3D space
[23] and the assumption of interaction in between observa-
tions of the environment. We will use the standard definitions
of measurements and landmarks in the context of SLAM:
measurements are extracted by the system from the available
RGB-D data, and are associated to landmarks in a map. Each
detected object is tracked in its own map, in contrast with
methods that add objects to the state information in a single
map [18], or segment them out of a map [15], [19].

When our system receives a new RGB-D frame, we
process it to extract point and plane measurements, and
perform depth-based segmentation. The measurements are
used to register each frame with respect to all of the
existing maps in the system. The outcome of this registration
procedure is used to classify the segments and allows us to
prevent contamination between maps. We split a map into
two independent hypotheses, if the outcome of an interaction
results in segments that do not register properly with any
map.

A. Definitions

We denote our measurements as pm and their correspond-
ing landmarks are expressed as pl. Measurements can be
points or planes, and their corresponding landmarks will
store the set of features associated with the measurement.
In case of point measurements, these features are keypoint
descriptors, extracted using SIFT [25], while for the plane
landmarks we store the plane parameters and the set of
inlier points of the associated plane measurements. The
set of all measurements in a frame F is given by P =
{p1

m, , . . . , p
k
m}. A segment is defined as a collection of

measurements in a frame, S = {pi
m, p

j
m, . . . ,p

k
m}, and

the set of all segments in a frame is denoted as S =
{S1, . . . , Sn}. Note that a plane can also be used to initialize
a segment, as depicted in Fig. 2.

A keyframe, KF , is an RGB-D frame, which is added to
a map. In our system, a frame is marked as keyframe if its
registered pose, in a common reference, differs sufficiently
from the registered poses of all the other keyframes in a map.
Our system maintains a set of maps M = {M1, . . . ,Mn},
where each map is an independent collection of keyframes
and landmarks, as seen in Fig. 3.



Fig. 2: Symbolic depiction of a processed frame, F i. In this example, there
are 9 point and one plane measurements. The plane measurement, p10

m , is
used to initialize a segment, S3. Depth-based segmentation obtained two
other segments. For this frame we have P = {p1

m, . . . , p10
m}, and S1 =

{p1
m, p4

m, p5
m}; S2 = {p3

m, p7
m, p9

m}; S3 = {p2
m, p6

m, p8
m}.

Finally, we define sets of inlier and matched point mea-
surements for every frame F i with respect to each map
Mk ∈ M. The inlier set Ii,k contains all point mea-
surements that have been successfully registered to some
landmark pl ∈ Mk. The set of matched measurements
J i,k will contain all point measurements, which have been
matched with keypoint descriptors from some landmark in
the map, using the ratio test proposed in [25].

B. Registration

The goal of the registration process is to determine the
rigid body transform T̂i,k ∈ SE(3) from the i-th frame given
to the system, to the coordinate system of the k-th map in
M, for all maps. To this end, we employ a multi-group
registration scheme, consisting in sequential frame-based and
segment-based registration algorithms, which aim at solving
the optimization problem,

T̂i,k = argmin
Ti,k

∑
pm∈Ii,k

d(Ti,k(pm),pl), (1)

in a RANSAC framework, where the distance operator d(·, ·)
computes the distance between features. More details on the
registration algorithm are found in [23], [24], [26].

C. Segment classification

In this work, we propose a novel method of segment
classification based on the outcome of the multi-group regis-
tration procedure and the accumulated keypoint descriptors
available in each map. This classification is the cornerstone
of our map-management algorithm, which allow us to create
and update object hypotheses through the construction and
splitting of SLAM maps.

For the current frame F i and all the maps Mk ∈M, we
start by classifying the set of registered segments,

Sk
r =

{
Sj ∈ S :

|Sj ∩ Ii,k|
|Sj |

> δr, 0 < δr ≤ 1

}
, (2)

which are defined as segments that have a high ratio of inlier
measurements pm ∈ Ii,k to the total amount of measure-
ments in the segment, given by its cardinality |Sj |. We then
partition the non-registered segments into two complemen-
tary sets: matched and unmatched segments, respectively Sk

m

and Sk
u. For every map we will thus obtain

S = Sk
r ∪ Sk

m ∪ Sk
u

Sk
r ∩ Sk

m = ∅ ; Sk
r ∩ Sk

u = ∅ ; Sk
m ∩ Sk

u = ∅.
(3)

Fig. 3: A map accumulates a set of keyframes, KFi, and a list of landmarks,
which contain the features required to match measurements in a frame with
the map. In this work, we aim at building a set of independent maps, each
one storing only landmarks pertaining to one object hypotheses.

A non-registered segment will belong to Sk
m if we suc-

cessfully match enough of its measurements’ descriptors to
the descriptors in Mk,

Sk
m =

{
Sj ∈ S : |Sj ∩ J i,k| > αm, αm ∈ N+

}
. (4)

This will happen when multiple objects are associated to
Mk, and a subset of these objects is disturbed due to
robotic interaction. The remaining segments are novel to
the map, and are thus unregistered and unmatched, and will
be assigned to Sk

u. Algorithm 1 illustrates this procedure,
where M.registered(Sj) and M.keypointMatched(Sj)
correspond to the inequalities in eqs. (2) and (4), respectively.

D. Detecting, tracking and reconstructing objects in the
environment

The goal of our system is to detect objects in the robot
environment, and to track them while building a 3D object
model, through IP. This is achieved by iterating over the
set of maps M, and updating, destroying and creating new
maps based on the outcome of successive interactions with
the environment. We assume that the environment will be
disturbed only as a consequence of these interactions.

We start by processing every new frame provided to the
system, and obtain the registration transformations from eq.
(1). For every mapMk ∈M, we then execute Algorithm 1.
This results in a per-map partition of the available segments,
which follows eq. (3).

Once a mapMk has Sk
m 6= ∅, we split Mk and generate

two new maps, one where we store the measurements of Sk
r

as landmarks, the other with the measurements from Sk
m.

The original map is removed from the system.
This process allows our system to detect object hypotheses

as the set of segments that moved with respect to the dom-
inant motion pattern of a map, and to additionally improve
on these hypotheses through subsequent map splitting. Fig.
4 depicts a simple example of map splitting.

When Sk
m = ∅, we update each Mk with the measure-

ments of Sk
r , if the current frame is determined to be a

keyframe to that map. We obtain a 3D reconstruction of any
given map by recovering all the registered segments from all
the keyframes in the map.



Algorithm 1 Segment Classification
Input: M, S
Output: Sr , Sm and Su

1: procedure SEGMENTCLASSIFICATION
2: Sr ← {∅}
3: Sm ← {∅}
4: Su ← {∅}
5: j ← 1
6: while j ≤ |S| do
7: if M.registered(Sj) is true then
8: Sr ← Sr ∪ {Sj}
9: else

10: if M.keypointMatched(Sj) is true then
11: Sm ← Sm ∪ {Sj}
12: else
13: Su ← Su ∪ {Sj}
14: j ← j + 1

E. Handling map contamination

A significant challenge of maintaining multiple indepen-
dent maps lies in handling map contamination. When in-
teracting with objects in cluttered scenes, it is common for
tracked objects to get in close proximity with other tracked
objects or objects in the static scene. When this happens,
a new frame’s segment can contain elements belonging
to two or more maps, Fig. 5. We handle these cases by
adopting the assumption that Sr and Sm cannot overlap
for two different maps. We refrain from updating two maps
Mk,Ml ∈ M, k 6= l if any of the following conditions
are satisfied: a) Sl

r ∩ Sk
r 6= ∅; b) Sl

m ∩ Sk
m 6= ∅, or c)

Sl
r ∩ Sk

m 6= ∅. In other words, a segment cannot: a) be
registered simultaneously to two maps, b) be feature-matched
to two maps or c) be registered to a map and feature-matched
to another. When this happens, we assume that there is a
risk of contamination between those maps. Maps in risk of
contamination are still tracked, but not updated with new
keyframes.

We thus create M ⊂M, where we keep only the maps
without risk of contamination,

M=

M
k∈M :

Sk
r ∩ Sl

r = ∅∧
Sk

r ∩ Sl
m = ∅∧

Sk
m ∩ Sl

m = ∅

,∀Ml 6=k∈M

. (5)

The map management algorithm proposed in section III-D
is executed on this subset, following Algorithm 2.

F. Unregistered and unmatched segments

In some occasions, there can be one or more unregistered
and unmatched segments for all maps,

Sj ∈ Sk
u, ∀Mk ∈M. (6)

The circumstances that lead to this vary depending on
the segmentation algorithm used to generate each frame’s
segments. In our work, we assume that the segmentation
algorithm will tend to under-segment the observed scene.
As such, segments that follow (6) will occur predominantly
when a previously occluded object is revealed after an
interaction, or if an object pose changes in such a way
that a completely new side of it is revealed. We address
these novel segments by adding them to the map with the
closest registered pose to the segments’ centroids, as further

Algorithm 2 Map Management
Input: M, new RGB-D frame F
Output: Updated M

1: procedure MAPMANAGEMENT
2: S ← getSegments(F)
3: Mtemp ←M
4: for all M∈Mtemp do
5: Sr,Sm,Su ← SEGMENTCLASSIFICATION(M,S)
6: if Sm 6= ∅ then
7: M′ ← newMap(Sr)
8: M′′ ← newMap(Sm)
9: M←M \M

10: M←M ∪ {M′,M′′}

interactions will allow the system to correct the affected
object hypothesis through map splitting.

IV. INTEGRATED SYSTEM

Section III describes a perception algorithm for detecting,
tracking and modelling 3D objects that is built under the
assumption that changes between RGB-D frames are due to
actions exerted on the observed environment. To this end, we
integrate the perception algorithm in a robotic manipulator
from Fetch robotics1, and design a simple set of manipulation
primitives to act on an observed scene. A schematic depiction
of the implemented system can be seen in Fig. 1.

A. Chosen segmentation algorithm

Our map management algorithm relies on the segment
classification procedure illustrated in Algorithm 1. While
the described approach is general, it requires segments with
enough keypoint information to apply eqs. (2) and (4). Our
implementation first extracts the dominant planes in the
scene, such as walls and the supporting table plane, and
marks these as segments. Since the employment of SIFT
results in a need for reasonably large segments, to allow
robust classification, we opt to under-segment the remaining
points in each RGB-D frame with the Euclidean cluster
extraction method from the PCL library2. Together with the
plane segments, this strategy allows us to obtain clusters of
objects on a planar surface as single segments.

B. Pushing

Similar to other works in interactive perception [4], [5],
[7], [9], we rely on pushing primitives to interact with
observed segments on a scene. Given a target position and a
pushing direction, we position the robot end-effector behind
the target and move it linearly along the pushing direction,
for a pre-configured distance, with an optional small angular
motion defined around the pushing target. This angular
component allows the system to impart a larger rotation on
the target, which is useful to gather different points of view
of the object. We take into account workspace constraints by
modifying the pushing distance if the resulting final position
is outside the workspace boundaries.

1https://fetchrobotics.com/research-platforms/fetch-mobile-manipulator/
2http://pointclouds.org/documentation/tutorials/cluster extraction.php



Fig. 4: Illustration of the map splitting procedure. On the top, three consecutive frames are presented to the system. A scene disturbance occurs in between
each frame. The segment partition is illustrated for the frames with respect to the map that was split, i.e., segments are outlined for F1 and F2 with
respect to M1 and F3 is outlined with respect to M2. The final set of maps is M = {M3, M4, M5}. Filled gray-scale colors indicate object which
belong to Sr .

(a) (b) (c)

Fig. 5: Illustration of map contamination. Two objects are being modelled by two independent maps which, due to interaction, are brought in contact, Figs
5a and 5b, respectively. If the depth-based segmentation algorithm segments both objects together, the maps might be updated incorrectly, generating an
incorrect model, Fig. 5c.

We select a pushing direction heuristically, by computing
an artificial potential at the chosen target position, where all
the detected segment centroids have a repulsive potential of
U(ri) = 1/ri, where ri is the distance from the centroid
i to the target position. From this computed direction we
can extract an angle αp, with respect to a reference frame
on the plane. We use this angle as the first moment αp

of a Gaussian distribution with variance σ2
p, from which

we sample the actual pushing angle, α ∼ N (αp, σ
2
p). This

stochastic component helps the system to avoid falling in
local minima, where a clump of objects is pushed back
and forth without being separated. In addition to segment
centroids, we consider the supporting plane limits: the limit’s
closest point to the target is added as a repulsive point.

C. Grasping

We leverage the reconstructed models of our object hy-
potheses to inform a grasp pose detector [27]. Given a target
object hypothesis, we reconstruct its model as a point cloud
and send it to the detector, which produces a set of proposals
ranked in terms of how likely it is for the proposed pose to
result in a stable grasp. We cycle from the highest to the
lowest ranked grasp proposal and remove the proposals that
violate workspace constraints. We then compute the inverse
kinematics (IK) solutions of the remaining proposals using
TRAC-IK [28]. The highest ranking proposal with a valid
IK solution is chosen as the grasp pose.

The authors of [27] use a stereo depth sensor configuration
to obtain a more complete partial-view point cloud of the
observed scene. A remarkable advantage of modelling the
objects in the environment using SLAM is the ability to

accumulate different viewpoints of the tracked objects with
a single static depth sensor, and using the reconstructed
point cloud to inform the grasp planner. We show how this
accumulation of viewpoints enables our system to obtain
better grasp proposals in section V-B.

D. Interaction logic

To demonstrate our proposed method, we implement a
simple interaction logic. In every iteration, we randomly
sample a map from M, and produce a pushing direction
for the centroid of its reconstructed model, as described in
section IV-B. A relevant implementation detail of our system
is that we keep track of which map is modelling the static
scene of the robot, i.e., the set of segments that compose
the dominant motion pattern of the observed scene. For
every map that is not the static map, we generate grasping
proposal candidates once a sufficient number of keyframes
have been registered with the map, as this implies that the
corresponding object hypothesis has been interacted with
without the map being split, and thus there is a higher
likelihood that the hypothesis is indeed a singulated object. If
the grasp fails, we attempt further pushing actions, to try and
generate a more complete model for the grasp pose detector.

V. EXPERIMENTS

We deployed the integrated system in a human-centric
environment, where several objects in contact with each other
were laid on top of a table, which constitutes the supporting
plane where pushing directions will be defined. The objects
used in our experiments are seen from the robot viewpoint in
Fig. 6. For our experiments, we laid the objects in moderately
cluttered conditions, in groups of 2, 3 and 4 objects, of which



Fig. 6: The objects used in our experiments, from the robot point of view.
We plan our pushing actions on the supporting plane.

Fig. 8a is an example. We then ran the interaction logic
from section IV-D. The perception algorithm was executed
on an Intel Core i7-7700K CPU at 4.20GHz, with 64GB of
available memory. This allows the sparse SLAM method to
work at a rate of between 1 and 2 Hz, and the addition of
multiple map management and segment classification meant
a total delay of about 2 seconds between interactions. The
segment classification parameters from equations (2) and (4)
were set as δr = 0.7 and αm = 10. The standard deviation
of the push direction distribution was set as δp = 0.4 rad.
As our segment classification system relies on rich keypoint
information, we ignored segments where |Sj | < 20. A frame
F i is added as a new keyframe toMk ∈M if it is registered
with it and has either a translational or rotational components
that differ, respectively, more than 5 cm or 0.087 rad from
the latest registered keyframe in Mk.

A. Detection, tracking and modelling objects

The ability of our SLAM system to model isolated ob-
jects has been demonstrated in [24]. We executed baseline
experiments with single objects on the table to obtain models
in ideal, non-cluttered circumstances, shown on the top row
of Fig. 9. Results from an experiment with four objects are
depicted in Fig. 8, where we show the initial configuration
of the scene from the robot point of view, Fig. 8a, and the
executed actions from an external perspective, Fig. 8b-8e.
Every image is paired with an illustration of the reconstructed
models from M. The experiment from Fig. 8 is shown in the
submission video, together with experiments with different
objects and initial workspace configurations. Object models
reconstructed from experiments with clutter are displayed on
the bottom row of Fig. 9.

B. Grasping

We tested the ability of our system to use the reconstructed
object models to inform the grasp pose detector package
from [27]. Once objects are singulated, we can plan a grasp
using the reconstructed models. We tested the feasibility
of this approach on some of the models by assuming that
singulation is achieved once a map accumulates more than
two keyframes, in experiments with multiple objects.

To test how adding information on existing object models
helps in obtaining better grasp pose proposals, we ran
experiments where we attempt a grasp after every push on an
object hypothesis. While it is possible to obtain a successful
grasping pose for maps with a single registered keyframe,
we observed that more intricate geometries, such as the

Fig. 7: Crayola box model extracted from interactive perception experiments
with a single crayola box isolated on the table, using the method from [17].

spray bottle, benefited from accumulating a higher number
of keyframes, Fig. 10.

VI. DISCUSSION

We provide proof of concept qualitative results of the
ability of our system to detect, track and model objects in an
observed scene through IP. The performance of our approach
is strongly tied to the underlying depth-based segmentation
and keypoint descriptors chosen for the implementation. In
our implementation, we used SIFT keypoints for detecting
and representing point features, and Euclidean segmentation
for extracting non-planar segments. This constrains our sys-
tem to function only with significantly textured objects. Thus,
we opt for under-segmenting the depth signal to ensure that
detected segments will tend to have a sufficient number of
keypoints. Current advances in learning keypoint descriptors
[29] indicate that an extension to less textured objects can
be obtained, with minimal changes to the reported pipeline.

We successfully model several objects in very challenging
scenarios where the camera perspective is kept fixed and
significantly far away from the objects. State-of-the-art dense
methods [17] struggle to detect a single object in these cir-
cumstances, Fig. 7. The challenge of constructing a complete
robotic system means that integrating alternative perception
methods is a contribution in itself and as such we do not
report a quantitative comparison with such methods3.

Our heuristic choice of pushing directions is a viable way
to showcase the feasibility of the perception algorithm. It
is however common for the singulation of objects to not
be achieved in a short number of actions. While existing
IP methods [7]–[11] do not require singulation, they do not
accumulate visual data over iterations, which we do through
our sparse-SLAM implementation. To avoid map contamina-
tion, we are however required to singulate an object before
it is modelled independently from the remaining clutter.

The major contribution of this paper is on system integra-
tion which consists of components such as scene segmen-
tation, descriptor extraction and object pushing. While we
acknowledge the challenge of end-to-end learning for the
overall integrated system. The modularity of our components
facilitates their replacement with equivalent learning-based
methods. For example, recent work [30] explores artificial
neural networks to propose pushing directions with the goal
of object singulation. This would be a suitable replacement
to our implementation, which could significantly increase the
performance of the integrated system. Because the inability

3A video of our IP pipeline running with the method from [17] as a
swap-in replacement for our SLAM algorithm is available upon request,
and highlights these challenges.



Fig. 8: The system performs a sequence of interactions to produce models of objects in its workspace. We depict the robot workspace at sequential steps
in time, respectively in its initial configuration, Fig. 8a; during the four interactions with the environment, Fig. 8b-8e; and at the final configuration, Fig.
8f. At each depicted time step, we show the reconstructed models of the maps maintained by the system. For the sake of conciseness, we ommit the map
of the static scene from Fig. 8c onwards. The scene images in Fig. 8a and 8f are obtained from the robot perspective. All frames given to the system come
from that perspective.

Fig. 9: Top row: Object models obtained from single object scenarios with multiple interactions. Bottom row: Object models obtained from the IP
experiments with clutter. Models and experiments videos available on request.

to singulate objects in a scene is the predominant cause of
failure in the system, this prevents our perception algorithm
to correctly model the distinct objects. In addition, our
assumption of planar actions make our system unable to deal
explicitly with piles of stacked objects. It is worth noting that
although end-to-end learning of the overall integrated system
can be feasible, it is extremely challenging considering our
objective on incremental learning of the object models.

In this work, we assume that each RGB-D frame contains
one single instance of each object, but place no limitation on
the total number of distinct objects present in each frame.
Handling multiple instances of the same object in a single
frame by utilizing the estimated poses of the segments is
being considered for future work. Namely, if two different
segments are associated to the same map with different poses,
this might be an indication of multiple instances. Reasoning
geometrically to detect and track multiple object instances
has been done in previous work [26], [31]. However, in
the context of our system, additional care must be taken
to robustly prevent map contamination in scenarios with
multiple object instances.

VII. CONCLUSION
We detailed an algorithmic method to reconstruct 3D

object models in an IP scenario, where objects are de-
tected and tracked over consecutive robotic interactions. This
is achieved through the employment of a novel segment-
classification algorithm and the management of multiple,
independent SLAM maps. We show results in an integrated
system which has an extended scope when compared to
previous IP works [3]–[11], as it not only tests segment
hypotheses through interaction, but also accumulates in-
formation on existing hypotheses which enable 3D model
reconstruction. Unlike [15]–[21], we reconstruct 3D models
with a single, static, point of view, and maintain each hypoth-
esis as an independent SLAM map, relying on purposeful,
non-prehensile, robotic interaction to obtain new perceptual
information. We illustrate how the obtained object models
can be used to inform a grasp planner, and how accumulating
different points of view benefits the computation of grasp
pose proposals.
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Kragic. Scene understanding through autonomous interactive percep-
tion. In Computer Vision Systems, pages 153–162. Springer Berlin
Heidelberg, 2011.

[7] Christian Bersch, Dejan Pangercic, Sarah Osentoski, Karol Hausman,
Zoltan-Csaba Marton, Ryohei Ueda, Kei Okada, and Michael Beetz.
Segmentation of cluttered scenes through interactive perception. In
RSS Workshop on Robots in Clutter: Manipulation, Perception and
Navigation in Human Environments, pages 9–13, 2012.

[8] K. Hausman, F. Balint-Benczedi, D. Pangercic, Z. Marton, R. Ueda,
K. Okada, and M. Beetz. Tracking-based interactive segmentation of
textureless objects. In Proc. IEEE Int’l Conf. Robotics and Automation
(ICRA), pages 1122–1129, May 2013.

[9] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz. Clearing a pile
of unknown objects using interactive perception. In Proc. IEEE Int’l
Conf. Robotics and Automation (ICRA), pages 154–161, May 2013.

[10] D. Schiebener, A. Ude, and T. Asfour. Physical interaction for
segmentation of unknown textured and non-textured rigid objects. In
Proc. IEEE Int’l Conf. Robotics and Automation (ICRA), pages 4959–
4966, May 2014.

[11] H. van Hoof, O. Kroemer, and J. Peters. Probabilistic segmentation
and targeted exploration of objects in cluttered environments. IEEE
Trans. Robotics, 30(5):1198–1209, Oct 2014.

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking. In Proc.
IEEE Int’l Symp. Mixed and Augmented Reality (ISMAR), pages 127–
136, Oct 2011.

[13] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stam-
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