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Abstract

Recent work has shown that reinforcement learn-
ing (RL) is a promising approach to control dy-
namical systems described by partial differential
equations (PDE). This paper shows how to use
RL to tackle more general PDE control problems
that have continuous high-dimensional action
spaces with spatial relationship among action di-
mensions. In particular, we propose the concept
of action descriptors, which encode regularities
among spatially-extended action dimensions and
enable the agent to control high-dimensional ac-
tion PDEs. We provide theoretical evidence sug-
gesting that this approach can be more sample ef-
ficient compared to a conventional approach that
treats each action dimension separately and does
not explicitly exploit the spatial regularity of
the action space. The action descriptor approach
is then used within the deep deterministic pol-
icy gradient algorithm. Experiments on two PDE
control problems, with up to 256-dimensional
continuous actions, show the advantage of the
proposed approach over the conventional one.

1. Introduction
This paper develops an algorithmic framework for han-
dling reinforcement learning (RL) problems with high-
dimensional action spaces. We are particularly interested
in problems where the dimension of the action space is
very large or even infinite. These types of problems natu-
rally appear in the control of Partial Differential/Difference
Equations (PDE), which have attracted attention because
of their potential applications spreading over physical dy-
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namic system (Lions, 1971) and engineering problems, in-
cluding the design of air conditioning systems (Popescu
et al., 2008), modelling of flexible artificial muscles with
many degrees of freedom (Kim et al., 2013), traffic con-
trol (Richards, 1956; Lighthill & Whitham, 1955), and the
modelling of information flow in social networks (Wang
et al., 2013).

Many dynamical systems can be described by a set of Ordi-
nary Differential Equations (ODE). Some examples are the
dynamics describing inverted pendulum, robotic arm ma-
nipulator (with inflexible joints), and electrical circuits (in
low-frequency regime for which the electromagnetic radi-
ation is negligible). The property of these systems is that
their state can be described by a finite dimensional variable.
The use of RL to control ODE-based problems, with either
discretized action or continuous actions, has been widely
presented in various RL works (Sutton & Barto, 1998;
Kober et al., 2013; Deisenroth et al., 2013). The success
is most significant for problems where the traditional con-
trol engineering approaches may not fare well, due to the
complexity of the dynamics, either in the form of nonlin-
earity or uncertainty. There are, however, many other phys-
ical phenomena that cannot be well-described by an ODE,
but can be described by a PDE. Examples are the distribu-
tion of heat in an object as a function of time and location,
motion of fluids, and electromagnetic radiation, which are
described by the heat, Navier-Stokes, and Maxwell’s equa-
tions, respectively. The control of PDEs using data-driven
approaches, including RL-based formulation, has just re-
cently attracted attention and is a relatively an unexplored
area (Farahmand et al., 2016b; 2017; Belletti et al., 2018;
Duriez et al., 2016).

Control of PDEs has been investigated in conventional con-
trol engineering (Krstic & Smyshlyaev, 2008; Ahuja et al.,
2011; Borggaard et al., 2009; Burns et al., 2016; Burns
& Hu, 2013; Brunton & Noack, 2015). Despite the math-
ematical elegance of conventional approaches, they have
some drawbacks that motivate investigating learning-based
methods, in particular RL-based approaches. Many con-
ventional approaches require the knowledge of the PDE
model, which might be difficult to obtain. Designing a con-
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troller for the model also requires a control engineer with
an expertise in modeling and control of PDEs, which makes
it even more challenging. Furthermore, a hand-designed
controller is brittle to changes in the geometry and param-
eters of the PDE, requiring repeated redesign of the con-
troller to maintain performance. This is impractical in many
industrial applications, such as an air conditioning system
that is deployed to a customer’s home. Moreover, many of
the controller design tools are based on a linear PDE as-
sumption, which ignores potentially useful nonlinear phe-
nomena inherent in PDEs, such as those in fluid dynam-
ics problems (Foures et al., 2014). Designing a controller
based on this simplified model might lead to a suboptimal
solution. The optimal controller is also typically designed
for the quadratic cost function, as opposed to a more gen-
eral objective, such as a user’s comfort level for an air con-
ditioning system.

It is desirable to have a controller design procedure that
has minimal assumptions, does not require the knowl-
edge of the PDE, and is completely data-driven. This can
be achieved by formulating the PDE control problem as
an RL problem, as has recently been shown (Farahmand
et al., 2016b; 2017), or some other flexible data-driven ap-
proaches such as the genetic programming-based method
of Duriez et al. (2016).

The PDE control problem is challenging because the state
of a PDE is in theory an infinite-dimensional vector and
very high-dimensional in computer simulations. Moreover,
many PDE control problems have infinite-dimensional con-
tinuous action, i.e., function-valued action. For example, if
the PDE is controlled through its boundary condition, the
action space is a function space defined over the continuous
boundary. Even though one may spatially discretize the ac-
tion space and treat it as a multi-dimensional action space,
such a solution leads to a very high-dimensional continuous
action space and does not explicitly incorporate the spatial
regularity of the PDE’s action space.

Previous work has addressed the problem of high-
dimensionality of the state space in the RL-based PDE
control (Farahmand et al., 2016b; 2017), but their solu-
tions have been limited to PDEs with a finite number of
actions. This work focuses on the infinite-dimensionality
of the action space. We formulate the PDE control with
RL within the Markov Decision Process (MDP) formalism
with function-valued state and action spaces (Section 2).
We introduce action descriptors as a generic method to
model actions in PDE control problems (Section 3). Ac-
tion descriptors allow us to scale to arbitrarily high di-
mensional continuous action spaces and capture the spatial
regularities among action dimensions. By benefiting from
action descriptors, we propose a neural network architec-
ture that is not changed with the increase of action dimen-

sions; rather, it simply queries from a set of action descrip-
tors (Section 4). This is in contrast with conventional RL
algorithms that directly output a high-dimensional action
vector. We provide some theoretical insights on why the
proposed approach might have a better sample complexity
through a covering number argument (Section 5). Finally,
we empirically verify the effectiveness of our architecture
on two PDE control domains with up to 256 dimensional
continuous actions (Section 6).

2. Reformulating PDE Control as an MDP
In this section, we first provide a PDE control example and
briefly discuss how this can be viewed as an MDP. We also
highlight the need to exploit the spatial regularities in the
action space of PDEs. For more discussion, refer to Farah-
mand et al. (2016b).

2.1. Heat Invader: A PDE Example

PDE control is the problem of modifying the behaviour
of a dynamical system that is described by a set of PDEs.
An example of a PDE is the convection-diffusion equation,
which describes the changes in the temperature in an envi-
ronment, among several other other physical phenomena.
Given a domain Z ⊂ Rd and time t, the temperature at lo-
cation z ∈ Z at time t is denoted by the scalar field T (z, t).
The convection-diffusion equation describes the evolution
of the temperature as follows:

∂T

∂t
= ∇ · 1

Pe
∇T −∇ · (vT ) + S. (1)

Here S = S(z, t) is the heat source/sink, v = v(z, t)
is the velocity field describing the airflow in the domain,
and 1

Pe
is a diffusivity constant. The gradient operator is

∇, and the divergence operator is ∇·, which measures the
outflow of a vector field. These operators are with respect
to (w.r.t.) z. We can further decompose the source term
S(z, t) = S(z, t; a) = So(z, t) + a(z, t), where So(z, t)
is a source term that cannot be controlled (e.g., a distur-
bance) and a(z, t) is the action under our control. The Heat
Invader problem is a particular example of this convection-
diffusion PDE over a 2D domain Z with a time-varying
source So(z, t) (Farahmand et al., 2016b).

Since the location space Z is a continuous domain, the
action a(·, t) is a function lying in some function space.
The dimension of this action space, however, depends on
how we actuate the PDE. As a concrete example, if we can
control the temperature of the airflow going through an in-
let in an air conditioning system, the action is the scalar
temperature of the inflow air and the action space is one-
dimensional real-valued vector space (assuming we can
control the temperature with arbitrary precision). But we
may also be able to finely control the temperature of walls
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of a room by a distributed set of minuscule heaters/coolers
within the wall (this technology might not exist today, but
is perceivable). In this case, the action is the temperature
of each tiny heater/cooler in the wall, so the action space
would be an extremely high dimensional vector space.

Generally, one may control a PDE by setting its boundary
condition or by defining a source/sink within its domain.
The boundary of a PDE has a dimension one smaller than
the domain of a PDE (under certain regularities of the ge-
ometry of the boundary). So for a 3D PDE (e.g., a room and
its temperature field), the boundary is a 2D domain (e.g.,
the walls). An action defined over the boundary, without
further constraint, is a function with a domain that is un-
countably large. A similar observation holds when we con-
trol a source/sink within the domain.

2.2. PDE Control as an MDP

To relate the PDE control problem to the reinforcement
learning setting, we first provide a brief overview of
MDP (Sutton & Barto, 1998; Szepesvári, 2010; Bertsekas,
2013). An MDP consists of (X ,A,P,R, γ), where X de-
notes the state space, A denotes the action space, P :
X × A × X → M(X ) is the transition probability ker-
nel (with M(X ) being the space of probability distribu-
tions defined over X ), R : X × A × X → M(R) is the
reward distribution, and γ ∈ [0, 1) is the discount factor.
At each discrete time step t = 1, 2, 3, ..., the agent selects
an action according to some policy π and the environment
responds by transitioning into a new state xt+1 sampled
from P(·|xt, at), and the agent receives a scalar reward
rt+1 samples from R(·|xt, at, xt+1). The agent’s goal is
to maximize discounted cumulative sum of rewards from
the current state xt. Typically in the RL literature, both the
state space and action spaces are finite dimensional vector
spaces, for example both are subsets of an Euclidean space,
Rp and Rk, respectively. The state of a PDE, however, is
an infinite-dimensional vector space. Thus to describe such
problems, we need to work the MDPs with infinite dimen-
sional state and action spaces.1

Consider now the PDE control problem, and how it can
be formalized as an agent finding an optimal policy for
an MDP (X ,A,P,R, γ). In (1), the state and action are
infinite dimensional vectors (functions) xt = T (·, t) and
at = a(·, t). For example in the Heat Invader problem, the
state is the current temperature at all locations, and the ac-
tion changes the temperature at each location. Both state
and action are functions belonging to some function space

1The discounted MDP framework works fine with general
state spaces, under certain measurability conditions, cf., Sections
5.3 and 5.4 and Appendix C of Bertsekas (2013). The conditions
would be satisfied for bounded Borel measurable reward function
and the Borel measurable stochastic kernel.

defined over the domain Z of PDE, e.g., the space of con-
tinuous function C(Z), the Sobolev space, etc. The partic-
ular choice of function space depends on the PDE and its
regularity; we denote the space by F(Z).

The dynamics of the MDP is a function of the dynamics
of PDE. One difference between the MDP framework and
PDE is that the former describes a discrete-time dynami-
cal system whereas the latter describes a continuous-time
one. One may, however, integrate the PDE over some ar-
bitrary chosen time step ∆t to obtain a corresponding par-
tial difference equation xt+1 = f(xt, at) for some func-
tion f : F(Z) × F(Z) → F(Z), which depends on the
PDE. For the convection-diffusion PDE (1) with the state
being denoted by x ∈ F(Z) (instead of temperature T ),
we have f(x, a) =

∫∆t

t=0
∇ · 1

Pe
x̃−∇ · (vx̃) + S(z, t; a)dt

with the initial state of x̃ at t = 0 being x and the
choice of S(z, t; a) depending on a.2 So we might write
P(x|xt, at) = δ(x − f(xt, at)), where δ(·) is the Dirac
delta function. More generally, if there is stochasticity in
the dynamics, for example if the constants describing the
PDE are random, the temporal evolution of the PDE can
be described by a transition probability kernel, i.e., xt+1 ∼
P(·|xt, at).

The remaining specification of the MDP, including the re-
ward and the discount factor, is straightforward. For exam-
ple, the reward function in the Heat Invader problem is de-
signed based on the desire to keep the room temperature at
a comfortable level while saving energy:

r(xt, at,xt+1) = −cost(at) (2)

−
∫
z∈Z

I(|T (z, t+ 1)| > T ∗(z, t+ 1))dz,

where I(·) is an indicator function, T ∗(·) is a predefined
function describing the acceptable threshold of deviation
from a comfortable temperature (assumed to be 0), and
cost(·) is a penalty for high-cost actions. Refer to the sup-
plementary material for more detail.

Reinforcement learning algorithms, however, are not de-
signed to learn with infinite-dimensional states and actions.
We can overcome this problem by exploiting the spatial
regularities in the problem, and beyond PDEs, exploiting
general regularities between the dimensions of the states as
well as actions. We provide more intuition for these regu-
larities before introducing MDPs with action-descriptors,
a general subclass of infinite-dimensional MDPs that
provides a feasible approach to solving these infinite-
dimensional problems.

2Note that this step requires the technical requirement of the
existence of the solution of a PDE, which has not been proven for
all PDEs, e.g., the Navier-Stokes equation. Also we assume that
the action remains the same for that time period.
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2.3. Exploiting Spatial Regularities in PDEs

One type of regularity particular to PDEs is the spatial reg-
ularity of their state. This regularity becomes apparent by
noticing that the solution of a PDE, which is typically a
1D/2D/3D scalar or vector field, is similar to a 1D/2D/3D
image in a computer vision problem. This similarity has
motivated some previous work to design RL algorithms
that directly work with the PDE’s infinite dimensional state
vector, or more accurately its very high-dimensional rep-
resentation on a computer, by treating the state as an im-
age (Farahmand et al., 2016b; 2017). Farahmand et al.
(2016b) suggest using the Regularized Fitted Q-Iteration
(RFQI) algorithm (Farahmand et al., 2009) with a repro-
ducing kernel Hilbert space (RKHS) as a value function
approximator. For that approach, one only needs to define
a kernel between two image-like objects. Farahmand et al.
(2017) suggest using a deep convolution network (Con-
vNet) as the estimator of the value function. ConvNets are
suitable to exploit spatial regularities of the input and can
learn domain-specific features from image-like inputs.

Even though these previous approaches can handle high-
dimensional states in PDE control problems, they are lim-
ited to a finite number of actions. Their approach does not
exploit the possible regularities in the action space of a
PDE. For example, some small local changes in a control-
lable boundary condition may not change the solution of
the PDE very much. In that case, it makes sense to ensure
that the actions of nearby points on the boundary be simi-
lar to each other. The discretization-based approach (Farah-
mand et al., 2016b; 2017) ignores the possibility of having
a spatial regularity in the action space. We next describe
how we can exploit these regularities—as well as make it
more feasible to apply reinforcement learning algorithms to
these extraordinarily high-dimensional continuous action
problems—by introducing the idea of action descriptors.

3. MDPs with Action Descriptors
We consider an MDP formulation where the state space
X and action space A can be infinite dimensional vector
spaces, e.g., the space of continuous functions over Z . Pro-
cedurally, the agent-environment interaction is as usual: at
each step, the agent selects a function at ∈ A at the current
state xt ∈ X , traverse to a new state xt+1 according to the
dynamics of the PDE, and receives reward rt+1.

Even though the infinite dimensional state/action space
MDPs provide a suitable mathematical framework to talk
about control of PDEs, a practically implementable agent
may not be able to provide an infinite dimensional action
as its output, i.e., providing a value for all uncountably infi-
nite number of points over Z . Rather, it may only select the
values of actions at a finite number of locations in Z , and

convert those values to an infinite dimensional action ap-
propriate as the control input to the PDE. Consider the Heat
Invader problem. There might be a fine, but finite, grid of
heater/cooler elements on the wall whose temperature can
be separately controlled by the agent. Each of the elements
is spatially extended (i.e., each element covers a subset of
Z), and together they define a scalar field that is controlled
by the agent. The result is an infinite dimensional action, an
appropriate control input for a PDE, even though the agent
only controls a finite, but possibly very large, number of
values. In some cases, the set of controllable locations are
not necessarily fixed, and might change. For example, if an
air conditioner is moved to some other location which has
never placed before, the agent should ideally still be able to
control them.

We propose to model this selection of action-dimensions
(or the location of where the agent can exert control) us-
ing action descriptors. For the Heat Invader problem, the
action descriptors correspond to the spatial locations z of
the air conditioners; more generally, they can be any vector
describing an action-dimension in the infinite-dimensional
action space. The action descriptors help capture regular-
ities across action dimensions, based on similarities be-
tween these vectors.

To be concrete, let Z be the set of locations in the domain
of PDE, e.g., Z = [0, 1]2 for the 2D convection-diffusion
equation (1). An action descriptor is c ∈ Z and determines
the location where the action can be selected by the agent.
We use the more general term action descriptor, rather than
actions locations, as in other PDEs, Z may represent other
regularities between actions. The set of all action descrip-
tors is the finite and ordered set C = (c1, . . . , ck), for fi-
nite k. Given each action descriptor ci and the state x,
the agent’s policy π : X × Z → R (in case of deter-
ministic policies) generates an action scalar u(i) ∈ R, i.e,
u(i) = π(x, ci). Recalling that the action of a PDE be-
longs to F(Z), an infinite dimensional action space, we
have to convert these action scalars to an action that can be
fed to the underlying PDE. We use an adapter for this pur-
pose. An adapter is a mapping from the set of action scalars
u = (u(1), . . . , u(k)) and the action descriptors C to a func-
tion defined over Z , i.e., I : C × Rk → F(Z). The infinite
dimensional action given to the PDE is at = I(C, ut).

There are many ways to define an adapter, which can be
thought of as a decoder from a finite-dimensional code to
a function-valued code. Linear interpolators are one par-
ticular class of adapters. Given a set of (fixed) weighting
functions wi : Z → R, the linear interpolator is

I(C, u) : z 7→
k∑
i=1

wi(z)u
(i). (3)

For instance, we may define the weighting function as
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Gaussians with the centres on the action descriptors, i.e.,
wi(z) = exp(−‖z−ci‖

2

2σ2 ).

Another choice, which we use in our experiments, is based
on partitioning of the domain Z around the action descrip-
tors. Given the action descriptors C, define a partition of
Z and denote it by (A1, . . . , Ak), i.e.,

⋃
Ai = Z and

Ai ∩ Aj = ∅ for i 6= j. For example, Ai might be a
rectangular-shaped region in Z and ci being its centre. An-
other example would be Voronoi diagram corresponding to
centres in C, which is commonly used in the finite element
method. Having this partitioning, we define the weight-
ing functions as wi(z) = I{z ∈ Ai}. With this choice of
adapter, the action given to the MDP is

at = I(C, u) =

k∑
i=1

I{z ∈ Ai}π(xt, ci). (4)

To build physical intuition, consider the Heat Invader prob-
lem again. The action descriptors C correspond to the lo-
cations of the (centre of) heater/cooler elements of the air
conditioners. Furthermore, a partition Ai corresponds to
the spatially-extended region where each element occupies.
When we set the temperature at location ci to a certain
value u(i) in (4), the value of the whole region Ai takes
the same value u(i).

The action descriptor formulation allows the agent to ex-
ploit the spatial regularity of the action. For example if
the variations of the action applied within a subregion
Z0 ⊂ Z does not cause much change in the dynamics,
it is sufficient to learn a π(·, c) that varies slowly within
Z0. The learning agent that has access to C and can learn
a mapping π(x, ci), as in (3) or (4), can potentially ex-
ploit this regularity. This can be contrasted with a non-
adaptive interpolation-only agent where the action is cho-
sen as at =

∑k
i=1 I{z ∈ Ai}πi(xt). In this scheme we

choose the action at each partition without considering their
relative locations through a series of separately learned
πi(x). Such an agent cannot explicitly benefit from the spa-
tial regularity of the action. We develop this argument more
rigorously in Section 5. Another benefit of the action de-
scription formulation is that as long as I(C, u) can work
with variable-sized sets C and u, it allows variable num-
ber of spatial locations to be queried. This can be helpful
when the physical actuators in the environment are added
or removed.

This formulation is a strict generalization of more stan-
dard settings in reinforcement learning, such as a finite-
dimensional action space A = Rk. The domain for actions
is Z = {1, . . . , k} and we do not subselect locations, C =
Z , requiring instead that all action dimensions are speci-
fied. The adapter simply returns action πi(xt) for action
index i, using Ai = {i} and at =

∑k
i=1 I{z ∈ Ai}πi(xt).

4. PDE Control with RL Algorithms
There has been some work addressing continuous action
spaces, including both with action-value methods (Baird &
Klopf, 1993; Gaskett et al., 1999; del R Millán et al., 2002;
van Hasselt & Wiering, 2007) and policy-based methods
(Schulman et al., 2015; Montgomery & Levine, 2016; Sil-
ver et al., 2014; Lillicrap et al., 2016; Schulman et al.,
2016). These methods, however, do not scale with ex-
tremely high-dimensional action spaces, because they ei-
ther have to optimize the action-value function over a high-
dimensional action space or output a high-dimensional ac-
tion vector. These approaches also do not explicitly ex-
ploit regularities between actions. Some work for high-
dimensional discrete (finite) action spaces do extract action
embeddings (Sunehag et al., 2015; He et al., 2015; Dulac-
Arnold et al., 2015) or impose factorizations on the action
space (Sallans & Hinton, 2004; Dulac-Arnold et al., 2012;
Pazis & Parr, 2011). These methods, however, are specific
to large sets of discrete actions. Existing methods cannot
be directly applied to learning for these (extremely) high-
dimensional continuous action problems with regularities.
Next we discuss how to modify a policy gradient method
to extend to this setting.

For our MDP problem formulation with action descrip-
tors, we propose to learn a policy function that receives the
state along with action descriptors and outputs actions or
probabilities over actions. Consider the policy parameter-
ization πθµ : X × Z → R. For a given state xt, under
the infinite-dimensional MDP formalism, the selected ac-
tion at = πθµ(xt, ·) which is function-valued. With the ac-
tion descriptors set C, the policy outputs the ith action com-
ponent by evaluating πθµ(xt, ci), ci ∈ C and hence we are
able to get action scalars ut ∈ R|C|. Although a distribution
over such functions could be maintained, for simplicity in
this preliminary work, we focus on deterministic policies.

The Deterministic Policy Gradient algorithm (Lillicrap
et al., 2016) provides a method to learn such a policy. For
finite-dimensional action spaces A, let πθµ(·) : X → A
be the actor network parameterized by θµ, Q(·, ·; θQ) :
X × A → R be the critic network parameterized by θQ,
and dπθµ (·) be corresponding stationary distribution. Sim-
ilarly to the stochastic case (Sutton et al., 2000), the goal is
to maximize the expected average reward, under that policy

J(πθµ) =

∫
X×X

dπθµ (x)r(x, πθµ(x), x′)dxdx′.

The Deterministic Policy Gradient theorem (Lillicrap et al.,
2016; Silver et al., 2014, Theorem 1) shows that the
gradient of this average reward objective, under cer-
tain conditions, is approximately the expected value,
across states, of ∇θµQ(x, πθµ(x); θQ). Using the chain
rule, this provides a straightforward gradient ascent up-
date for θµ: ∇aQ(x, a; θQ)|a=πθµ (x)∇θµπθµ(x), where
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Algorithm 1 DDPG with Action Descriptors
Initialize a random processN for exploration
Initialize an empty buffer B for experience replay
Initialize actor and critic networks (e.g., with Xavier initializa-
tion) π(·, ·; θµ) : X ×Z → R, Q(·, ·; θQ) : X ×Rk → R and
target actor and critic networks π(·, ·; θµ′), Q(·, ·; θQ′

)
Define a set of action descriptors C, |C| = k
and target network update rate τ
for t = 1, 2, ... do

Observe xt, compute action scalars ut =
[π(xt, c1; θµ), . . . , π(xt, ck; θµ)] +N ∈ Rk

Execute action at = I(C, ut), and transition to state xt+1

and get reward rt+1

Add sample (xt, ut, xt+1, rt+1) to B
BN ← a mini-batch of N samples from B
for (xi, ui, xi+1, ri+1) ∈ BN do

u′ = [π(xi, c1; θµ′), . . . , π(xi, ck; θµ′)]

set target yi = ri+1 + γQ(xi+1, u
′; θQ

′
)

end for
Update the critic by minimizing the loss:
L = 1

N

∑N
i=1(yi −Q(xi, ui; θ

Q))2

Update the actor by gradient ascent, with gradient:
For f(θµ) = [π(xi, c1; θµ), . . . , π(xi, ck; θµ)]
1
N

∑N
i=1∇uQ(x, u; θQ)|u=f(θµ)∇θµf(θµ)

Update target network parameters:
θµ′ ← (1− τ)θµ′ + τθµ

θQ
′ ← (1− τ)θQ

′
+ τθQ

end for

∇aQ(x, a; θQ)|a=πθµ (x) is the Jacobian matrix generated
by taking gradient of each action component with respect
to the actor network parameters.

We can extend this algorithm to use action descriptors as
shown in Algorithm 1, which can efficiently scale to ex-
tremely high-dimensional continuous actions while captur-
ing the intrinsic regularities. The change to DDPG is sim-
ply to modify the actor network, to input both states and
action descriptors and output an action scalar. DDPG, on
the other hand, would only receive the state and output a k-
dimensional vector u ∈ Rk to specify the action scalars. To
get the k action scalars with our actor network, the network
is evaluated k times with each action descriptor.

5. Theoretical Insights
We provide theoretical evidence showing that learning a
policy that explicitly incorporates the action location (or
descriptor) z might be beneficial compared to learning
many separate policies for each action location. The evi-
dence for this intuitive result is based on comparing the
covering number of two different policy spaces. The first is
the space of policies with certain spatial regularity (Lips-
chitzness in z) explicitly encoded. The other is the policy
space where the spatial regularity is not explicitly encoded.
The covering number is a measure of complexity of a func-
tion space and appears in the estimation error terms of
many error upper bounds, both in supervised learning prob-

lems (Györfi et al., 2002; Steinwart & Christmann, 2008)
and in RL (Antos et al., 2008; Lazaric et al., 2016; Farah-
mand et al., 2016a). Note that the covering number-based
argument is only one part of an error upper bound—even
in the supervised learning theory (Mohri et al., 2012, page
61). Due to complications arising from exploration strat-
egy and convergence issues, to the best of our knowledge,
there is no estimation error bound for deep reinforcement
learning algorithms so far. Therefore, our results only pro-
vide a possible mathematical insight rather than a complete
picture of the sample efficiency bound.

To formalize, consider a policy πθ : X × Z → R, param-
eterized by θ ∈ Θ. Let us denote this space by ΠL. We
make the following assumptions regarding its regularities
(refer to the supplementary material for the definition of
the covering number and the proof of the result).

Assumption A1 The following properties hold for the pol-
icy space ΠL:

• For any fixed action location z ∈ Z , the ε-covering num-
ber of ΠL|z , {x 7→ πθ(x, z) : θ ∈ Θ } is N (ε).

• The policy πθ is L-Lipschitz in the action location z
uniformly in θ ∈ Θ and x ∈ X , i.e., |πθ(x, z1) −
πθ(x, z2)| ≤ L ‖z1 − z2‖ for any z1, z2 ∈ Z and any
x ∈ X . The domain Z is a bounded subset of Rd.

We think of ΠL as the policy space to which the optimal
policy, or a good approximation thereof, belongs, but we do
not know which member of it is the actual optimal policy.
The role of any policy search algorithm, DDPG included,
is to find that policy within ΠL. The stated assumptions on
ΠL describe certain types of regularities of ΠL, which man-
ifest themselves both in the complexity of the policy space
for a fixed location z (through the covering numberN (ε)),
and its Lipschitzness as the location parameter varies. Note
that we have not proved that the optimal policy for the Heat
Invader problem, or any PDE control problem for that mat-
ter, in fact satisfies these regularities.

We would like to compare the ε-covering number of ΠL

with the ε-covering number of a policy space that does not
explicitly benefit from the Lipschitzness of ΠL, but still can
provide an ε-approximation to any member of ΠL. This
policy might be seen as the extreme example of the policy
used by the conventional DDPG (or any other policy search
algorithm) where each action dimension is represented sep-
arately. In other words, for having N -dimensional action,
we have N different function approximators. Let us intro-
duce some notations in order to define this policy space
more precisely.

Consider a set of locations {ci}Mε
i=1 and their corresponding

partition {Ai}Mε
i=1 with resolution ε

2L . This means that for
each z ∈ Z , there exists a ci ∈ Ai such that the distance of
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z to ci is less than ε
2L and z ∈ Ai. The number of required

partition is Mε = c( 2L
ε )d, for some constant c > 0, which

depends on the choice of distance metric and the geometry
ofZ (but not ε). Define the following policy space (cf. (4)):

Π =
{
πθ(x, z) =

Mε∑
i=1

πθi(x, ci)I{z ∈ Ai} :

πθi ∈ ΠL|ci , i = 1, . . . ,Mε

}
.

This is the policy space where each action location is mod-
eled separately, and it is allowed to be as flexible as any
policy in ΠL with a fixed action location. But this policy
space does not restrict the policy to be Lipschitz in Z , so it
is more complex than ΠL. The following proposition com-
pares the complexity of Π and ΠL in terms of the logarithm
of their covering numbers (metric entropy).

Proposition 1. Consider two policy spaces ΠL and Π, as
defined above. Suppose that ΠL satisfies Assumption A1. It
holds that for any ε > 0, the policy space Π provides an
ε-cover of ΠL. Furthermore, for some c1, c2 > 0, indepen-
dent of ε, the following upper bounds on the logarithm of
the covering number hold:

logN (ε,ΠL) ≤ c1
(
L

ε

)d
+ logN (ε),

logN (ε,Π) ≤ c2
(
L

ε

)d
logN (ε/2).

The covering number of Π grows faster than that of ΠL.
This is intuitive as the former imposes less restriction
on its members, i.e., no Lipschitzness over Z . To give a
more tangible comparison between two results, suppose
that logN(ε) = cε−2α for some c > 0 and 0 ≤ α < 1.3 In
that case, the metric entropy of ΠL behaves as ε−max{d,2α}

whereas that of Π behaves as ε−(d+2α).

Since there is no error bound for DDPG, we cannot com-
pare the error bounds. But for some estimation problems
such as regression or value function estimation with a func-
tion approximator with the metric entropy of logN(ε) =

cε−2β , the optimal error bound behaves asO(n−
1

1+β ), with
n being the number of samples (Yang & Barron, 1999;
Farahmand et al., 2016a). Taking this as a rough estimate,
the ratio of the error rates of ΠL to that of Π is

n
−2min{2α,d}

(2+2α+d)(2+max{2α,d})

which becomes significant as α, the complexity of ΠL|z ,
grows. For example, when α = 1 and d = 3, the error
rate of a method that uses ΠL as the function approximator

3 This choice of metric entropy holds for some nonparametric
function spaces, such as Sobolev spaces and some RKHS. We do
not show that this covering number result actually holds for the
policy space ΠL|z , so at this stage this is only an example.

is n1/6 faster than the other’s. This suggests the possible
benefit of explicitly incorporating the spatial regularity in
the Z space, in terms of sample complexity of learning.

6. Experiments
We empirically show that our approach, which can exploit
spatial regularity, can be easily scaled to large continu-
ous action dimensions while maintaining competitive per-
formance. We compare DDPG and DDPG with separate
Neural Networks (NN) for each action component, to our
DDPG with Action Descriptors on two domains: a simple
PDE Model domain, and the Heat Invader problem as de-
scribed throughout this work. The latter is a more difficult
problem with more action regularities.

6.1. Results on the PDE Model Domain

The PDE Model domain is using the 2D heat equation
as the underlying transition dynamic (see the supplemen-
tary material for details). The infinite-dimensional state and
action spaces are discretized to X ⊂ Rd×d and A ⊂
[−1, 1]d×d. Figure 1 shows the comparison between our
DDPG with Action Descriptors and the other two com-
petitors, as the number of state and action dimension in-
crease: d2 ∈ {36, 100, 256}. One can see that using action
descriptors consistently outperforms the other algorithms.
Both DDPG and the DDPG with separate NNs begin to de-
crease in performance after about 100 episodes, for higher-
dimensional actions d2 = 100, 256. DDPG with Action
Descriptors, however, does not display this degradation for
any action dimension, and continues improving with more
training time. Additionally, DDPG with separate NN shows
slightly lower sample efficiency, as expected, though with
higher action dimensions this effect is less obvious as all
algorithms degrade and the regularity on this domain is not
that strong.

6.2. Results on the Heat Invader Domain

The underlying state transition dynamics of this domain is
the PDE as described by Equation (1). In an ideal case,
there are infinitely many air conditioners on the floor,
and at each time step we can control the temperature for
each air conditioner. In simulation, performed using the
finite volume solver FiPy (Guyer et al., 2009), the state
and action spaces are discretized. The state space is dis-
cretized to X ⊂ R50×50, giving a total of 2500 measure-
ment locations on the floor. Figure 2 shows comparisons
across different control dimensions at ∈ [−0.5, 0]k, k ∈
{25, 50, 100, 200}. On this more difficult domain, it be-
comes clear that DDPG with separate NN has a lower sam-
ple efficiency than DDPG, and the former even shows di-



RL with Function-Valued Action Space for PDE Control

50 100 150 200
Number of Episodes

-0.05

-0.045

-0.04

-0.035

-0.015

-0.01

-0.005

 Mean  
Reward 

Per 
Episode DDPG with Separate NN

DDPG

DDPG with Action Descriptors

(a) PDEModel: action dimension = 36
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(b) PDEModel: action dimension = 100
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(c) PDEModel: action dimension = 256

Figure 1. Mean reward per episode vs. episodes on PDE-Model. The results are averaged over 30 runs, with standard error displayed.
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(a) 25 dimensional action
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(b) 50 dimensional action
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(d) 200 dimensional action

Figure 2. Mean reward per episode vs.
episodes on the Heat Invader domain, with
increasing action dimension. The results are
averaged over 50 runs. DDPG with action
descriptors consistently outperforms other
algorithms across dimensions, and DDPG
shows higher sample efficiency than the
DDPG with separate NN. We suspect the lat-
ter cannot converge to a good policy after
the dimension increased to 50 due to its in-
ability to capture the regularities. The results
suggest that 25 air conditioners may not pro-
vide sufficiently fine resolution to control
the temperature well in the room, as even the
solution under DDPG with Action Descrip-
tors has more variability. Note that the sharp
increase in the reward early in the graphs is
due to the relatively large noise in the action,
triggering the airflow to be ON and making
the temperature decrease faster. As the noise
decreases after a few episodes, the fan turns
off and the agent is improving its policy.

vergence after the dimension reaches 50. For k = 100 and
200, DDPG with Action Descriptors learns a significantly
better and more stable policy. Theoretically, the finer we
can control the temperature, the higher reward we can po-
tentially obtain. We suspect there is a tradeoff between how
well the agent can learn the policy and how finely the tem-
perature needs to be controlled. Once the dimension in-
creases to 100 or 200, only DDPG with Action Descriptors
is able to exploit this finer-grained control.

7. Conclusion
We presented a general framework of using reinforce-
ment learning for PDE control, which has infinite dimen-
sional state and action spaces (or very high-dimensional

in practice). We proposed the concept of action descrip-
tors to enable RL algorithms, such as deterministic policy
gradient, to handle these problems. Theoretical evidence
showed why our approach might have better sample effi-
ciency compared to a conventional continuous-action RL
approach. Our strategy enables the architecture to easily
scale with increasing action dimension. We showed that
the same neural network architecture, with the exception of
the output layer, can obtain significantly better performance
scaling as the dimension increases on two PDE domains.
We believe that the proposed RL-based approach has the
potential to be a powerful alternative to conventional con-
trol engineering methods to PDE control, as well as other
RL/control problems with extremely high-dimensional ac-
tion spaces with action regularities.
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Mannor, S. Regularized fitted Q-iteration for planning
in continuous-space Markovian Decision Problems. In
Proceedings of American Control Conference (ACC), pp.
725–730, June 2009. 4

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, Cs., and
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