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Abstract We introduce Wyner–Ziv (WZ) cooperation between multiple subcarrier receivers for joint-
channel carrier phase estimation (CPE) in optical superchannel transmissions. The WZ cooperation
improves CPE performance by at least 0.25 dB when inter-chip connections are band-limited.

Introduction
The demand of Tb/s-class high-speed data rates
in optical communications has necessitated high-
throughput technologies, such as superchan-
nel transmissions1–10, where parallel subcar-
rier transmitters send independent data with dif-
ferent wavelengths to increase total through-
put without expanding baud-rates per subcar-
rier. A number of superchannel receiving al-
gorithms have been proposed in literature; e.g.,
joint-channel carrier phase estimation (CPE)2,
multi-input multi-output (MIMO) equalization3,
Han–Kobayashi/dirty-paper coding10, and multi-
channel digital backpropagation4. Such joint-
channel processing showed a significant advan-
tage in mitigating both linear and nonlinear inter-
channel cross-talk, compared to conventional
per-channel digital signal processing (DSP).

However, the joint-channel DSP requires a sig-
nificant amount of data exchange among neigh-
boring subcarrier receivers. When the su-
perchannel receiver is configured by parallel
discrete-chip subcarriers, sharing subcarrier data
for joint-channel DSP will be challenging. In
this paper, we consider practical scenarios hav-
ing bandwidth-constrained inter-chip communi-
cations for partial cooperation. To exploit the
band-limited interconnects, we propose to use
Wyner–Ziv (WZ) cooperation approach11–15 for
joint-channel CPE. The proposed method makes
use of correlated phase estimates at parallel sub-
carrier receivers as side information to improve
the estimation accuracy. The WZ cooperation can
efficiently decrease the required amount of data
transfers by 90% by utilizing the underlying corre-
lation, achieving an increase of 0.16 b/s/Hz spec-
tral efficiency (SE) and 0.25 dB gain.

Wyner–Ziv cooperative CPE
Fig. 1 illustrates a schematic of the superchan-
nel receiver under consideration. The superchan-
nel receiver is implemented with N parallel sub-
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Fig. 1: Superchannel receiver using multiple discrete DSP
chips and band-limited interconnects for cooperative MIMO

processing.

carrier receiver chips, each of which consists of
optical-to-electrical front-end (including polariza-
tion diversity and analog-to-digital converter) and
standard DSP blocks (including dispersion com-
pensation, CPE, polarization recovery, etc.). Be-
cause the DSP blocks are implemented in dis-
crete chips, the usual MIMO processing across
subcarrier receivers is difficult to realize unless
high-speed interconnects are established among
DSP chips. In this paper, we consider narrow-
band inter-chip connections to improve CPE ac-
curacy by utilizing phase noise correlation.

The phase noise may come from various phys-
ical/hardware impairments including fiber nonlin-
earity as well as laser linewidth. Our experimental
measurements2 indicated that the phase noise at
different subcarriers can be mutually correlated,
which can be exploited by a joint-channel CPE
to improve estimation accuracy. Based on the
measurement results, we assume a multivariate
Wiener process to model the correlated phase
noise at multiple subcarriers as follows:

∆θk , θk − θk−1 ∼ N
(
0,Rch

)
, (1)

Rch = σ2
p

(
(1− ρ)IN + ρ1N1T

N

)
, (2)

where θk = [θk,1, . . . , θk,N ]T ∈ RN denotes the
N -channel phase vector at symbol index k,N (·, ·)
denotes the Gaussian distribution, Rch ∈ RN×N

is the channel covariance matrix, ρ is a correla-
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Fig. 2: Example of carrier phase changes for 11
superchannels (∆ν = 1MHz, ρ = 0.6, 32GBd, 1% pilot).

tion factor, IN is a size-N identity matrix, and 1N

is a size-N all-ones vector. The phase noise vari-
ance is assumed to have its effective linewidth ∆ν
as follows: σ2

p = 2π∆νTs for a baud rate of 1/Ts.
Fig. 2 depicts a realization example of 11-channel
phase evolution sampled at pilot symbols (1% in-
sertion) for a correlation factor of ρ = 0.6 and an
effective linewidth of ∆ν = 1MHz at a baud rate
of 32GHz. We can observe that the phase at dif-
ferent subcarriers behaves similarly, that can be
useful for phase estimation. We use Gaussian
process (GP) interpolation based on distributed
pilots across both subcarriers and time dimen-
sions, by introducing an analogous joint-channel
CPE technique2.

In order to share initially estimated phase val-
ues at pilot symbols with all subcarrier receivers
over band-limited interconnects, we introduce the
WZ cooperation11–15, which has been widely
used for distributed sensor networks and video
streaming. Because estimated phases are mu-
tually correlated, the conditional entropy of un-
known phase values at different subcarriers can
be small, indicating the possibility of more effi-
cient representation with a smaller amount of data
according to the WZ coding11. For correlated
Gaussian signals, the rate-distortion function of
R = 1

2 log
+
2 (((σ

2
p + σ2

e )
2 − ρ2σ2

p)/D(σ2
p + σ2

e )) is
achievable with WZ codes, where σ2

e and D de-
note estimation error and distortion, respectively.

Performance results
Here, we evaluate the benefit of the WZ-
based cooperative CPE for superchannel re-
ceivers. Fig. 3 shows the achievable distor-
tion as a function of bandwidth of inter-chip con-
nections. We consider 11-channel 32GBd dual-
polarization 64-ary quadrature-amplitude mod-
ulation (DP-64QAM) at a signal-to-noise ratio
(SNR) of 10 dB for an effective linewidth of 1MHz
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Fig. 3: Distortion of WZ-coded data representation as a
function of interconnect bandwidth.
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Fig. 4: MSE of cooperative CPE as a function of interconnect
bandwidth.

and a correlation of 0.9, with 1% pilot insertion ra-
tio. For comparison, uniform quantization to rep-
resent estimated phase values is taken place as a
conventional cooperation to share the estimates.
It is observed that the WZ cooperation can signifi-
cantly reduce the distortion of data representation
for the whole range of interconnect bandwidth, in
comparison to the conventional data sharing.

Fig. 4 shows the mean-square error (MSE) of
the phase noise estimation for the cooperative
CPE method given distorted side information as
a function of interconnect data rates. We can see
that about 1.6 dB MSE reduction is achieved by
the cooperative CPE using side information gath-
ered from the other subcarrier receivers. More
importantly, the WZ cooperation requires much
lower data rates for interconnects than the con-
ventional cooperation does.

In Fig. 5, we show how much the improved
MSE can contribute to the improvement of the
achievable SE in terms of generalized mutual in-
formation (GMI) for DP-64QAM transmission after
the cooperative CPE, as a function of intercon-
nects bandwidth. It was verified that the accu-
rate CPE algorithm with the WZ cooperation can
improve the GMI by greater than 0.1 b/s/Hz even
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Fig. 5: GMI of DP-64QAM transmission with cooperative
CPE as a function of interconnect bandwidth.
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Fig. 6: GMI vs. SNR with cooperative CPE for an
interconnect rate of 1 b/s/Hz/pilot.

at a narrow bandwidth below 0.5 b/s/Hz/pilot. To
achieve 0.1 b/s/Hz gain over the non-cooperative
CPE (i.e., zero interconnects bandwidth), the WZ
cooperation can reduce the required bandwidth
by 94% compared to the conventional method.
When we plot the achievable SE versus channel
SNR in Fig. 6, we can find that the 0.1 b/s/Hz GMI
improvement in turn corresponds to a maximum
of 0.25 dB SNR gain.

Conclusions

We considered bandwidth-constrained intercon-
nects among multiple discrete subcarrier DSP
chips for cooperative CPE. It was verified that
the WZ cooperation can significantly decrease
the required data rates for interconnects. More
than 1 dB MSE gain was achieved by the WZ-
cooperation CPE. Correspondingly, the achiev-
able SE can be improved by 0.16 b/s/Hz and the
required SNR is reduced by 0.25 dB. The pro-
posed concept is potentially useful for various
joint-carrier processing of the next-generation su-
perchannel receivers having a massively large
number of subcarrier DSPs to realize ultra high-
speed optical communications.
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