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A Real-Time Iteration Scheme with Quasi-Newton Jacobian Updates
for Nonlinear Model Predictive Control

Pedro Hespanhol1, Rien Quirynen1

Abstract— Nonlinear model predictive control (NMPC) re-
quires the solution of a dynamic optimization problem at
each sampling instant under strict timing constraints, involving
nonlinear dynamics that can often be stiff or implicitly defined.
The real-time iteration (RTI) scheme has been shown to allow
real-world embedded applications of NMPC. The present paper
proposes an extension of the standard RTI algorithm with a
block-structured quasi-Newton method to obtain low-rank Ja-
cobian updates that preserve the block structure of the optimal
control problem. In addition, a particular structure-exploiting
implementation is presented for implicit integration schemes
such that no Jacobian evaluation is needed neither any matrix
factorization. Based on a proof of concept implementation in
C code, the computational performance of the algorithm is
illustrated for multiple NMPC case studies.

I. INTRODUCTION

Optimization based control and estimation techniques,
such as nonlinear model predictive control (NMPC) and
moving horizon estimation (MHE), allow a model-based
design framework in which the system dynamics and con-
straints can directly be taken into account [1]. One main
practical challenge lies in the ability to solve the following
nonlinear optimal control problem (OCP) at each sampling
instant, under strict timing constraints:

min
x(t),u(t)

∫ T

0

l(x(t), u(t)) dt (1a)

s.t. x0 − x̂0 = 0, (1b)
0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (1c)
p(x(t), u(t)) ≤ 0, ∀t ∈ [0, T ], (1d)

where T denotes the control horizon length, x(t) ∈ Rnx

denotes the states and u(t) ∈ Rnu denotes the controls.
The function l(·) defines the stage cost. The nonlinear
system dynamics are formulated as an implicit system of
ordinary differential equations (ODE) in (1c), which could be
extended with algebraic equations. The problem is parametric
in the current state estimate x̂0, through the initial value
condition in (1b). The path constraints are defined in Eq. (1d)
and they are assumed to be affine, for simplicity.

Direct optimal control methods then continue by forming
a discrete-time approximation of the problem in (1), based
on an appropriate parameterization of the state and control
trajectories, resulting in a tractable nonlinear program (NLP).
Popular examples of this include the direct multiple shooting
method [2] and direct collocation [3], [4]. The resulting
constrained optimization problem can be handled by standard
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Newton-type algorithms such as interior point methods and
sequential quadratic programming (SQP) techniques [5]. For
the purpose of real-time predictive control and estimation,
continuation-based online algorithms have been proposed.
An overview on such methods can be found in [6].

This work extends the real-time iteration (RTI) scheme,
which is an online variant of an SQP algorithm for
NMPC [7]. One typically avoids the evaluation of the
Lagrangian Hessian by using a Gauss-Newton type ap-
proximation [5]. Moreover, inexact Jacobian matrices can
be used to further reduce the computational effort, e.g.,
by reusing the linearized dynamics over multiple sampling
instants [8], [9]. Recently, inexact Newton implementations
were proposed in order to reduce the computational cost
per iteration for lifted collocation schemes [10]. Instead,
our focus is on quasi-Newton type methods which rely on
low-rank updates of the Jacobian matrix to obtain good
convergence properties at a strongly reduced computational
cost. Unlike standard Broyden type methods [11], a two-
sided rank-one (TR1) update scheme has been proposed [12],
[13] for constrained optimization. A main contribution of this
paper is an extension of the lifted collocation algorithm based
on a sparsity-preserving and structure-exploiting variant of
the quasi-Newton type TR1 update technique.

This results in a novel extension of the RTI scheme that
avoids the computation of Jacobian matrices and, instead,
only relies on relatively cheap adjoint derivative evaluations.
The resulting lifted collocation type algorithm avoids any
type of matrix factorization or the solution of linear systems,
unlike standard algorithms that are based on an implicit
integration scheme. The computational performance of both
these algorithms is illustrated for multiple case studies,
using a preliminary C code implementation. These numerical
results include a real-world control application of NMPC
based steering in autonomous vehicles.

The paper is organized as follows. Section II briefly
summarizes direct optimal control and inexact SQP-type
optimization. The block-structured quasi-Newton Jacobian
update procedure is detailed in Section III. Then, in Sec-
tion IV, we discuss our tailored structure exploitation within
the lifted collocation algorithm. Section V illustrates the
numerical performance of the proposed algorithms based on
multiple case studies of nonlinear MPC.

II. NEWTON-TYPE OPTIMIZATION FOR DIRECT
OPTIMAL CONTROL

In direct optimal control, the OCP in Eq. (1) is first ap-
proximated by a tractable NLP. We formulate an equidistant



grid over the control horizon T consisting of the collection of
time points {ti}Ni=0. We also consider a piecewise constant
control parameterization u(τ) = ui for τ ∈ [ti, ti+1).

A. Direct Multiple Shooting and Direct Collocation

A popular approach for direct optimal control is based on
direct multiple shooting [2]. We consider an explicit fixed-
step integration scheme [14] that defines the discrete-time
system dynamics for each shooting interval. The resulting
block-structured OCP reads as:

min
X,U

N−1∑
i=0

li(xi, ui) + lN (xN ) (2a)

s.t. x0 − x̂0 = 0, (2b)
Fi(xi, ui) = xi+1, i = 0, . . . , N − 1, (2c)
p(xi, ui) ≤ 0, i = 0, . . . , N. (2d)

The optimization variables are the state X = [x>0 , . . . , x
>
N ]>

and control trajectory U = [u>0 , . . . , u
>
N−1]>. In direct tran-

scription or direct collocation [3], [4], an implicit integration
scheme and its intermediate variables are directly made part
of the nonlinear optimization problem. The discrete-time
optimal control problem reads as:

min
X,U,K

N−1∑
i=0

li(xi, ui) + lN (xN ) (3a)

s.t. x0 − x̂0 = 0, (3b)
Gi(xi, ui,Ki) = 0, i = 0, . . . , N − 1, (3c)
xi +BiKi = xi+1, i = 0, . . . , N − 1, (3d)
p(xi, ui) ≤ 0, i = 0, . . . , N, (3e)

where the additional trajectory K = [K>0 , . . . ,K
>
N−1]> de-

notes the intermediate variables. These variables are defined
implicitly by the equations in (3c), such that the continuity
condition reads as in Eq. (3d). The Jacobian ∂Gi

∂Ki
(·) will

generally be invertible for an integration scheme applied to
a well-defined set of differential equations in (1c).

B. Adjoint-based Inexact SQP and Lifted Collocation

We focus on SQP methods to solve the forementioned
NLPs, where at each iteration a quadratic program (QP)
approximation is obtained by linearizing the constraint func-
tions and forming a quadratic objective. Hence, the lineariza-
tion point corresponds to the state X̄ = [x̄>0 , . . . , x̄

>
N ]> and

control values Ū = [ū>0 , . . . , ū
>
N−1]> from the previous

iteration. We consider the adjoint-based SQP algorithm for
fast NMPC [8], [9]. In case of the multiple shooting NLP (2),
each SQP iteration solves a convex QP subproblem:

min
∆W

N∑
i=0

1

2
∆w>i Hi ∆wi + h>i ∆wi (4a)

s.t. ∆x0 = x̂0 − x̄0, (4b)
ai +Ai∆wi = ∆xi+1, i = 0, . . . , N − 1, (4c)
p(∆wi) ≤ −pi, i = 0, . . . , N, (4d)

where wi := (xi, ui) and wN := xN . The notation
∆W = [∆w>0 , . . . ,∆w

>
N ]> is used to denote the deviation

variables ∆wi := wi − w̄i. The stage cost is defined by a
(nonlinear) least squares term li(xi, ui) = 1

2‖R(xi, ui)‖22
such that the generalized Gauss-Newton (GGN) method
from [15] uses the block-structured Hessian approximation
Hi := ∇R(w̄i)∇R(w̄i)

> ≈ ∇2
wi
L, where L(·) refers to

the Lagrangian of (2). The matrix Ai ≈ ∂Fi

∂wi
(w̄i) in Eq. (4c)

denotes the Jacobian approximation and ai := Fi(w̄i)−x̄i+1

for the continuity condition on each interval. The gradient
term hi in the objective (4a) reads as in [8], [9], which can
be evaluated efficiently using backward differentiation [16].

Similarly, the same adjoint-based SQP method can be
applied directly to the direct collocation problem in (3):

min
∆W,∆K

N∑
i=0

1

2
∆w>i Hi ∆wi + hc

>

i

[
∆wi
∆Ki

]
(5a)

s.t. ∆x0 = x̂0 − x̄0, (5b)
ci +Di∆wi + Ci∆Ki = 0, (5c)
ei + ∆xi +Bi ∆Ki = ∆xi+1, (5d)
p(∆wi) ≤ −pi, i = 0, . . . , N, (5e)

based on the evaluation ci := Gi(w̄i, K̄i) and the Jacobian
approximations Di ≈ ∂Gi

∂wi
(w̄i, K̄i) and Ci ≈ ∂Gi

∂Ki
(w̄i, K̄i).

The corresponding gradient correction hci can be computed
in an analogous fashion as the gradient term hi in (4a).
Recently, it has been shown in [10] how tailored embedded
optimization algorithms [17], [18] can also be used to
efficiently solve the direct collocation structured QP in (5)
based on a numerical elimination and expansion of the
collocation variables. For this purpose, the step direction
for the collocation variables can be obtained as ∆Ki =
−C−1

i (ci +Di∆wi) directly from Eq. (5c). The variables
∆Ki in the QP (5) can then be numerically eliminated
in order to obtain the condensed QP subproblem of the
block-structured multiple shooting form in Eq. (4). We will
present a quasi-Newton type variant of this condensing and
expansion procedure further in Section IV.

C. Real-Time Iteration Scheme for Nonlinear MPC

In embedded NMPC applications, one needs to solve the
nonlinear OCP of Eq. (2) or (3) at each sampling instant
under strict timing constraints. For this purpose, we instead
use the real-time iteration (RTI) scheme [6], [7], which is
a continuation based variant of a fixed-step SQP method.
More specifically, by warm-starting the algorithm with the
shifted solution to the previous problem, only one SQP
iteration is performed at each time step. The general idea
is that one prefers to obtain new measurement information
from the system, rather than iterating until convergence for
an optimization problem that is becoming outdated. It has
been shown in [7], under some reasonable assumptions in a
simplified setting, that the stability of the closed-loop system
based on the RTI scheme can be guaranteed also in presence
of inaccuracies and external disturbances.



III. BLOCK-TR1 JACOBIAN UPDATES FOR
DIRECT OPTIMAL CONTROL

This paper aims at proposing a quasi-Newton type algo-
rithm [19] to keep the Jacobian approximations sufficiently
accurate while preserving the block sparsity structure of the
QP subproblem in Eq. (4) or (5). Existing literature on rank-
one approximation-based SQP methods such as [12] analyze
several rank-one updates for the constraint Jacobian, such
as the classical good and bad Broyden schemes in [20].
In particular, the work in [12] proposes an alternative two-
sided rank-one (TR1) update as a generalization of the
symmetric rank-one (SR1) update scheme in [21]. The TR1
approach enjoys several benefits over the classical methods,
such as heredity and invariance to scaling. Moreover, the
work in [13] presents convergence results for an SQP method
based on SR1 to approximate the Hessian of the Lagrangian
and TR1 to approximate the constraint Jacobian.

When directly applying the above mentioned approaches
to the NLPs in Eq. (2) or (3), then the optimal control block-
structured sparsity is destroyed immediately. Therefore, the
solution of each of the resulting QP subproblems would then
become considerably more expensive. Structure exploiting
or partitioned updates have been proposed in the context of
unconstrained optimization in [2], [22], [23]. To the best of
our knowledge, a tailored SQP algorithm based on block-
wise updates for the constraint Jacobian matrices has not
yet been proposed, in order to exploit the particular multiple
shooting structure in optimal control.

A. Block-wise TR1 Update Formula

Let us present the block-wise TR1 update formula initially
for the multiple shooting structured NLP in Eq. (2). When
applying the SQP method, the resulting QP subproblem in
Eq. (4) requires an approximation matrix Ao

i ≈ ∂Fi

∂wi
(wo

i )
for each of the continuation constraints i = 0, . . . , N − 1.
After solving this QP, we then need to update each of
these matrices independently. Following the work in [12],
we would like that each updated approximation matrix A+

i

satisfies the following two secant conditions:

Adjoint Condition (AC): σ>i A
+
i = µ>i ,

Forward Condition (FC): A+
i si = yi,

(6)

where we define the adjoint vector µ>i = σ>i
∂Fi

∂wi
(w+

i ),
given σi = λ+

i − λo
i , and the difference in function eval-

uations yi = F (w+
i ) − F (wo

i ). Note that λ+
i and λo

i ,
respectively, denote the new and old Lagrange multipliers for
the linearized continuation constraints in Eq. (4c). Similarly,
wo
i := (xo

i , u
o
i ) and w+

i := wo
i + ∆w?i denote respectively

the old and new primal variables such that si := w+
i − wo

i .
As discussed also in [12], the gradient σ>i

∂Fi

∂wi
(w+

i ) can be
computed efficiently using the backward mode of algorithmic
differentiation (AD), e.g., see [16].

The proposed block-wise TR1 update formula then reads
as follows:

A+
i = Ao

i + α (yi −Ao
i si)

(
µ>i − σ>i Ao

i

)
, (7)

for i = 0, . . . , N − 1 and where α is a scalar that will be
defined further. Aside from the case where the function F (·)
is affine, the two conditions, AC and FC in Eq. (6), are not
consistent with each other and they can therefore not both
be satisfied by the updated matrix A+

i . Thus, similar to the
standard TR1 update in [12], the block-wise update will only
be able to satisfy one or the other. In the adjoint variant of
the update, the scaling value is defined as:

αA = 1/(σ>i yi − σ>i Ao
i si), (8)

such that the adjoint condition in (6) is satisfied exactly and
the forward condition holds up to some accuracy. This value
reads similarly for the forward variant αF , replacing σ>i yi
by µ>i si, such that the forward condition is satisfied exactly.
Note that the block-TR1 update results in a rank-N update
for the complete Jacobian matrix of the QP in (4).

B. RTI Implementation for Nonlinear MPC

We propose to use the block-TR1 update formula in
an inexact but computationally cheaper variant of the RTI
scheme for nonlinear MPC. The resulting implementation is
illustrated in Algorithm 1. The use of costly differentiation
techniques is restricted to merely two adjoint derivative di-
rections [16] for each shooting interval instead of a complete
Jacobian matrix evaluation. One adjoint is needed to compute
µi for the block-TR1 update formula and one adjoint is
needed in the gradient correction. Algorithm 1 is called at
each sampling instant of the NMPC scheme and, since the
TR1 update is part of the preparation step, the computational
delay between obtaining the new state estimate and applying
the next control input to the system is restricted to the
solution of the QP in the feedback phase.

Note that similar to the standard RTI scheme [6], the
proposed algorithm requires an initialization step prior to
the real-time feedback control loop, in order to initialize the
state and control variables, the Lagrange multipliers and the
approximate Jacobian matrices. Depending on the particular
application, such an initialization can be computed offline,
e.g., based on a steady state solution.

IV. LIFTED COLLOCATION ALGORITHM WITH
BLOCK-TR1 JACOBIAN UPDATES

Algorithm 1 can de directly applied to the direct colloca-
tion problem in (3), where the block-TR1 update formula is
used for the Jacobian approximation matrices

[
Di Ci

]
≈

∂Gi

∂(wi,Ki)
(w̄i, K̄i). However, the resulting QP subproblem is

relatively large due to the amount of additional collocation
variables and corresponding equations in (5c). Motivated by
the work on lifted collocation integrators as discussed in
Section II-B, we aim to exploit the sparsity structure of the
QP in (5) directly in the block-wise rank-one update formula.
Unlike the standard lifted collocation scheme, this results in a
tailored block-TR1 based SQP method for direct collocation
without the use of a Jacobian evaluation and without any
matrix factorization technique.



Algorithm 1 Block-TR1 based Jacobian Updates within a
Real-Time Iteration Scheme for Nonlinear MPC.
Input: wo

i = (xo
i , u

o
i ) , λo

i and Ao
i for i = 0, . . . , N − 1.

Problem linearization
1: Formulate the QP in (4) with matrices Ao

i and evaluate
vectors ai and hi for i = 0, . . . , N − 1.
Computation of step direction

2: Obtain current state estimate x̂0. . from system
3: Solve the QP subproblem in Eq. (4):
w+
i ← wo

i + ∆w?i and λ+
i ← λ?i .

4: Apply new control input u+
0 . . to system

Block-wise TR1 update
5: for i = 0, . . . , N − 1 do in parallel
6: A+

i ← Ao
i + α (yi −Ao

i si)
(
µ>i − σ>i Ao

i

)
.

7: end for
Output: w+

i = (x+
i , u

+
i ), λ+

i and A+
i for i = 0, . . . , N −1.

A. Tailored Structure Exploitation for Direct Collocation

As mentioned earlier, the Jacobian matrix ∂Gi

∂Ki
for the

collocation equations needs to be invertible. Therefore, given
an invertible approximation Ci ≈ ∂Gi

∂Ki
(wo

i ,K
o
i ), we can

rewrite the linearized expression in Eq (5c) as follows

∆Ki = −C−1
i (ci +Di∆wi) . (9)

By substituting the above expression for ∆Ki back into
the direct collocation structured QP in (5), one obtains the
equivalent but condensed formulation

min
∆W

N∑
i=0

1

2
∆w>i Hi ∆wi + h̃c

>

i ∆wi (10a)

s.t. ∆x0 = x̂0 − xo
0, (10b)

di + ∆xi −Bi C−1
i Di∆wi = ∆xi+1, (10c)

p(∆wi) ≤ −pi, i = 0, . . . , N, (10d)

where di = ei − Bi C
−1
i ci is defined and the condensed

gradient reads as

h̃ci = ∇wi
l(wo

i ) +

(
∂Gi
∂wi

− ∂Gi
∂Ki

C−1
i Di

)>
ωo
i . (11)

Note that the resulting QP formulation in Eq. (10) is of the
same problem dimensions and exhibits the same sparsity as
the multiple shooting structured QP subproblem in Eq. (4).
Therefore, state of the art block-structured QP solvers can
be used for which an overview can be found in [17]. After
solving the condensed QP in (10), the collocation variables
can be obtained from the expansion step in Eq. (9). Based
on the optimality conditions of the original direct collocation
structured QP in (5), the corresponding Lagrange multipliers
can be updated as follows

ω+
i = ωo

i − C−>i
∂Gi
∂Ki

>
ωo
i − C−>i B>i λ

+
i , (12)

where λ+
i denote the new Lagrange multipliers for the

continuity conditions in (10c) or in (5d).

B. Block-TR1 Update for Direct Collocation
The block-TR1 update formula from Eq. (7) can be readily

applied to direct collocation, resulting in

[D+
i C

+
i ] = [Do

i C
o
i ]+α (yi − [Do

i C
o
i ]si)

(
µ>i − σ>i [Do

i C
o
i ]
)

(13)
where the quantities µ>i = σ>i

∂Gi

∂(wi,Ki)
(w+

i ,K
+
i ) and σi =

ω+
i − ωo

i are defined. In addition, si :=

[
w+
i − wo

i

K+
i −Ko

i

]
and

yi = Gi(w
+
i ,K

+
i )−Gi(wo

i ,K
o
i ) is defined. In order to use

this block-TR1 update formula in combination with the lifted
collocation scheme, one needs to be able to efficiently form
the condensed QP in Eq. (10). For this purpose, we need
to avoid the costly computations of the inverse matrix C−1

i

as well as the matrix-matrix multiplication C−1
i Di. In what

follows, we present a procedure to directly obtain a rank-
one update formula for the inverse matrix C+−1

i and for the
corresponding product E+

i := C+−1

i D+
i .

C. Avoiding Expensive Matrix-Matrix Operations
Based on the Sherman-Morrison formula, one can directly

update the matrix inverse given the previous invertible ap-
proximation Co−1

i ≈ ∂Gi

∂Ki

−1
. Let us first rewrite the block-

TR1 update from (13) as follows

D+
i = Do

i + αUV >D and C+
i = Co

i + αUV >C , (14)

where U = yi−[Do
i C

o
i ]si and [V >D V >C ] = µ>i −σ>i [Do

i C
o
i ].

The Sherman-Morrison formula then reads as

C+−1

i = Co−1

i − αβ Co−1

i UV >C Co−1

i , (15)

where β = 1

1+αV >C Co−1
i U

.

Let us define Ũ = Co
−1

i U such that we obtain the
following update

E+
i = C+−1

i D+
i = Co−1

i

(
Do
i + αUV >D

)
− αβCo−1

i UV >C Co−1

i

(
Do
i + αUV >D

)
= Eo

i + αŨV >D − αβŨV >C (Eo
i + αŨV >D )

= Eo
i + αŨṼ >,

(16)

where Ṽ > = V >D − βV >C (Eo
i + αŨV >D ). It is readily seen

that the update for Ei is a rank-one update.

D. Lifted Collocation based RTI Scheme for NMPC
The novel block-TR1 update formula for the matrix E+

i =

C+−1

i D+
i in Eq. (16) provides an efficient manner to di-

rectly compute the rank-one update to the matrices in the
condensed QP formulation of Eq. (10), without the need
for a matrix factorization, inversion and without any matrix-
matrix multiplications. Instead, the proposed implementation
merely requires matrix-vector multiplications and outer prod-
ucts, resulting in a quadratic instead of cubic computational
complexity. However, this comes at the cost of a slightly
increased memory footprint, since the matrices C−1

i and Ei
need to be stored from one iteration to the next as well. The
implementation of the proposed block-TR1 method for direct
collocation is presented in Algorithm 2, resulting in a novel
lifted collocation type RTI scheme for nonlinear MPC.



Algorithm 2 Lifted Collocation with Block-TR1 Updates
within a Real-Time Iteration Scheme for Nonlinear MPC.

Input: wo
i = (xo

i , u
o
i ), Ko

i , λo
i , ωo

i , Co
i , Do

i , Co−1

i and Eo
i .

Problem linearization
1: Formulate the QP in (10) with matrices Eo

i and evaluate
vectors di and h̃ci in (11) for i = 0, . . . , N − 1.
Computation of step direction

2: Obtain current state estimate x̂0. . from system
3: Solve the QP subproblem in Eq. (10):
w+
i ← wo

i + ∆w?i and λ+
i ← λ?i .

4: Apply new control input u+
0 . . to system

Block-wise TR1 update
5: for i = 0, . . . , N − 1 do in parallel
6: K+

i ← Ko
i − Co−1

i ci − Eo
i ∆w?i ,

7: ω+
i ← ωo

i − C
−>
i

∂Gi

∂Ki

>
ωo
i − C

−>
i B>i λ

+
i ,

8: D+
i ← Do

i + αUV >D and C+
i ← Co

i + αUV >C ,
9: C+−1

i ← Co−1

i − αβ ŨV >C Co−1

i ,
10: E+

i ← Eo
i + α ŨṼ >.

11: end for
Output: w+

i , K+
i , λ+

i , ω+
i , C+

i , D+
i , C+−1

i and E+
i .

V. NUMERICAL CASE STUDIES

In this section, we proceed to analyze how the proposed
block-TR1 method can be used in the context of nonlinear
MPC using the RTI scheme [7]. Each iteration of the MPC
scheme consists of two parts:

1) Preparation phase: linearize the system by computing
the necessary derivatives and build the optimal control
structured QP subproblem.

2) Feedback phase: solve the QP and obtain the next
control input to apply feedback to the system.

The block-wise TR1 based Jacobian update in both Algo-
rithm 1 and 2 becomes part of the preparation step and
therefore does not affect the computational delay between
obtaining the new state estimate and applying the next
control input to the system. The QP solution in the feedback
phase will be obtained by the method proposed in [18].

We validate the closed-loop performance of these novel
RTI variants based on two numerical case studies. Motivated
by real embedded applications, we illustrate the computation
times for the presented NMPC algorithms using the ARM
Cortex-A53 processor in the Raspberry Pi 3. A detailed local
convergence analysis is part of ongoing research.

A. NMPC for the Chain of Masses

Similar to the work in [10], the nonlinear chain of masses
can be used to validate the computational performance of
an optimal control algorithm for a range of numbers of
masses nm (we refer to [9] for the OCP formulation).
Figure 1 illustrates the computation times of both the prepa-
ration and feedback steps of an NMPC implementation with
nm = 2, . . . , 8 masses, using the lifted collocation based
SQP scheme in Algorithm 2. It can be observed that the
preparation time scales quadratically with the number of

Fig. 1: Comparison of the average preparation and feedback
times (in ms): block-TR1 method versus exact Jacobian. 1

TABLE I: Average computation times (in ms) for nonlinear MPC
on a chain of nm = 6 masses, i.e., 30 differential states (4 Gauss
collocation nodes versus 10 steps of RK4).

Explicit (RK4 in Alg. 1) Implicit (GL4 in Alg. 2)

exact block-TR1 exact block-TR1

Linearization 32.36 5.33 16% 291.37 35.99 12%
QP solution 23.22 37.82 26.33 27.86

Total RTI step 56.39 43.99 78% 318.58 64.69 20%

states for the block-TR1 implementation, instead of the cubic
complexity when using the exact Jacobian. Specifically, the
Jacobian evaluation, factorization and matrix-matrix multi-
plications are replaced by adjoint differentiation sweeps and
matrix-vector operations in Algorithm 2. On the other hand,
the feedback time remains essentially the same because, after
the linearization, both approaches lead to the solution of a
similarly structured QP in (4) or (10).

Table I provides a more detailed comparison between
the exact Jacobian and the proposed block-TR1 variant of
the RTI scheme, using an ARM Cortex-A53 processor. The
table shows these results for both the explicit Runge-Kutta
method of order 4 (RK4) in combination with Algorithm 1
and using the implicit 4-stage Gauss-Legendre (GL4) method
within Algorithm 2. The proposed block-TR1 scheme results
in a considerable speedup of the problem linearization step
of about factor 6 − 8. In order to obtain a relatively fair
comparison, the number of integration steps for RK4 has
been chosen such that the numerical accuracy is close to

1The computation times in Figure 1 have been obtained using an Intel i7-
7700k processor @ 4.20 GHz on Windows 10 with 64 GB of RAM.



TABLE II: Average computation times (in ms) for vehicle control
based on a single-track vehicle model within NMPC (4 Gauss
collocation nodes versus 30 steps of RK4).

Explicit (RK4 in Alg. 1) Implicit (GL4 in Alg. 2)

exact block-TR1 exact block-TR1

Linearization 106.73 75.78 71% 52.22 18.27 35%
QP solution 4.46 4.51 4.59 4.72

Total RTI step 111.79 80.94 72% 57.43 23.64 41%

that of the 4-stage GL method. However, since the system
dynamics for the chain of masses are non-stiff, an explicit
integration scheme typically performs better.

B. NMPC based Vehicle Control

The second case study is based on the NMPC based
vehicle control scheme as presented recently in [24], based
on single-track vehicle dynamics with a Pacejka-type tire
model. The validated model parameters can be found in [25].
As often the case in practice, these vehicle dynamics are
rather stiff such that an implicit integration scheme should
preferably be used. Therefore, it forms an ideal case study for
the proposed lifted collocation based RTI scheme of Algo-
rithm 2. Let us perform the closed-loop NMPC simulations
as presented in [24], but using the proposed block-TR1 based
RTI algorithm. We carried out simulations for two successive
double lane changes on snow, and the resulting closed-loop
trajectories for both the exact Jacobian and the block-TR1
were indistinguishable from each other.

The corresponding computation times on the ARM
Cortex-A53 processor are illustrated in Table II. Because of
the relatively stiff wheel dynamics, the proposed lifted col-
location method from Algorithm 2 becomes very attractive
and additionally provides a speedup of about factor 3 over
the standard exact Jacobian based implementation. Note that,
even though the Raspberry Pi 3 is not an embedded processor
by itself, it uses an ARM core of the same type as those that
are used by multiple high-end automotive microprocessors.

VI. CONCLUSIONS

In this paper we proposed a block-wise sparsity preserving
TR1 update for an adjoint-based inexact SQP method to
efficiently solve the nonlinear optimal control problems
arising in NMPC. We also showed how this approach can
be implemented in the lifted collocation framework, in order
to avoid matrix factorizations and matrix-matrix multiplica-
tions. This allows us to more efficiently handle both stiff
and non-stiff system dynamics within an RTI based NMPC
implementation, as illustrated by multiple case studies that
show the closed-loop numerical performance.
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