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Abstract

Approximate/adaptive dynamic programming (ADP) has demonstrated great successes in the
construction of datadriven output feedback optimal control for linear time-invariant systems
and data-driven state feedback optimal control for nonlinear systems. This work investigates
data-driven output feedback optimal control design for a class of nonlinear systems. It pro-
poses to parameterize all admissible output feedback optimal control policies over accessible
signals (system output and its time derivatives). In the case that system state can be param-
eterized as functions of accessible signals, then the value function and control policy can be
parameterized over accessible signals, which allow ADP to be driven by accessible data. For a
special case,where system state, value function and control policy can be linearly parameter-
ized over a finite functional space over accessiblesignals, the policy iteration algorithm (PI)
of ADP is reduced to solve a system of linear equations. Two data-driven PIs are developed
to accomplish data-driven output feedback optimal control design. Simulation validates the
proposed methodology.
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Abstract: Approximate/adaptive dynamic programming (ADP) has destrated great successes in the construction of data-
driven output feedback optimal control for linear timednant systems and data-driven state feedback optimatatdiotr
nonlinear systems. This work investigates data-drivepwtifeedback optimal control design for a class of nonlirsyatems. It
proposes to parameterize all admissible output feedbatialpcontrol policies over accessible signals (systenpaiuand its
time derivatives). In the case that system state can be péeaaed as functions of accessible signals, then the fahetion and
control policy can be parameterized over accessible Sgndiich allow ADP to be driven by accessible data. For a sppease,
where system state, value function and control policy calimearly parameterized over a finite functional space oceessible
signals, the policy iteration algorithm (PI) of ADP is reédcto solve a system of linear equations. Two data-driveraRds
developed to accomplish data-driven output feedback @ptbontrol design. Simulation validates the proposed nukitogy.

1 Introduction stabilization [8,13-15], and state feedback optimal $itzbi
tion of descriptor systems [16].

Longstandmg re_search on op timal control theory has " 1o the best knowledge of authors, the endeavor in resolv-
sulted in encouraging contributions, to name a few, dynamic

. : : ing data-driven output feedback optimal control for nonlin
programming to determine a feedback control policy [1, 2], ) . i
minimum principle to derive and solve necessary o timalityear systems tums out to be vain. This paper tackles data

num p P X ary op driven output feedback optimal control design by making the
conditions for an open-loop optimal control trajectory4B,

) oo . following contributions
numerical optimization to compute an open-loop optimal "~ o o
control trajectory [5, 6], etc. This work follows the approx (1) Proposes parameterizations of admissible output feed-
imate/adaptive dynamic programming (ADP) approach [7] back optimal con.trol policies which permits the ex-
to synthesize output feedback optimal control policy witho ploitation of ADP: the control policy: is parameter-

knowing the system dynamics. Consider a nonlinear system  12€d overy and its time derivatives up to a certain or-
der. Such parameterizations are supported by estab-

&= f(z)+g(@)u, 2(0)=z0€Q, lished work on high gain and sliding mode observers;
Y= h(z) (1) (i) reveals that as long as system statean be parameter-
’ ized as functions of and its time derivatives, then the
wherez € Q, C R™ the system state vectd?, a compact ADP can be applied without knowing
set containing the origin in its interior, € R™ the control (i) offers exemplary parameterizations of the value func
input, f : R® x R™ — R™ is a vector fieldg : R® — R"x™ tion V and controk, overy and its time derivatives;
consists ofn smooth vector fields, and : R® — R? is a (iv) reduces the differential equations in Pl into a systém o
vector ofp smooth functions. Bothf and g are unknown. linear equations to solve fdf andu; and develops two
This work studies the data-driven output feedback optimal ~ algorithms to implement data-driven PI;
control design to minimize the following cost functional (v) performs simulation validation.
- The remainder of this paper is structured as follows. Sec-
J(u) = / [yTQy n UTRU] dt, ) tion 2 fom_lula_tes feedback op;imal control problems._ Re-
0 parameterizations and data-driven Pl are presented in Sec-

tion 3. Simulation validation is performed in Section 4. Sec

where() and [t are positive definite matrices. If system (1) tion 5 offers future research directions and conclusion.

is uniformly state observable through a virtual out@dt 2y,
finiteness of the cost function (2) implies the system sitgbil 2 Preliminaries

The ADP, narrowly speaking standard policy iteration al- Definition 2.1 (Admissible state feedback control)A

gorithm (PI) or value iteration algorithm (V1) [7,8], hasdre . 1 .
widely accepted as a powerful tool to construct data—drivenState feedback control policy(z) € U, < C0,T] is

. . . admissible if, for any initial condition, € €2, the resultant

feedback optimal control policies for a plethora of scevsri . . .
. . closed-loop system is stable. Correspondingly.is called

Its success has been particularly acclaimed when the systerﬂ S
o o . the admissible state feedback control set.
is linear time-invariant (LTI), for example, state feedkap-
timal stabilization [9], state feedback optimal outputulzg Definition 2.1 assumes state feedback. It makes the
tion [10], output feedback optimal stabilizing control [L11 state feedback optimal control problem exposed to well-
output feedback optimal output regulation [12], etc. When established theories, e.g. dynamic programming. Defining
the system is nonlinear, its applications have been limied U, as the set of all admissible state feedback control poli-
the state feedback case, for instance, state feedbackalptimcies, we assume that, is not empty, i.e.l/,. # 0.



It is without loss of generality to take the cost function (2) dynamic estimators including high gain observer [18] and
with T" = co. For such a case, an admissible state feedbackliding mode-based exact differentiators [19, 20]. Witk th
control policy should yield a finite value of the cost functjo  dynamic estimator, an admissible output feedback control
and a stable closed-loop system. The state feedback optimablicy is implemented as(Z). It is apparent that.(Z) does
control problem for system (1) can be formulated as follows.not necessarily stabilize the closed-loop system, eve Jf
is admissible [21]. This topic however falls outside of the
scope of this work, and is left for future research. Another
interesting topic is to analyze the robustness of the raatlt
output feedback optimal control poliey (z*)

Problem 2.2 (State feedback optimal control problem)
Given systenfl), find u*(z*) € U, which minimizes the
cost function(2), i.e. u*(z*) = argminy)cu, J(u(x)).

According to dynamic programming, the optimal control
solutionu* (z) to Problem 2.2 can be obtained by solving the
Hamilton-Jacobi-Bellman (HJB) equations

Defining U, as the set of all admissible output feedback
control policies, we assume thit is non-empty. The out-
put feedback optimal control problem for system (1) can be

0= HGHUH {VV(f + gu) + (h(:c))TQh(a:) + UTRU}, (3) formulated as follows.

’ Problem 2.5 (Output feedback optimal control problem)
with V(z(c0)) = 0 andVV = 0V/ox. A closed-form  Given systenil), findu*(z) € U, which minimizes the cost
solution of HJB is notoriously difficult to establish. Inats  function(2), i.e. u*(z*) = argmin,.ycp, J(u(2)).

ADP techniques, e.g. Pl and VI, are exploited to acquire a .
approximate solution [7,8,17]. Due to the similarity beéme '3 Main Results

Pl and VI, this work concerns itself with PI. This section is dedicated to solve Problem 2.5. Differ-
P1 for system (1) with state measurements is summarize@nt from the state feedback case where (4)-(5) during Pl are

in the following two iterated steps, with=0,1,---. As- parameterized ovet, we need to re-parameterize equations

sume that an admissible control poliey(x) is known. overz to perform the output feedback control synthesis.

(i) Policy evaluation: Solve for the positive definite func-

. . 3.1 Pl Parameterizations
tion V;(x) satisfying

We briefly recall parameterizations of the control policy

VVi(f(z) + g(@)ui(z)) + v Qy u;(z) and value functiorV; (x) employed in the standard Pl
T (4)  (driven by state measurements), wheis the iteration in-
+u; (x)Ru;(z) =0, Vo€, dex.
Vv N i Vo, n Vg q
whereVV; = dV;(z)/dz is a row vector. .Let g/‘bj (@)}j=y with 67 - R™ — R a”fj{¢j (?5) j=1
(i) Policy improvement: Update the control policy with ;¢ : R" — R™ be two sets of linearly indepen-
dent, continuously differentiable functions and vectdde
i1 (z) = —%R*I(V%g)f (5) respectively. In addition, we assume th@j‘f(o) = 0,

¥1<j<Nandg/?0)=0Y1<j<q.

As a system of first order linear partial differential equa- Assumption 3.1 Provided thatu;
tions (PDESs), the closed-form solution of (4) remains diffi- span{¢vg(a:) o 8V9 ()}, then
cult to establish. Instead, an approximate solution istprac ! oo ’ '
cally of interest. Given parameterizations«gfandV;, (4) 4 v v
can be casted into algebraic equations, and the approximate Vi(z) € span{gy (@), -+, ox (@)},
solution can be computed. The two steps (4)-(5) shall be uir1(z) € span{ey ?(z), -+, &y ?(z)},
repeated until the convergence is attained.

Given an initial admissible state feedback control policy

(x) € Uy, andu;(z) €

whereV;(z) andu,1(x) are obtained fron{4) and (5).

uo(z), Pl generates a sequence of confrel} which pos- Thanks to (5), Assumption 3.1 implies
sesses the following properties
(i) u; leads to a stable closed-loop system; (VVig)" € span{¢} ?(z), - , ¢y ()},
(ii) the closed-loop system performance measured by the . . v v
cost function improves, i.eJ(wis1) < J(u;); and the existence of sets of Welgh(ﬁm, e ,GLN},
(iii) it is guaranteed to converge as— co. {92,/19, e 79;/;’}, and{9xrg1,1, o ,HXrgl,q}, such that
Turning to the output feedback case, we restrict ourselves N
by assuming the following controller parameterizations. Vi(z) = Z 9}3 ;/(x)
Definition 2.3 (Admissible output feedback control) j=1
A dynamic output feedback control polieyz) € U, C q
Co,T) with z = [y,9,...,y™)] € R is admissible ui(z) =0/ 96)9(x)
if, for any initial conditionzy € €., the resultant closed- j=1
loop system is stable. Correspondingty, is called the a
admissible output feedback control set. uir(z) =079 67 ().
7j=1

Remark 2.4 Definition 2.3 assumes dynamic output feed-
back. Particularly, the controller is parameterized by out Remark 3.2 When Assumption 3.1 is not satisfied, these
put and its time derivatives, which can be estimated throughweights can still be numerically obtained based on neural



network approximation methods, such as the off-line approx Next we re-parameterizé (), ®"9(z) as functions of
imation using Galerkin’s method [17]. In addition, for un- ®*(z). For illustration purpose, assume that each compo-
certain nonlinear systems, these weights can be trained usaent of®" (z), ®V9(z) is a polynomial function o, for in-
ing ADP-based online learning methods [8,22]. When ap-stance®" (z) = [23,...,2;2;,...] . The termz;x; takes
proximation methods are use@,. has to be a compact set the following parameterizations
to guarantee the boundedness of the approximation error.

o zirj = 07 ®7(2)070%(2) = (67 ® 67)(¢7(2) ® *(2)),
3.2 Pl Re-Parameterizations

We next re-parameterize; () and V;(x) over z so that
data-driven PI can be driven by accessible sigaatsstead xf =07 ® - @O0 (P"(2)® - ® d%(2)).
of z. For simplicity, the following assumption is introduced.

where® represents the Kronecker product. Similarly

. As aresult®" () takes the following representation
Assumption 3.3 The statex can be represented by func-

tions ofy and its up tom, th time derivatives, i.e., OV (x) = [21,.. . mixj, ... af,...]T = OV (2),
x=x(y,...,y"")). where
Assumption 3.3 seems restrictive, but might be relaxed by (07 ® ©7 0 . 0]
introducing alternative parameterizations of admissiule : : Do
put feedback controllers in Definition 2.3. We identify sev- 0 ® Or 0 0

eral classes of nonlinear systems which satisfy Assumption
3.3: input-output linearizable systems, and flat systenes. R eV =
laxation of Assumption 3.3 could be an interesting topic for

future research. 0 O1© 01 ?91 ©wer 0
Remark 3.4 With Assumption 3.3, all admissible state feed- ; ; -

. . - 0 0 0 =
back control policy can be re-parameterized as functions of - A A -
2, i.e., U, C U.. A simple treatment of Problem 2.5 is to 7(z) @ ©7(2) A
searchu(z) overU, instead of/. In the case thatthe map P7(2) ® O7(2) @ ®*(2) ® P7(2)
betweerr andz is globally diffeomorphic, Problems 2.2 and e (2) = :

2.5 are equivalent, sindg, = U.. () @ © D (2)

The forthcoming discussion is contingent on linear param-
eterizations of overz. Let{¢?(z)}7_, with ¢z : R™ — R
be a set of linearly independent, continuously differdsiga
functions. Assume that?(0) = 0,V 1 <j < S.

One can similarly re-parameterized®V9(xz) =
OV929V9%(z). In the end, re-parameterizations of
andV arrive at the following formula

Assumption 3.5 Provided thatr € 2, then, u(z) = _%R*@ng)‘/g(m) = _%Rfl(:)vg(ivg(z)
z; € span{¢7(2), -, d5(2)}, V=0"0(z)=0"d"(z),
wherez; is theith component af. where®Vs — @V90Ve: @V — VeV,

Assumption 3.5 suggests there exist a set of welght% 3 Data-Driven Pl

{071, ,0f s} for 1 <i <mn, such that o )
With aforementioned re-parameterizations, we can rewrite

(4)-(5), where the newly parameterized equations comprise
Zmd‘ﬁm Z 6* . of unknown parameters and More precisely, linear pa-
rameterizations permit us to reduce the newly parameterize
equations to a system of linear equations. Assume that sys-
tem (1) is subject to control

T

For breV|ty, we denote

0)1,...,0 y] €RY 1 o
u(z) = ng_l@ngﬁvg(z) +o(t),

=
o, g(m) 0)7,....0.9) e R
Of(2) = [07;,...,07g] € R® K(z)
OV(z) = [oV (2),...,0%(x)]" e RY whereuv(t) € R™. The resultant closed-loop system is
V() = [61°(x), -, ¢y ()] T € RV i = f(2) + 9(2) K (2) + g(2)o(t). (6)
T T T S
%(2) = [01(2),-.., 95(2)] € R”. Remark 3.6 The cost function of the closed-loop sys(@n
HenceV;(z) = ©V®Y (z), u;(z) = ©V98V9(x), andz = is time-varying and takes the following valueg aind¢ + §
079" (z), where © _ -
. . Vo(t, z(t :/ ¥ Qu+u Ru)dt
o 07, .. 07 (t,z(t)) t ( )
=1l =1 i Vo (t, z(t +6)) = / (y" Qu + uT Ru)dt.
SH 933 1 Or.s s



The cost functiorV, does not satisfy4), due to the time- whereV = [U(¢),¥(t + J),...,V(t + M;d)] andp =

varying signalu(t). Instead, it satisfies the following time- [p(t), p(t + §), ..., p(t + M;5)]. As long ast¥ " is non-

varying differential equations singular,® is uniquely determined &8 = p¥ " (VW )1,
av, Algorithm 1 provides detailed steps of data-driven PI.

ot
which is non-trivial to solve. Also, solving, is not helpful
to derive the control policy in the form af z).

= VVy(f+gK+gv)+y' Qy+(K+v)" R(K +v),

Algorithm 1: Data-driven Pl

Initialize i = 0, j = 0, to = 0,8, M;, M;, OF %;
Define an initial admissible output feedback control policy

To synthesize the output feedback optimal control policy

u*(2*) via ADP, it is relevant to solve the value function Ko(z) = f%R’léX%V"(z).
V(z), which corresponds to the closed-loop system with the
controlu = K(z), i.e., s = to;
for i < M; do
&= f(z)+ g(z)K(2). (7 Initialize ts = ts + j5;
: N : . i=0,v=0,p=0;
This fact implies the constraint thaf (=) andV satisfy the while j < M, do
following equations t=ts + o
Letv;(t) be a vector of small constants ovjert + 4];
VY (1(0) + o) K () = o o R oy e
—(y"Qy+ (K(2))"RK(2)). calculate¥ (t), p(t) according to (9);
o _ o _ Updatel = [¥, ¥(¢)], p = [p, p(t)];
Basic idea of the following derivation is to infér(z) j=i+1
andVV g from output trajectories of the closed-loop system if det(U(¥)T) # 0 then
(6). Along the trajectory of the closed-loop system (6), the Solve (10) for®;
change oft” during the time interval, ¢t + 4] is given by UpdateK; 41 = —2R 16} 70"9(z);
break;
dV(t) = V(x(t +90)) — V(z(t)) L
AV RV =V 1 =14+ 1;
=0 {;D (2(t +0)) — @7 (2(1))} if 16,1 - O3] < e then
t+ break;
= / (VV(2)(f(2) + 9(x)K(2) + g(z)o(t)))dt L L _
t return ©;_1;

Taking (8) into account, we rearrand® (¢) and have
OVIDY (2(t+5)) —dY (2(t In Algorithm 1,4 is the index for P1,M; is the maximum
{7 (=(t +9)) (=(t))} number of iterations; tracks episodes of measurements to

46 " ) : L
_ VATS D — (7 KN RK dt form well-conditioned linear equations (10),aid; indi-
/t (VVg(@po(t) = (v Qy+ (K(2)) () cates the maximum number of episodes.

e [T Algorithm 1 determine®" and©"? jointly. Intuitively,
=0 g/ " 9(z)v(t)dt the deduction of®Y and ©V¢ relies on decoupling im-

s pacts of K(z) andv on p(t) into A®Y (¢) and(t). Al-

_ / (yTQu+ (K(2))T RK(2))dt. thoughK (z) is a stabilizing control policyy; (¢) oughtto be
t small enough, compared wifki(z), to avoid de-stabilize the

This is reduced to one linear equation closed-loop system (6). This means tlﬁab_"(t) might be
- much larger than)(t). Eventually the matrixt may suffer

Ov(t) = p(t), from ill-conditionedness.

We propose Algorithm 2 as an alternative to implement

o — eV oV
where® = [0%,674], and the data-driven Pl more reliably. Basic idea is to determine

N\ V(z) through output trajectories of the closed-loop system
U(t) = [w(t) ] (7); and then work ou¥/V ¢ by utilizing output trajectories
46 of the closed-loop system (7). Algorithm 2 splits data-env
p(t) = / (" Qu+ (K (2)) T RK(2))dt Plinto three steps: far=0,1, ...
y jv . ©) (i) Policy evaluation: apply:;(z) = K;(z) and measure
ARV (t) = @7 (2(t) — 7 (2(t +6)) the output of system (7) to construct linear equations
t+9
Y(t) :/ OVI(2)v(t)dt. 0y AV = p, (11)
t
© is a vector of unknown parameters. By collecting data whereA_@&’. = [AQY, ARV (1)],p = [p, p(t)); solve
during intervalsit,t + 6,], [t + 6, + 28],..., [t + (M, — (11) fore;’; .
1)8,¢ + M;6] with N + ¢ < M; < oo, one can form a (i) Gradient determination: resolv@, ¢ by forming and
system of linear equations solving the following linear equations

OU = p, (10) 0yIuVI = p—0YAdY, (12)



(iii)y Policy improvement: update the control policy:

where U9 = [i(t),...
[ADY (1), ..,

of system (6);

1
K’H—I(Z) = —§R7

1(:)Vg(1)vg(z).

Readers are referred to Algorithm 2 for details.

,(t + M;6)] and AdY =
A®VY (t+M;6)] are generated by output

(13)

Algorithm 2: Decomposition-based Data-driven Pl

Initialize i = 0, j = 0, to = 0,8, M, M;, ©Y9;

Define an initial stabilizing control policy

Ko = —%R‘lég’%"-"(z).

ts - th
for i < M; do
Initialize ts = ts + 59;

J

=0,p=0,Ad" =0

ui(2) = Ki(2);
while j < M; do

J

i

Solve (11) for®)’;
break;

j=J+1

ui(z,t) = Ki(z) + vi(t);
t=ts+ 39,

Update®"V'9 = [UV9 4(t)

j=J+1

break;

\; Solve (12) for®)'¢;

=i+ 1

if |éi_1 — éll < ethen

L break;

return ©;_1;

:07\I/Vg ZQ:PZQ:A(I)V =
while j < M; do
Letv;(t) be a vector of small constants ovjert + 4];

(
B
(t

[A®Y, AV (1)], p = [p, p(1)];

0;

if det(¥V9(WV9)T) £ 0then

CalculateA®Y (t), p(t) according to (9);
UpdateA®Y = [A®Y ADY (1)],p =
if det(A®(A®)T) # 0then

[0, p(1)];

CalculateA®Y (t), ¥(t), p(t) according to (9);

ADY =

Update the control policy according to (13);

4  Simulation

Consider a second order nonlinear system

I Rt 3 i ol 0
gl eI

whereC' = [1,0]. The objective is to minimize the cost

y=Cux,

(14)

function (2) with the weighty = 1000, R = 1. Letz =

[y, 9]

x=[y,g+y]" = [1

[SEd

0
1

T. Parameterizations af overz give

e (2)

g

Assumption 3.3 is verified. Note th&t" is not required dur-
ing the process of data-driven Pl. For comparison, we solve
both the standard Pl and data-driven PI for two cases:

(i) Case 1.d =0, i.e., system (14) is LTI;
(i) Case 2:d =1, i.e., system (14) is nonlinear.

Both the standard Pl and data-driven Pl take the same pa-
rameterizations o¥ andu overz, i.e.,

(I)V(l') = {$1,$2,$1$27334117x2a$ x%} € RG

@Vg(x) = {:cl,xg,x‘f,:cg,:clxg,:clxg} € RS,

Assumption 3.1 holds for the above choicesidf(z) and
®V9(z). Re-parameterizations for data-driven Pl give

= B P*(2) @ D*(2)

2" () = LI)“‘(Z) © 87(2) @ B%(2) ® @”(2)}
TV _ 7(z) ® ()

o (2) = |:(I)x(2) ® B2 (z) ®q)z(z):| )

which can be greatly simplified by taking system properties
into account. In this example, considering that a linear
function ofz, we can down select the bagi¥ (z) as follows

4 4 3 .22 .3
Ty € Span{zl ) R1%9, 2127, 2172, 22}

rird € span{zf, 2329, 2727},

and®V (z) is {22, 22, 2129, 21, 25, 2125, 23 29, 2323} € RE,
Similarly we have

3 3.,.2 .2, .3
xy € span{zy, 2125, 2722, 25 }
2 3 .2 2
125 € span{zy, 2722, 2125 }

2 3 .2
xixe € span{zy, 2722},

which implies®V9(2) = {21, 22, 23, 2122, 2229, 23} € RS.
One can verify Assumption 3.1 fdr" (z) anch>Vg( ). With
expressions otV (z) and ®V9(z), Algorithm 2 is imple-
mented to solve Problem 2.5.

Note that Pl assumes the knowledg¢g of andz, whereas
data-driven Pl merely requires For both cases, data-driven
Pl and standard Pl begin with the same initial control policy
albeit with different parameterizations= —2z; — 22, and
u = —2x, respectively. Simulation results for Case 1 and
Case 2 are summarized by Figs. 1-4 and Figs. 5-8, respec-
tively. Figs. 1 and 5 show the values of the cost function (2)
by simulating the closed-loop systems with control pofcie
generated by Pl and data-driven PI, respectively. Figsd2 an
6 illustrate the errors between the cost function (2) evalu-
ated by simulating the closed-loop systems and the approxi-
mate value functions obtained by Pl and data-driven PI. Note
that when evaluate the cost function, the closed-loop Byste
start from the same initial conditiong0) = [—1,1]". Figs.

3 and 7 depict trajectories af; andu of the closed-loop
systems with three distinct control policies: the initiaihe
trol policy ug(x), the state feedback optimal control policy
u*(z) by PI, and the output feedback optimal control policy
u*(z) by data-driven PI. Figs. 4 and 8 visualize the approxi-
mate value functions obtained by Pl and data-driven PI.
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Fig. 4: Case 1: Error between approximate value functions

For both cases, data-driven Pl converges within a few it-

while the standard Pl gives Op;
[198.4449,6.0806, 49.1166,0,0,0]. By applyingz; = 1
andzy = 2o — z1, one can tell that both standard PI and
data-driven Pl yield almost the analogous approximatesvalu
functions. This fact is also confirmed by Fig. 4, where the
error between two approximate value functions obtained
by standard PI and data-driven PI is at the ordet@f”.
Data-driven PI ends up with the following output feedback
control policy

u*(2)

0.5(61.565421 + 12.4323%5).

Fig. 2 indicates how well the true value function is approx-
imated by the standard PI and data-driven Pl. According to
Fig. 2, choices of basi®&" for both cases fully capture the
true value function, a quadratic function:of

Figs. 5-8 correspond to Case 2. Pl and data-driven PI
converge to approximate value functions with the following
parameters

0V = [260.4370,5.6808, 60.3622, 6.4532,
— 1.4969, —1.8005, —1.4759, —0.2357]
0v9 = [60.0728,11.2592, —1.3712,
—3.6079, —4.3631, —0.9119]
Opr = [235.3647,7.2802, 42.6616,
4.0927, —-0.3399, 0.3626].
Data-driven PI results in the following output feedbacki-opt
mal control policy
u*(2) = —0.5(60.07282; + 11.25922 — 1.371223
—3.60792729 — 4.36312125 — 0.911923).
Figs. 6 and 8 expose a surprising but interesting phe-
nomenon: the approximate value function result from data-
driven PI gives rise to much less approximation error that th

Pl case. It is partially ascribed to the fact tidgf () is two
dimension higher tha®" (z).

350

—4—Standard PI
—+— Data-driven PI

1 2 3

Number of iterations

Fig. 5: Case 2: Values of cost function (2) over iterations

4 5

erations. As shown in Figs. 1 and 5, the Pl and data-driven

Pl converge at the same rate for Case 1, while the latter is

a little slower than the former for Case 2. All figures cor-
roborate that results of data-driven Pl largely coincidéhwi
the standard PI. Due to distinct parameterizations, both P
and data-driven Pl produce seemingly different resultaas f
as the value function and optimal control policy concerned.
Particularly, for Case 1, the data-driven PI outputs patame
values of the approximate value function as follows

OV = [253.6421,6.0806, 61.2778,0,0,0,0, 0]
0V9 = [61.5654, 12.4323,0,0,0,0],

50

0

AJ: Standard PT

-50

50

0

AJ: Data-driven PI

-50

0

o

Number of iterations

Fig. 6: Case 2: Errors between the cost function (2) and
approximate value functions over iterations



==="Initial control
~— Standard PI
- - Data-driven PI

.
o

State
Control u

o

====Initial control
~— Standard PI
- - Data-driven PI

=)
T

1 5
0 5 0 5
Time (sec) Time (sec)
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5 Conclusion and Future Work

This paper conducted data-driven output feedback opti-
mal control design for a class of nonlinear systems, by the
exploitation of approximate/adaptive dynamic prograngnin [12]
techniques. It established two sufficient conditions talfac
itate data-driven policy iteration algorithm (PI): all agm
sible output feedback optimal control policies are param-
eterized over system output and its time derivatives; sys—[13]
tem state can be represented as functions of system out-

put and its time derivatives.

For the case when system

[4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

state, value function and admissible output feedback CoNq14)
trol policy can be linearly parameterized over a finite func-

tional space defined over system output and its time deriva-
tives, the data-driven Pl is reduced to solve a system of
linear equations. Two implementations of data-driven Pls[15]
are developed to fulfill the synthesis of data-driven output

feedback optimal control.

Future work includes optimal-

ity/convergence/robustness analysis and relaxing ltioita
of this work, e.g. , more general parameterizations of all ad [16]
missible output feedback optimal control policies.
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