LDL^T DIRECTION INTERIOR POINT METHOD FOR SEMIDEFINITE PROGRAMMING

ARVIND U. RAGHUNATHAN and LORENZ T. BIEGLER

Abstract. We present an interior point method for semidefinite programming where the semidefinite constraints on a matrix X are formulated as nonnegative constraints on $d_{[1]}(X), \ldots, d_{[m]}(X)$ obtained from the LDL^T factorization $X = LDL^T d_{[1]}(X), \ldots, d_{[m]}(X))L^T$. The approach was first proposed by Fletcher [15] who also provided analytic expressions for the derivatives of the factors in terms of X and the approach was subsequently utilized in an interior point algorithm by Benson and Vanderbei [6]. However, the evaluation of first and second derivatives of $d_{[i]}(X)$ has been a bottleneck in such an algorithm. In this paper, we: (i) derive formulae for the first and second derivatives of $d_{[i]}(X)$ that are efficient and numerically stable to compute, (ii) show that the LDL^T search direction can be viewed in the standard framework of interior point methods for semidefinite programs with comparable computational cost per iteration, (iii) characterize the central path, and (iv) analyze the numerical conditioning of the linear system arising in the algorithm. We provide detailed numerical results on 79 SDP instances from the SDPLIB test set.

Key words. Semidefinite Programming, LDL^T Factorization, Interior Point Method, Central path, Conditioning of Schur complement.

AMS subject classifications. 65K05, 90C22, 90C51

1. **Introduction.** In this paper we are interested in the solution of semidefinite programs (SDPs) of the form

$$\min_{X \in \mathbb{S}^n} C \cdot X$$

s.t. $A(X) = b$

$$X \succeq 0$$

where \mathbb{S}^n denotes the set of $n \times n$ symmetric matrices, $C \in \mathbb{R}^n$, $A : \mathbb{S}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$ are input data, $A \cdot B = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{[i]}B_{[j]}$ is the trace inner product for symmetric matrices with $A_{[i]}$ denoting the (i,j)th entry of matrix A and \succeq denotes the positive semidefinite constraint on X. The linear map A performs the following linear transformation, $X \mapsto (A_1 \cdot X, \ldots, A_m \cdot X)$ where $A_k \in \mathbb{S}^n$ is the kth constraint matrix.

The seminal work of Alizadeh [1] and Nesterov and Nemirovskii [35] laid the foundation for the development of theory and algorithms for SDPs. Interior point algorithms for SDPs generate search directions at each iteration by solving the linearization of the following system [48]:

$$C + A^*(\lambda) - S = 0$$

$$A(X) = b$$

$$H_P(XS) = \mu I_n$$

where, $A^* : \mathbb{R}^m \to \mathbb{S}^n$ is the adjoint of the linear map A defined as $A^*(\lambda) = \sum_{k=1}^{m} \lambda_{[k]} A_k$, $\lambda_{[k]}$ denotes the kth element of vector λ, $S \succeq 0 \in \mathbb{S}^n$ is the multiplier matrix for the positive semidefinite constraint, $I_n \in \mathbb{R}^{n \times n}$ the identity matrix,
\(H_P \) is the symmetrization operation defined as

\[
H_P(Y) := \frac{1}{2} \left(PYP^{-1} + (PYP^{-1})^T \right)
\]

for \(P \in \mathbb{R}^{n \times n} \) an invertible matrix and \(\mu > 0 \) the barrier parameter. The interior point algorithms eventually drive \(\mu \) to 0, thus recovering an optimal solution to (1). The interior point algorithms for SDPs give rise to different search directions based on the symmetrization operator (choice of \(P \)) employed for the complementarity constraints. The three important directions and their respective choices for \(P \) are: the AHO direction [2] with \(P = I_n \), the HKM direction [23, 25, 30] with \(P = X^{-\frac{1}{2}} \) (or \(S^\frac{1}{2} \)) and NT direction [36] with \(P = \left(X^\frac{1}{2} (X^\frac{1}{2} S X^\frac{1}{2})^{-\frac{1}{2}} X^\frac{1}{2} \right)^{-\frac{1}{2}} \). We refer the interested reader to the survey article on search directions in SDP by Todd [42]. A comprehensive collection of theory, algorithms and applications can also be found in Monteiro [31], Wolkowicz et al. [46] and in Anjos and Lasserre [4].

An alternate formulation to (1), first proposed by Fletcher [15], is

\[
\min_{X \in \mathbb{S}^n} \quad \langle C, X \rangle \\
\text{s.t.} \quad A(X) = b \\
d_{iq}(X) \geq 0 \quad \forall \ i = 1, \ldots, n
\]

where \(d_{iq}(X) \) is the \(i \)th diagonal entry of the diagonal matrix \(D \) in the \(LDL^T \) factorization [19] of \(X \) and \(L \in \mathbb{R}^{n \times n} \) is unit lower triangular. The \(LDL^T \) factorization is uniquely defined only for \(X > 0 \in \mathbb{S}^n \), i.e. \(X \) is positive definite. Fletcher [15] assumed that the rank of the solution was known and the data matrices had been permuted so that the solution matrix can be parameterized as

\[
X = \begin{bmatrix}
L_{11}(X) & 0_{px(n-p)} \\
L_{21}(X) & I_{n-p}
\end{bmatrix}
\begin{bmatrix}
D_1(X) & 0_{px(n-p)} \\
0_{(n-p)xp} & D_2(X)
\end{bmatrix}
\begin{bmatrix}
L_{11}(X)^T \\
L_{21}(X)^T
\end{bmatrix}
\]

where \(p \) is the rank of \(X \) at the solution, \(L_{11}(X) \) is unit lower triangular and \(D_1(X) \) is diagonal with positive entries. Substituting this parameterization in (4) and replacing the inequalities with \(D_2(X) = 0 \) yields the formulation in [15]. Analytical expressions were derived for the first and second derivatives of \(D_2(X) \). Fletcher [15] proposed an active-set based sequential quadratic programming (SQP) algorithm with exact derivatives to solve (4). Globalization of the algorithm was achieved using the exact \(\ell_1 \) penalty function and limited computational results were reported. Benson and Vanderbei [6] considered the solution of (4) using an interior point algorithm for nonlinear programs. The authors used the expressions derived in [15] to provide exact first and second derivative information to the interior point algorithm. Limited numerical results were provided on small instances. The cost of evaluating the first and second derivatives of \(d_{iq}(X) \) as provided in [15] are prohibitive and this also affected the solution times of the search direction computation. However, no analysis of the approach or its relation to standard interior point methods for SDPs was presented.

A related approach proposed by Burer, Monteiro and Zhang [10] replaced the matrix \(X \) by nonnegativity constraints on the diagonal of the lower triangular matrix \(L \) in the Cholesky factorization \(X = LL^T \) [19]. They also derived gradient formulas for the objective of the resulting nonlinear program. Encouraging numerical results were presented for a first-order interior point method using this transformation in [9]. Burer [8], Srijungtongsiri and Vavasis [40], and Dahl et al. [12] presented efficient
procedures for computing the first and second derivatives of the barrier function based on the $LDLT$ factorization and the sparsity in the problem data. However, these approaches do not employ the formulation in (4).

1.1. Focus of the paper and our contributions. In this paper we study the solution of SDP (1) through the $LDLT$ formulation in (4). As mentioned earlier, Fletcher [15] derived derivative expressions for $d_{i|i}(X)$ but these require the inverse of principal submatrices of X and several matrix-vector products. This can be computationally expensive and result in round-off error. To address this, we provide an elegant derivation of the first and second derivatives of $d_{i|i}(X)$, the ith element of $d(X)$, that is efficient and numerically stable to evaluate in §3. This derivation allows us to view the first-order stationary conditions of $LDLT$ formulation as a new search direction for SDP. Using the first derivative expressions, we show that the interior point method for $LDLT$ formulation (4) satisfies the following equations

\[C + A^*(\lambda) - L(X)^{-T} \Diag(z)L(X)^{-1} = 0 \]
\[A(X) = b \]
\[d_{i|i}(X) z_{i|i} = \mu \forall i = 1, \ldots, n \]

where $z \geq 0 \in \mathbb{R}^n$ are the multipliers, $z_{i|i}$ denotes the ith element of vector z, and $L(X)$ is the unit lower triangular matrix in the $LDLT$ factorization of X. Using the derived expressions for the second derivative of $d_{i|i}(X)$, we show in §4 that the Newton step for (5) can be computed in a manner identical to standard SDP interior point algorithms. In particular, we show that the computational cost per iteration is the same as the NT direction [36]. We also show that the Newton step for (5) is well defined for all points in the interior of the feasible region, i.e. $d_{i|i}(X), z_{i|i} > 0$. Further, even though (5) involves the inverse of $L(X)$ we never require this as part of the step computation.

From (2) and (5), we have that the multiplier matrix S can be identified with $L(X)^{-T} \Diag(z)L(X)^{-1}$. In fact this representation of S can be viewed as an UDU^T factorization of S where $U(S) = L(X)^{-T}$ is unit upper triangular. With this choice it is also readily verified that if $D(X) \Diag(z) = \alpha I_n$ for $\alpha \in \mathbb{R}$ then matrices X and S commute, i.e. $XS = SX$. It is well known that matrices $X, S \in S^n$ commute if and only if X and S have the same set of eigenvectors. The identification of multiplier matrix as $S = L(X)^{-T} \Diag(z)L(X)^{-1}$ restates that commutative property in terms of the $LDLT$, UDU^T factorizations of X and S, respectively. We prove this in §2. We provide precise correspondence between the solutions of standard formulation and $LDLT$ formulation in §5. We establish a homeomorphism between the central paths of the $LDLT$ direction and the central path defined for $XS = \mu I_n$ in §5.

We provide a characterization of the ill-conditioning of the Schur complement matrix in the $LDLT$ direction. In particular, we show that the linear equations defining the Newton step for the $LDLT$ formulation are equivalent to a lifted linear system for all points in the interior of the feasible region. Under primal and dual nondegeneracy assumptions, we also establish the non-singularity of the lifted linear system at the solution to SDP. The nondegeneracy conditions were first stated by Alizadeh, Haeberly and Overton [3] using the spectral decomposition of matrices. We derive the primal and dual nondegeneracy conditions for SDPs based on the $LDLT$ factorization. Under the nondegeneracy assumptions, we show that the conditioning of Schur complement matrix is similar to that for the AHO direction [2].

We present an interior point algorithm using the $LDLT$ direction and provide detailed numerical results on the performance of the approach on the SDPLIB [7] test
set. A comparison of the performance of the LDL^T direction against the standard SDP directions and SDP solvers is also presented.

1.2. Organization of the paper. The rest of the paper is organized as follows. We begin by providing a brief description of the LDL^T factorization in §2. §3 presents computational formulae for the first and second derivatives of $d_{[i]}(X)$ and establishes that the formulation (4) is a convex program. §4 presents the interior point algorithm corresponding to (4) and the step computation. §5 presents the correspondence between solutions to the LDL^T formulation and the standard SDP formulation. Uniqueness and existence of the central path are also established. §6 characterizes the conditioning of the Schur complement matrix. Numerical implementation and results are described in §7 followed by conclusions in §8.

1.3. Notation. We denote by $\mathbb{R}, \mathbb{R}_+, \mathbb{R}_{++}$ the set of real, nonnegative real, positive real numbers, respectively, and by \mathbb{R}^n the set of $n \times 1$ vectors endowed with standard inner product and Euclidean norm $\langle \cdot, \cdot \rangle$. The set of $n \times n$ symmetric matrices is denoted by \mathbb{S}^n, and $(\mathbb{S}^*_n)^{\mathbb{S}^*_+}$ denotes the set of symmetric positive (semi-) definite matrices. For a matrix $A \in \mathbb{S}^n$, $A \succeq 0$ and $A \succ 0$ respectively denote the positive semi-definiteness and positive definiteness of A. For a vector a, $a_{[i]}$ denotes the ith component of a and for a matrix A, $A_{[ij]}$ denotes the (i,j)th entry of A. The ith row and column of matrix A are denoted by $A_{[i]}$ and $A_{[i]}^T$, respectively. The space \mathbb{S}^n is endowed with the trace inner product $A \cdot B = \sum_{i=1}^n \sum_{j=1}^n A_{[ij]} B_{[ij]}$ for $A, B \in \mathbb{S}^n$ and $|A|_F = \sqrt{A \cdot A}$ denotes the Frobenius norm. For a matrix $A \in \mathbb{R}^{n \times n}$, $|A|$ denotes the Euclidean norm. For a matrix $A \in \mathbb{S}^*_n$, the LDL^T factorization of the matrix will be denoted by $A = L(A)D(A)L(A)^T$ where $L(A)$ is unit lower triangular and $D(A) \succ 0$ is diagonal. We will also refer to $L(A), D(A)$ as the LDL^T factors of A. The argument A in $L(A), D(A)$ is suppressed when the dependence is clear from the context. The Kronecker product between matrices $A, B \in \mathbb{S}^n$ is denoted as $A \otimes B$. Given $A \in \mathbb{R}^{n \times n}$, vec($A$) $\in \mathbb{R}^{n^2 \times 1}$ is a vector resulting from column-wise stacking of A and mat(·) denotes the reverse operation that takes a vector of $\mathbb{R}^{n^2 \times 1}$ to $\mathbb{R}^{n \times n}$. Note that mat(vec(A)) = A. For a vector $a \in \mathbb{R}^n$, Diag(a) $\in \mathbb{R}^{n \times n}$ is a diagonal matrix with (Diag(a))$_{[ij]} = a_{[i]}$. For a matrix $A \in \mathbb{R}^{n \times n}$, diag($A$) $\in \mathbb{R}^n$ is a vector with (diag(A))$_{[i]} = A_{[ii]}$. For two vectors $a, b \in \mathbb{R}^n$, $a \circ b$ denotes the element-wise multiplication and $a \circ^{-1} b$ with $b_{[i]} \neq 0$ denotes element-wise division. For two matrices $A, B \in \mathbb{S}^n$, $A \circ B$ denotes the element-wise multiplication and $A \circ^{-1} B$ with $B_{[ij]} \neq 0$ denotes element-wise division. The vector $e_i \in \mathbb{R}^n$ denotes the ith unit vector and $I_n \in \mathbb{R}^{n \times n}$ denotes the identity matrix.

2. LDL^T Factorization. In this section, we review the LDL^T factorization for positive definite matrices and also show that such a factorization exists even when the matrix is only positive semidefinite. We begin with the following result on existence of the LDL^T factorization for positive definite matrices from Golub and Van Loan [19].

Lemma 2.1. Given $X \in \mathbb{S}^*_n$, the matrix can be factorized uniquely as $X = LDL^T$ where L is unit lower triangular and D is diagonal, positive definite matrix.

We introduce a partitioning of the matrices X and the factors L, D,

$$
X = \begin{bmatrix}
X_{i-1} & x_i \\
x_i^T & X_{[ii]} \\
* & * & *
\end{bmatrix}, \\
L = \begin{bmatrix}
L_{i-1} & 0_{i-1 \times 1} & *
\\
l_{i}^T & 1 & *
\\
* & * & *
\end{bmatrix}, \\
D = \begin{bmatrix}
D_{i-1} & 0_{(i-1) \times 1} & *
\\
0_{1 \times (i-1)} & d_{[i]} & *
\\
* & * & *
\end{bmatrix}
$$
where $X_i, L_i, D_i \in \mathbb{R}^{i \times i}$ are the ith principal minor of X, L, D, respectively and $x_i, l_i \in \mathbb{R}^{i-1}$. The LDL^T procedure from [19] is presented in Algorithm 1. Since L is

Algorithm 1 LDL^T Factorization

input $X \in \mathbb{S}^n_{++}$
Set $L_{[1]} = 1, d_{[1]} = X_{[1]}$
for $i = 2, \ldots, n$ do
 Set $D_{i-1} = \text{Diag}(d_{[1]}, \ldots, d_{[i-1]})$
 Compute $l_i = D_{i-1}^{-1} L_{i-1}^{-1} x_i, d_{[i]} = X_{[i]} - l_i^T D_{i-1} l_i$
end for
return Factors L - unit lower triangular, d - diagonal of D

unit lower triangular, it follows that L_i is also unit lower triangular. Hence,

$$X_i = L_i D_i L_i^T.$$ \hfill (7)

The relation in (7) implies that L_i, D_i are the LDL^T factors of X_i. Using the notation in (6) it can be easily verified that

$$L_i^{-1} = \begin{bmatrix} L_{i-1}^{-1} & 0_{(i-1) \times 1} \\ l_i^{-1} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} L_{i-1}^{-1} & 0_{(i-1) \times 1} \\ -l_i^{-T} l_i^{-1} & 1 \end{bmatrix} \forall i = 1, \ldots, n.$$ \hfill (8)

Substituting $i = n$ in (8) yields L^{-1}. Further, we denote by $X_i^{-1}, D_i^{-1} \in \mathbb{R}^{n \times n}$ the lifting of the $i \times i$-matrices $X_i^{-1}, D_i^{-1} \in \mathbb{R}^{i \times i}$ to $n \times n$-matrices. The lifted matrices X_i^{-1}, D_i^{-1} for $i = 1, \ldots, n$ are given by

$$X_i^{-1} = \begin{bmatrix} X_i^{-1} & 0_{i \times (n-i)} \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{bmatrix}, \quad D_i^{-1} = \begin{bmatrix} D_i^{-1} & 0_{i \times (n-i)} \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{bmatrix}$$ \hfill (9)

The inverse of X_i can be expressed using (7) as

$$X_i^{-1} = (L_i D_i L_i^T)^{-1} = L_i^{-T} D_i^{-1} L_i^{-1} \Rightarrow \hat{X}_i^{-1} = L_i^{-1} D_i^{-1} L_i^{-1}$$ \hfill (10)

where the implication follows from (6), (8) and (9).

In the case of positive semidefinite matrices, we can still define a LDL^T factorization. However, the unit lower triangular matrix is not unique. The lemma below characterizes the existence of such a decomposition. We do not provide a complete algorithm but only existence of such a decomposition. The following is a modification of Theorem 10.9 in Higham [24]. The uniqueness claims in Lemma 2.2(a) are our contribution. We also note that Benson and Vanderbei [6, Theorem 1(b)] only claimed that D is unique but did not provide a proof.

Lemma 2.2. Suppose $X \in \mathbb{S}^n_{++}$ with $\text{rank}(X) = p$.

(a) There exists a unit lower triangular matrix L and diagonal matrix with nonnegative entries D such that $X = LDL^T$. Further, D is unique and $L_{[i]}$ is unique for $D_{[i]} > 0$.

(b) There exists a permutation matrix Π such that

$$\Pi^T X \Pi = LDL^T$$ \hfill (11)

with $L = \begin{bmatrix} L_{11} & 0_{p \times (n-p)} \\ L_{21} & L_{22} \end{bmatrix}$, $D = \begin{bmatrix} D_1 & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & 0_{(n-p) \times (n-p)} \end{bmatrix}$.
where $L_{11} \in \mathbb{R}^{p \times p}$, $L_{22} \in \mathbb{R}^{(n-p) \times (n-p)}$ are unit lower triangular, $L_{21} \in \mathbb{R}^{(n-p) \times p}$ and $D_1 > 0 \in \mathbb{R}^{p \times p}$ is diagonal. Further, L_{11}, L_{21}, D_1 are unique for the specified permutation matrix Π.

Proof. Refer to Appendix A. \hfill \Box

Remark 2.1. The factorizations in the section have all been stated in terms of unit lower triangular matrices. However, these can be stated equivalently in terms of unit upper triangular matrices. In other words, Lemmas 2.1 and 2.2 can be restated as showing existence of unit upper triangular matrix U and diagonal matrix D such that $X = U D U^T$. For the case of positive definite matrices, the loop in Algorithm 1 will be executed in reverse starting from element $X_{[n]}$.

We establish certain properties of the matrices X, S that satisfy $XS = \mu I_n$. The lemma below relates the LDL^T factorization of X to the $U D U^T$ factorization of S.

Lemma 2.3. Suppose $\mu > 0$, $X, S \in \mathbb{S}^{n}_{++}$ and $X = L(X)D(X)L(X)^T$. Then $XS = \mu I_n$ if and only if $S = U(S)D(S)U(S)^T$ where $U(S) = L(X)^{-T}$ and $D(X)D(S) = \mu I_n$. Further, $U(S)$ is unique.

Proof. Refer to Appendix B. \hfill \Box

Lemma 2.3 reveals a nice dual relationship in the LDL^T factorization of X and the $U D U^T$ factorization of S for all $XS = \mu I_n$ with $\mu > 0$. While the unit lower triangular factor is unique for $\mu > 0$, it is not necessarily so in the case of $\mu = 0$. However, we show next that we can still define a factorization.

Lemma 2.4. Suppose $X, S \in \mathbb{S}^{n}_{++}$. Then, $XS = 0$ if and only if there exist unit lower triangular matrix $L(X)$ such that $X = L(X)D(X)L(X)^T$ and $S = U(S)D(S)U(S)^T$ with $U(S) = L(X)^{-T}$ and $D(X)D(S) = 0$.

Proof. Refer to Appendix C. \hfill \Box

3. First and Second Derivatives of $d_{[i]}(X)$. In section 3.1, we present an elegant derivation of the first and second derivatives of $d_{[i]}(X)$. The derivative expressions provided here are equivalent to those in Fletcher [15] and Benson and Vanderbei [6]. We also show that the functions $d_{[i]}(X)$ are concave on \mathbb{S}^{n}_{++} and hence, prove that the LDL^T formulation (4) is convex in Theorem 3.3. Benson and Vanderbei [6, Theorem 3] showed that the Hessian of $d_{[i]}(X)$ is negative semidefinite for $X \in \mathbb{S}_+^{n}$. Finally, we also derive an expression for the action of the Hessian of the Lagrangian on a symmetric matrix. The expressions in [6] required the computation of several inner products involving inverses of principal minors and their summation to compute even an element of the Hessian of the Lagrangian. This is susceptible to numerical errors especially when approximating the solution to the SDP. In this sense, our derivative expressions are computationally stable. In fact, as we show in the next section, inversion of the principal minors is not necessary for computing the Newton step.

3.1. Expressions for $\nabla_X d_{[i]}(X)$, $\nabla^2_X d_{[i]}(X)$. We start here by recalling the definition of matrix derivatives [37]. Given a function $g(X) : \mathbb{S}^n \rightarrow \mathbb{R}$, the first derivative of g at X is denoted by the linear map $\nabla_X g(X) : \mathbb{S}^n \rightarrow \mathbb{S}^n$ satisfying

$$\lim_{\|\Delta X\| \rightarrow 0} \frac{|g(X + \Delta X) - g(X) - \nabla_X g(X) \cdot \Delta X|}{\|\Delta X\|} = 0.$$

(12a)
The second derivative of \(g \) at \(X \) is denoted by the linear map \(\nabla^2_X g(X) : S^n \to S^{n^2} \) satisfying
\[
\lim_{\|\Delta X\| \to 0} \frac{\|\nabla_X g(X + \Delta X) - \nabla_X g(X) - \text{mat} (\nabla^2_X g(X) \vec{\text{vec}}(\Delta X))\|}{\|\Delta X\|} = 0.
\] (12b)

Following the definitions in (12), the first and second derivatives of \(\ln(\det(X)) \) w.r.t. \(X \) (see for e.g. [37]) are
\[
\nabla_X \ln(\det(X)) = X^{-1}, \quad \nabla^2_X \ln(\det(X)) = -X^{-1} \otimes X^{-1}.
\]

Hence, by the definition of \(X_i \) (6), the derivatives of \(\ln(\det(X_i)) \) w.r.t. \(X_i \) are
\[
\nabla_{X_i} \ln(\det(X_i)) = X^{-1}_i, \quad \nabla^2_{X_i} \ln(\det(X_i)) = -X^{-1}_i \otimes X^{-1}_i.
\]

The derivatives of \(\ln(\det(X_i)) \) w.r.t. \(X \) can be expressed as
\[
\nabla_X \ln(\det(X_i)) = \hat{X}_i^{-1}, \quad \nabla^2_X \ln(\det(X_i)) = -\hat{X}_i^{-1} \otimes \hat{X}_i^{-1}.
\] (13)

To verify this, note that,
\[
\nabla_{X_i} \ln(\det(X_i)) \otimes \Delta X_i = \nabla_X \ln(\det(X_i)) \otimes \Delta X
\]
\[
(\nabla^2_{X_i} \ln(\det(X_i)) \Delta X_i) \otimes \Delta X_i = (\nabla^2_X \ln(\det(X_i)) \Delta X) \otimes \Delta X
\]

where \(\Delta X_i \) is the \(i \)th principal minor of \(\Delta X \).

From the unit lower triangularity of \(L_i \) and diagonality of \(D_i \), we have that
\[
\det(X_i) = \det(L_i D_i L_i^T) = \det(L_i) \det(D_i) \det(L_i^T) = \prod_{j=1}^{i} d_{[j]}.
\]

This provides us with the key observation
\[
d_{[1]}(X) = \det(X_1), \quad d_{[i]}(X) = \frac{\det(X_i)}{\det(X_{i-1})} \forall \ i = 2, \ldots, n
\] (14)

that simplifies the derivation of the expressions for the gradient and Hessian of \(d_{[i]}(X) \).

We are ready to present the derivation of the gradient and Hessian of \(d_{[i]}(X) \).

Lemma 3.1. Let \(X \in S^{n^2}_{++} \) and \(X = L(X) D(X) L(X)^T \). Then,
\[
\nabla d_{[1]}(X) = d_{[1]}(X) X^{-1}_1 = L^{-T} (e_1 e_1^T) L^{-1} = e_1 e_1^T
\]
\[
\nabla d_{[i]}(X) = d_{[i]}(X) \left(\hat{X}^{-1}_i - \hat{X}^{-1}_{i-1} \right) = L^{-T} (e_i e_i^T) L^{-1} \forall \ i = 2, \ldots, n
\] (15)

where \(e_i \in \mathbb{R}^n \) is the unit vector with 1 at the \(i \)th component and zero otherwise.

Proof. Since \(d_{[1]}(X) = X_{[1]} \) (refer Algorithm 1),
\[
\nabla_X d_{[1]}(X) = 1 = d_{[1]}(X) X^{-1}_1
\]
\[
\implies \nabla d_{[1]}(X) = d_{[1]}(X) X^{-1}_1 = L^{-T} e_1 e_1^T L^{-1} = e_1 e_1^T
\]
where the implication follows from (9) and (10). Consider \(i \geq 2 \). Taking logarithms on both sides of (14), \(\ln(d_{[i]}(X)) = \ln(\text{det}(X_i)) - \ln(\text{det}(X_{i-1})) \), and then differentiating once obtain

\[
\nabla \ln d_{[i]}(X) = \nabla \ln(\text{det}(X_i)) - \nabla \ln(\text{det}(X_{i-1}))
\]

\[
\Rightarrow \quad \frac{1}{d_{[i]}(X)} \nabla d_{[i]}(X) = X_i^{-1} - X_{i-1}^{-1}
\]

\[
\Rightarrow \quad \nabla d_{[i]}(X) = d_{[i]}(X) \left(X_i^{-1} - X_{i-1}^{-1} \right).
\]

where the second equality follows from (13). Substituting (10) into the above yields

\[
\nabla d_{[i]}(X) = d_{[i]}(X)L^{-T} \left(D_i^{-1} - D_{i-1}^{-1} \right) L^{-1} = L^{-T}(e_i e_i^T)L^{-1}
\]

completing the proof. \(\square \)

We now present the derivation of the second derivatives of \(d_{[i]}(X) \).

Lemma 3.2. Let \(X \in S_{++}^n \) and \(X = L(X)D(X)L(X)^T \). Then,

\[
\nabla^2 d_{[i]}(X) = 0
\]

\[
\nabla^2 d_{[i]}(X) = -d_{[i]}(X) \left(X_i^{-1} \otimes X_i^{-1} \right) - d_{[i]}(X) \left(X_{i-1}^{-1} \otimes X_{i-1}^{-1} \right) + 2d_{[i]}(X) \left(X_{i-1}^{-1} \otimes X_{i-1}^{-1} \right) \forall i = 2, \ldots, n.
\]

(Proof. From Lemma 3.1, we have that \(\nabla d_{[i]}(X) \) is constant and hence, \(\nabla^2 d_{[i]}(X) = 0 \). For the case of \(i \geq 2 \), consider taking two derivatives of (14)

\[
\nabla^2 \ln(d_{[i]}(X)) = \nabla^2 \ln(\text{det}(X_i)) - \nabla^2 \ln(\text{det}(X_{i-1}))
\]

\[
\Rightarrow \nabla \left(\frac{1}{d_{[i]}(X)} \nabla d_{[i]}(X) \right) = -\left(X_i^{-1} \otimes X_i^{-1} \right) + \left(X_{i-1}^{-1} \otimes X_{i-1}^{-1} \right)
\]

\[
\Rightarrow \frac{1}{d_{[i]}(X)} \nabla^2 d_{[i]}(X) - \frac{1}{d_{[i]}(X)^2} \left(\nabla d_{[i]}(X) \otimes \nabla d_{[i]}(X) \right)
\]

\[
= -\left(X_i^{-1} \otimes X_i^{-1} \right) + \left(X_{i-1}^{-1} \otimes X_{i-1}^{-1} \right)
\]

\[
\Rightarrow \frac{1}{d_{[i]}(X)} \nabla^2 d_{[i]}(X) = -\left(X_i^{-1} - X_{i-1}^{-1} \right) \otimes \left(X_i^{-1} - X_{i-1}^{-1} \right)
\]

where the second equality follows from the substitution of (13). The last equality follows from substitution of expression for the first derivative from (15). Distributing terms in the kronecker product on the left hand side of the fourth equality and rearranging yields the claim in (16). \(\square \)

Theorem 3.3. The optimization problem in (4) is convex.

Proof. The convexity of linear constraint in (4) is obvious. We focus on the feasible set defined by the inequality constraints, \(S = \{ X \mid d_{[i]}(X) \geq 0 \} \) in the rest of the proof. We show that for any \(X, Y \in \text{int}(S) = S_{++}^n \), the following inequality holds

\[
d_{[i]}(Y) \leq d_{[i]}(X) + \nabla d_{[i]}(X) \cdot (Y - X)
\]

(17)
which proves concavity of $d_{ij}(X)$ for $X \in \text{int}(S)$. This proves the convexity of $\text{int}(S)$. The convexity of S follows since the set S is the closure of $\text{int}(S)$.

The remainder of the proof shows that (17) holds. Let $D(X), L(X)$ and $L(Y)$ be the unique LDL^T factorizations for X and Y, respectively, by Lemma 2.1. Substituting this into the right hand side of (17) obtain,

$$
d_{ij}(X) + \nabla d_{ij}(X) \cdot (Y - X) = d_{ij}(X) + (L(X)^{-T} e_i e_i^T L(X)^{-1}) \cdot (Y - X)
= d_{ij}(X) + (e_i e_i^T) \cdot (L(X)^{-1} Y L(X)^{-T} - D(X)) = (e_i e_i^T) \cdot (L(X)^{-1} Y L(X)^{-T})
= (e_i e_i^T) \cdot (L(X)^{-1} Y L(X)^{-T} D(Y) L(Y)^T L(X)^{-T}) = \sum_{j=1}^{n} d_{ij}(Y)(e_i e_i^T) \cdot (L_{i,j} L_{i,j}^T)
= \sum_{j=1}^{n} d_{ij}(Y) L_{i,j}^2 = \sum_{j=1, j \neq i}^{n} d_{ij}(Y) L_{i,j}^2 + d_{ii}(Y) \geq d_{ii}(Y)
$$

where the first equality follows from Lemma 3.1, the second equality from the invariance of trace inner product under cyclic permutations, the third equality from $e_i^T D(X) e_i = d_{ii}(X)$, the fourth equality from the substitution of LDL^T factorization of Y, the fifth equality from diagonality of $D(Y)$, the sixth equality from the simplification of trace inner product and the final equality follows by noting that $L = L(X)^{-1} Y L(X)^{-1}$ is also unit lower triangular and $d_{ij}(Y) > 0$ for all $j = 1, \ldots, n$. Thus, (17) holds for $X, Y \in \text{int}(S)$ and the claim follows. □

To close this section, we also derive an expression for the action of the Hessian of the Lagrangian on a matrix. This will be used in the derivation of the Newton step for the LDL^T formulation in §4.1.

Lemma 3.4. For $X \in S^n_{+, +}$, let $X = LDL^T$ denote the LDL^T factorization of X. Then, for any $z \in \mathbb{R}^n$ and any symmetric matrix $G \in S^n$

$$
\text{mat}\left(-\sum_{i=1}^{n} z[i] \nabla^2 d_{ij}(X) \text{vec}(G) \right) = L^{-T} \left((K - \text{Diag}(z^{-1} d_i)) \circ (L^{-1} G L^{-T}) \right) L^{-1}
$$

where $K_{[ij]} = \frac{z_{[\max(i,j)]}}{d_{[\min(i,j)]}}$.

Proof. The matrix \hat{X}^{-1} can be expressed using (15) as

$$
\hat{X}^{-1} = \hat{X}^{-1}_{i-1} + (1/d_{ij}) L^{-T} e_i e_i^T L^{-1}.
$$

The Hessian expression in (16) for $i \geq 2$ can then be simplified as

$$
\nabla^2 d_{ij}(X) = -L^{-T} e_i e_i^T L^{-1} \otimes \hat{X}^{-1}_{i-1} - \hat{X}^{-1}_{i-1} \otimes L^{-T} e_i e_i^T L^{-1}.
$$

Substituting this expression for the Hessian of $d_{ij}(X)$ into the Hessian of the Lagrangian and using the identity $\text{mat}((A \otimes B) \text{vec}(G)) = BGA$ for $A, B \in S^n$ we have
that
\[
\text{mat} \left(-\sum_{i=1}^{n} z_{[i]} \nabla^2 d_{[i]}(X) \text{vec}(G) \right) = \sum_{i=2}^{n} z_{[i]} \left(L^{-T} e_i e_i^T L^{-1} G X_{i-1}^{-1} + X_{i-1}^{-1} L^{-1} G L^{-T} e_i e_i^T L^{-1} \right)
\]
\[
= \sum_{i=2}^{n} z_{[i]} L^{-T} \left(e_i e_i^T \left(L^{-1} G L^{-T} \right) D_{i-1}^{-1} + D_{i-1}^{-1} \left(L^{-1} G L^{-T} \right) e_i e_i^T \right) L^{-1}
\]
\[
= L^{-T} \left(\sum_{i=2}^{n} z_{[i]} \left(e_i e_i^T \tilde{G} D_{i-1}^{-1} + \tilde{D}_{i-1}^{-1} \tilde{G} e_i e_i^T \right) \right) L^{-1}
\]
\[
= L^{-T} \left(\sum_{i=2}^{n} z_{[i]} (\tilde{G}_i + \tilde{G}^T) \right) L^{-1}
\]
(19)

where we have used \(\nabla^2 d_{[1]}(X) = 0 \) in the first equality. The second equality follows by the substitution of \(X_{i-1}^{-1} \) from (10), and the third equality from collecting terms and rearranging. The matrix \(\tilde{G}_i \) satisfies
\[
\tilde{G}_i = e_i e_i^T \tilde{G} D_{i-1}^{-1} = e_i e_i^T \tilde{G} \left(\sum_{i=1}^{i-1} \frac{1}{d_{[i]}} e_i e_i^T \right) = e_i \left(\sum_{i=1}^{i-1} \tilde{G}_{[i]} e_i e_i^T \right)
\]
\[
\Rightarrow \tilde{G}_{[i][j]} = \begin{cases}
\tilde{G}_{[i]} & \text{if } k = i, l \leq i - 1 \\
0 & \text{otherwise.}
\end{cases}
\]

In other words, \(\tilde{G}_i \) is a matrix in which only the first \(i - 1 \) elements of the \(i \)th row are possibly non-zero. Thus,
\[
\sum_{i=2}^{n} z_{[i]} (\tilde{G} + \tilde{G}^T) = \left[\begin{array}{cccc}
0 & \frac{z_{[2]}}{d_{[1]}} & \cdots & \frac{z_{[n-1]}}{d_{[n-2]}} & \frac{z_{[n]}}{d_{[n-1]}} \\
\frac{z_{[2]}}{d_{[1]}} & 0 & \cdots & \frac{z_{[n-1]}}{d_{[n-2]}} & \frac{z_{[n]}}{d_{[n-1]}} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\frac{z_{[n-1]}}{d_{[n-2]}} & \frac{z_{[n-1]}}{d_{[n-2]}} & \cdots & 0 & \frac{z_{[n]}}{d_{[n-1]}} \\
\frac{z_{[n]}}{d_{[n-1]}} & \frac{z_{[n]}}{d_{[n-1]}} & \cdots & \frac{z_{[n]}}{d_{[n-1]}} & 0 \\
\end{array} \right] \circ \tilde{G}
\]
\[
= (K - \text{Diag}(z \circ d)) \circ \tilde{G}.
\]

Substituting the above in (19) yields the claim. \(\square \)

4. Interior Point Method. The classical barrier formulation for SDP in (4) is

\[
\min \ C \cdot X - \mu \sum_{i=1}^{n} \ln(d_{[i]}(X))
\]
\[
\text{s.t. } A(X) = b
\]
(20)
where $\mu > 0$ is the barrier parameter. Since the determinant of X is $\det(X) = \prod_{i=1}^{n} d_{[i]}(X)$, the barrier term in (20) is the standard self-concordant barrier function for positive semidefinite matrices [35]. Introducing dual variables $z_{[i]}$ for $\mu/d_{[i]}(X)$, the primal-dual first-order stationary conditions for (20) can be written as

$$
(21a) \quad C + A^*(\lambda) - \sum_{i=1}^{n} z_{[i]} \nabla d_{[i]}(X) = 0
$$

$$
(21b) \quad A(X) = b
$$

$$
(21c) \quad d_{[i]}(X)z_{[i]} = \mu \forall i = 1, \ldots, n.
$$

Substituting the expression for $\nabla d_{[i]}(X)$ in (21) yields precisely the form in (5) as alluded to in §1.

Interior point algorithms for SDPs compute a search direction by solving the linearization of the first order stationary conditions such as in (2). The choice of P (the third equation in (2)) leads to different directions. Further, the choice also dictates if the resulting direction satisfies properties such as primal-dual symmetry, scale invariance and uniqueness of the search direction; refer to [43] for a discussion.

For the $LDLT^T$ direction, there is no such ambiguity in the choice of the step direction; refer to the complementarity constraints in (21c). Given an iterate (X, λ, z) with $X > 0, z > 0$ (possibly infeasible for (21a), (21b)), the interior point algorithm for the $LDLT^T$ formulation computes the search direction by solving a linearization of the equations in (21). The linear system for computing the step $(\Delta X, \Delta \lambda, \Delta z)$ is

$$
(22a) \quad \begin{align*}
\text{mat} \left(- \sum_{i=1}^{n} z_{[i]} \nabla^2 d_{[i]}(X) \text{vec}(\Delta X) + A^*(\Delta \lambda) - \sum_{i=1}^{n} \Delta z_{[i]} \nabla d_{[i]}(X) \right) \\
A(\Delta X) \\
z_{[i]}(\nabla d_{[i]}(X) \cdot \Delta X) + d_{[i]}(X)\Delta z_{[i]} \\
\forall i = 1, \ldots, n
\end{align*} = R_d
$$

with R_d, r_p, r_c defined as

$$
(22b) \quad R_d = - C - A^*(\lambda) + \sum_{i=1}^{n} z_{[i]} \nabla d_{[i]}(X), \quad r_p = b - A(X),
$$

$$
\text{and} \quad r_c = \mu 1_n - D(X)z
$$

where $1_n \in \mathbb{R}^n$ is a vector of all ones. Interior point algorithms employ block Gaussian elimination to: (i) eliminate the dual variables for the semidefinite constraint using the linearized complementarity constraint (the third equation in (22a)), (ii) eliminate the primal variables using the dual stationary conditions (first equation in (22a)), and finally, (iii) obtain a reduced system in the dual variables using the equality constraints in the SDP. We also employ the block Gaussian elimination strategy to form the Schur complement system and also describe an efficient method for computing the Schur complement.

The remainder of the section is organized as follows. §4.1 describes the block Gaussian elimination to compute the step. We also prove that the linear system leads to a unique search direction. A comparison of the $LDLT^T$ formulation with the existing SDP search directions is presented in §4.2.

4.1. Block Gaussian Elimination of the Linear System. Suppose that $d_{[i]}(X), z_{[i]} > 0$ for all i. As a first step, we eliminate $\Delta z_{[i]}$ using the last equation
in (22a) as

$$\Delta z[i] = \frac{r_{c[i]}}{d[i](X)} - \frac{z[i]}{d[i](X)}(\nabla d[i](X) \cdot \Delta X).$$

Substituting for $\Delta z[i]$ from (23) into the first equation in (22a) results in,

$$\text{mat} \left(-\sum_{i=1}^{n} z[i] \nabla^2 d[i](X) \text{vec} (\Delta X) \right)$$

$+ A^*(\Delta \lambda) + \sum_{i=1}^{n} z[i] d[i](X) \nabla d[i](X) \Delta X \nabla d[i](X)$

$$= R_d + \sum_{i=1}^{n} \frac{r_{c[i]}}{d[i](X)} \nabla d[i](X) = R_d + L^{-T} \text{Diag}(r_{c} \circ^{-1} d(X)) L^{-1}.$$

The simplification on the right hand side of (24) is due to (15). The left hand side of (24) can be simplified using (18) as

$$\text{mat} \left(-\sum_{i=1}^{n} z[i] \nabla^2 d[i](X) \text{vec} (\Delta X) \right) + \sum_{i=1}^{n} \frac{z[i]}{d[i](X)}(\nabla d[i](X) \Delta X \nabla d[i](X))$$

$$= L^{-T} \left((K - \text{Diag}(z \circ^{-1} d)) \circ (L^{-1} \Delta XL^{-T}) \right) L^{-1}$$

$$+ \sum_{i=1}^{n} \frac{z[i]}{d[i](X)}(e_i^T L^{-1} \Delta XL^{-T} e_i) L^{-T} e_i e_i^T L^{-1} = L^{-T} (K \circ (L^{-1} \Delta XL^{-T})) L^{-1}.$$

Substituting the simplification above into the left hand side of (24), multiplying on the left and right by L^T and L respectively we obtain

$$K \circ \Delta X + A^*(\Delta \lambda) = L^T R_d L + \text{Diag}(r_{c} \circ^{-1} d)$$

where $\Delta X, \tilde{A}, \tilde{A}^*$ are defined as,

$$\Delta X = L^{-1} \Delta XL^{-T}$$

$$\tilde{A}_j = L^T A_j L \forall j \in \{1, \ldots, m\}$$

$$\tilde{A}(\Delta X) = \left(\tilde{A}_1 \cdot \Delta X, \ldots, \tilde{A}_m \cdot \Delta X \right)$$

$$\tilde{A}^*(\Delta \lambda) = \sum_{j=1}^{m} \Delta \lambda_{[j]} \tilde{A}_j.$$

The reduced system obtained by eliminating Δz can be written using (26) and the scaled quantities in (27) as

$$K \circ \Delta X + \tilde{A}^*(\Delta \lambda) = L^T R_d L + \text{Diag}(r_{c} \circ^{-1} d)$$

$$\tilde{A}(\Delta X) = r_{p}$$

where we have used $\tilde{A}(\Delta X) = A(\Delta X)$, which holds since $\tilde{A}_j \cdot \Delta X = (L^T A_j L) \cdot \Delta X = (L^{-1} \Delta XL^{-T}) (A_j LL^{-1}) \cdot \Delta XL^{-T} L^T = A_j \cdot \Delta X$. The linear system in (28) can
be cast in a matrix form as

\[
\begin{bmatrix}
\text{Diag}(\text{vec}(K)) & \tilde{\mathbf{A}}^T \\
\tilde{\mathbf{A}} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \chi \\
\Delta \lambda
\end{bmatrix}
= \begin{bmatrix}
\tilde{r}_d \\
\Gamma_p
\end{bmatrix}
\]

where \(\tilde{r}_d = \text{vec} \left(L^T R_d L + \text{Diag} \left(r_c, \sigma^{-1} d \right) \right) \), \(\tilde{\mathbf{A}} \in \mathbb{R}^{n^2 \times m} \) with \(\tilde{A}_{ij} = \text{vec}(A_j)^T \), and \(\Delta \chi = \text{vec}(\Delta X) \). For all \(X > 0, \chi > 0 \) the matrix \(\text{Diag}(\text{vec}(K)) \) is positive definite and invertible. The Schur complement matrix \(M \) is defined as

\[
M = \tilde{\mathbf{A}} \text{Diag}(\text{vec}(K))^{-1} \tilde{\mathbf{A}}^T.
\]

If \(\tilde{\mathbf{A}}^T \) has full column rank of \(m \), then the Schur complement matrix \(M \) is nonsingular.

The search direction \((\Delta \lambda, \Delta \chi) \) can be computed as

\[
\Delta \lambda = M^{-1} \left(\tilde{\mathbf{A}} \text{Diag}(\text{vec}(K))^{-1} \tilde{r}_d - r_p \right)
\]

\[
\Delta \chi = \text{Diag}(\text{vec}(K))^{-1} \left(\tilde{r}_d - \tilde{\mathbf{A}}^T \Delta \lambda \right).
\]

The step \(\Delta X \) is obtained as \(L \text{mat}(\Delta \chi) L^T \) and \(\Delta \chi \) from substituting in (23). Algorithm 2 summarizes the step computation in the \(LDL^T \) formulation. Observe that in the algorithm only the evaluation of \(R_d \) requires the computation of \(L^{-1} \). However, the step computation only uses \(L^T R_d L \) which can be obtained without computing \(L^{-1} \). Thus, the step computation of \(LDL^T \) direction can be performed without inverting the lower triangular factor of \(X \). The theorem states the main properties of the \(LDL^T \) step computation.

Theorem 4.1. If the constraint matrices \(\{A_1, \ldots, A_m\} \) are linearly independent and \(X > 0, \chi > 0 \), then \(\tilde{\mathbf{A}} \text{Diag}(\text{vec}(K))^{-1} \tilde{\mathbf{A}}^T \) is positive definite and the search direction \((\Delta X, \Delta \lambda, \Delta \chi) \) is unique and \(\Delta X \) is symmetric.

Proof. Since \(X > 0, \chi > 0 \), \(\text{Diag}(\text{vec}(K)) \) is positive definite. Further, \(\tilde{r}_d, \tilde{\mathbf{A}} \) are vectorizations of symmetric matrices and the matrix \(K \) is also symmetric. Thus, it is easily verified that \(\text{mat}(\Delta \chi) \) is also symmetric. From the linear independence of \(A_j \)'s and non-singularity of \(L \), we have that \(\tilde{\mathbf{A}}^T \) has full column rank of \(m \). Combining this with the positive definiteness of \(\text{Diag}(\text{vec}(K)) \), we have that \(\tilde{\mathbf{A}} \text{Diag}(\text{vec}(K))^{-1} \tilde{\mathbf{A}}^T \) is positive definite. Hence, \(\Delta \lambda \) is unique and so also, \(\Delta \chi \). Consequently, \(\Delta X \) is also unique while the symmetry of \(\Delta X \) follows from earlier arguments. The uniqueness of \(\Delta \chi \) follows from (23), and uniqueness of \(\Delta X \) and \(\Delta \lambda \). \(\square \)

4.2. Comparison with AHO, HKM, NT Directions. We derive the computational complexity of the \(LDL^T \) direction based on Toh [44, Appendix A]. Let \(\tilde{A}_k = U_k + U_k^T \) where \(U_k \) is upper triangular. Then, \(\tilde{A}_k = (L^T U_k L) + (L^T U_k L)^T \) can be computed in \(n^3 + n^2 \) flops. The product of upper triangular matrices \(L^T U_k \) can be computed in \(n^3/3 \) flops while the product of upper and lower triangular matrices \(L^T U_k L \) can be computed in \(2n^3/3 \) flops (refer [44, Appendix A]). The addition of \(L^T U_k L \) and \((L^T U_k L)^T \) requires another \(n^2 \) flops. The computation of \(B_i \) requires \(n^2 \) flops. The \((k, l)\)-entry of Schur complement matrix \(M_{[k][l]} = \tilde{A}_{[k][l]} B_{[l][l]}^T \) can be computed in \(n^2 \) flops since it is the inner product of two vectors of length \(n^2 \). All elements of the Schur complement matrix can be computed in \(\frac{1}{2} m(m + 1) \cdot n^2 \) flops since the matrix \(M \) (30) is symmetric, given \(\tilde{\mathbf{A}}, \tilde{\mathbf{B}} \). The computation of Schur complement matrix
Algorithm 2 Step computation for the $LDLT$ formulation.

input $(X, \lambda, z) \in S_+^n \times \mathbb{R}^m \times \mathbb{R}_+^n$
Compute $LT R_d L$, r_p, r_c using (22b)
Compute:
- $\tilde{r}_d = \text{vec} \left(L^T R_d L + \text{Diag}(r_c \circ^{-1} d) \right)$
- K with $K_{[k][l]} = \max_{k \in [n]} \frac{d_{[k][l]}}{\min_{l \in [n]} d_{[k][l]}} \forall k, l = 1, \ldots, n$
- $\tilde{A}_j = L^T A_j L$, $\tilde{B}_j = \tilde{A}_j \circ^{-1} K \forall j = 1, \ldots, m$
Set $\tilde{A}_1 = \left[\text{vec}(\tilde{A}_1) \ldots \text{vec}(\tilde{A}_m) \right]$, $\tilde{B}_1 = \left[\text{vec}(\tilde{B}_1) \ldots \text{vec}(\tilde{B}_m) \right]$
Compute: $M = \tilde{A}^T \tilde{B}, \tilde{r} = \tilde{B} \tilde{r}_d$
Solve:
- $\Delta \lambda = M^{-1}(\tilde{r} - r_p)$
- $\Delta x = \left(\tilde{r}_d \circ^{-1} \text{vec}(K) - \tilde{B}^T \Delta \lambda \right)$
- $\Delta X = L \text{mat}(\Delta x) L^T$
- $\Delta z = \left(r_c - z \circ \text{diag}(\text{mat}(\Delta x)) \right) \circ^{-1} d$
return Step $(\Delta X, \Delta \lambda, \Delta z) \in S^n \times \mathbb{R}^m \times S^n$

requires $(0.5m^2 n^2 + m(n^3 + n^2))$ flops or $(0.5m^2 n^2 + mn^3)$ flops ignoring the lower order mn^2 term. Thus, the total computation cost is identical to that for the NT direction and lower than the HKM, AHO directions. We summarize the properties of the different directions in Table 1. The computational complexity for AHO, HKM and NT directions are from [44, Table 1] and the rest of the information is from Todd, Toh and Tütüncü [43, Table 1].

Table 1: Summary of SDP search directions.

<table>
<thead>
<tr>
<th>Directions</th>
<th>Primal-dual symmetry</th>
<th>Scale invariance</th>
<th>Uniquely defined Directions</th>
<th>Computational complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDT</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>$mn^3 + 0.5m^2 n^2$</td>
</tr>
<tr>
<td>AHO</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>$4mn^3 + m^2 n^2$</td>
</tr>
<tr>
<td>HKM</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>$2mn^3 + m^2 n^2$</td>
</tr>
<tr>
<td>NT</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>$mn^3 + 0.5m^2 n^2$</td>
</tr>
</tbody>
</table>

The computational complexities reported in Table 1 assume that the data matrices A_k are dense. In the case of sparse matrices, HKM and NT directions can exploit the sparsity [16] to further reduce the computational cost. Fujisawa, Kojima and Nakata [16] described different approaches for reducing the flops involved in computing the elements of the Schur complement matrix. In particular, the most efficient approach in [16] required that the elements of the Schur complement were of the form $M_{[k][l]} = (E A_k F) \bullet A_l$ with the matrices E, F being dense. The LDT direction does not satisfy this form (refer (30)). The AHO direction also has a form similar to the LDT direction and is limited in its ability to exploit sparsity. Thus, the LDT direction also suffers from this limitation. However, the matrix completion techniques introduced in Fukuda et al. [17] provide an alternate approach to exploiting sparsity and have been shown to reduce the computational times of SDP algorithms [34, 47]. We believe that the computations in the LDT direction will benefit from exploiting
the matrix completion techniques and will be explored in a separate study.

A direction for SDP is said to be primal-dual symmetric [42] if the same direction
is generated when the method is applied to the primal and dual formulations of the
SDP (1). The directions in the primal formulation are in the space \(\mathbb{S}^n \times \mathbb{R}^m \times \mathbb{R}^n \). On
the other hand, the directions in the dual formulation will be in the space \(\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{S}^n \).
Due to the incompatibility of the direction dimensions for the corresponding variables,
the \(LDL^T \) direction is not primal-dual symmetric (refer Table 1).

A direction for SDP is said to be scale invariant if the scaling of the data
matrices \(C, A_k \) by an invertible matrix \(Q \) as \(QCQ^T, QA_k Q^T \) results in the step being transformed from \((\Delta X, \Delta \lambda, \Delta S) \) to \((Q^{-1} \Delta X Q^{-1}, \Delta \lambda, Q \Delta S Q^T) \). The \(LDL^T \) direction
does not have this property when \(Q \) is allowed to be a general matrix. If we
restrict the matrix \(Q \) to be unit upper triangular, then the scale invariance property
does hold for the \(LDL^T \) direction. We refer the interested reader to Appendix D for
details on this derivation.

5. Central Path. The central path in the \(LDL^T \) formulation is the set

\[
\left\{ (X^\mu, \lambda^\mu, z^\mu) \in \mathbb{S}^n_{++} \times \mathbb{R}^m \times \mathbb{S}^n_{++} \mid \left. \begin{array}{l}
(X^\mu, \lambda^\mu, z^\mu) \text{ satisfies (5)} \\
\text{for some } \mu > 0
\end{array} \right\} \right. .
\]

It is well known that the central path for the standard SDP formulation in (2) is
unique. We show the analogous result for the \(LDL^T \) formulation by exhibiting a
homeomorphism between the solutions to (2) and (21). In the rest of the section
when referring to (2), we assume that \(P = I_n \) in the symmetrization operator \(H_P(\cdot) \).
Then, \(H_P(\tau \pi) = \frac{1}{2}(\tau \pi + \pi \tau) \) and

\[
\frac{1}{2}(\tau \pi + \pi \tau) = \mu I_n \iff \pi \tau = \mu I_n
\]
since \(\pi, \tau \) share the eigenvectors.

Theorem 5.1. Suppose \(\mu > 0 \), \(X^\mu \in \mathbb{S}^n_{++} \), and \(X^\mu = L^\mu D^\mu (L^\mu)^T \). The following
are true.

(i) \((X^\mu, \lambda^\mu, S^\mu) \in \mathbb{S}^n_{++} \times \mathbb{R}^m \times \mathbb{S}^n_{++} \) solves (2) if and only if \((X^\mu, \lambda^\mu, z^\mu) \in \mathbb{S}^n_{++} \times \mathbb{R}^m \times \mathbb{S}^n_{++} \) solves (21) where \(\text{Diag}(z^\mu) = (L^\mu)^T S^\mu L^\mu \).

(ii) The central path in (32), if it exists, is unique.

Proof. Consider (i). From Lemma 3.1, we have that

\[
\sum_{i=1}^n z^\mu_{ii} \nabla d_{ij}(X^\mu) = (L^\mu)^{-T} \text{Diag}(z^\mu)(L^\mu)^{-1}.
\]

Lemma 2.3 yields that \(X^\mu S^\mu = \mu I_n \iff D^\mu z^\mu = \mu I_n, S^\mu = (L^\mu)^{-T} \text{Diag}(z^\mu) (L^\mu)^{-1} \) and the claim follows.

Consider (ii). The central path for the formulation in (2), with \(P = I_n \), is the set

\[
\left\{ (X^\mu, \lambda^\mu, S^\mu) \mid C + A^*(\lambda^\mu) - S^\mu = 0, A(X^\mu) = b \text{ and } X^\mu S^\mu = \mu I_n \right\}.
\]

Kojima, Shindoh and Hara [25] have shown the existence and uniqueness of (33),
provided there exists a point \((X, \lambda, S) \in \mathbb{S}^n_{++} \times \mathbb{R}^m \times \mathbb{S}^n_{++} \) that satisfies primal and
dual feasibility, i.e.

\[
\hat{X}, \hat{S} \succeq 0, C + A^*(\lambda) - \hat{S} = 0, \text{ and } A(\hat{X}) = b.
\]
The claim in (i) establishes a homeomorphism between the central path (32) of the \(LDLT^T\) formulation and the central path defined by (33). From Theorem 4.1, we have that the Newton step computation in (22a) is unique under linear independence of \(\{A_k\}\) for all \((X, \lambda, z) \in S^+_n \times \mathbb{R}^m \times \mathbb{R}^n_{++}\). Hence, the Jacobian of (21) is nonsingular at all points on the central path. The claim on the uniqueness of the central path follows from the application of the implicit function theorem.

Given the central path in (32), it is reasonable to ask whether the central path can be extended to \(\mu = 0\) and if so, does the path possess analytic properties. Such questions have been the subject of much investigation for the standard formulation (2) by [11, 13, 18, 21, 22, 26, 27, 28, 33]. Given the homeomorphism between the solutions of (2) and (21), we believe that the results for (2) can be extended to the \(LDLT^T\) formulation. One of the main difficulties is that the derivative for \(d_{[i]}(X)\) for \(X \in S^+_n\) are not defined. We set aside a full analysis for a future study. We close the section with the following remark.

Remark 5.1. A key requirement for the limit of \(\lim_{\mu \to 0} (X^\mu, \lambda^\mu, z^\mu)\) to satisfy (5) with \(\mu = 0\) is that

\[
\lim_{\mu \to 0} L(X^\mu) = L^o, \quad \lim_{\mu \to 0} U(C + A^*(\lambda^\mu)) = U^o, \quad \text{and} \quad (L^o)^T U^o = I_n.
\]

If the above is true, then it can be readily seen that

\[
\lim_{\mu \to 0} (X^\mu, \lambda^\mu, z^\mu) \quad \text{if it exists is a solution of (5) for} \quad \mu = 0.
\]

However, \(L^o\) is not unique since the solution \(X^*\) of SDP (1) is typically only positive semidefinite. The conditions in (34) impose certain limiting behavior on both \(L(X^\mu)\) and \(U(C + A^*(\lambda^\mu))\). This is indeed restrictive and is unclear if this can be expected to hold in practice for general SDPs.

6. Conditioning of the Schur Complement Matrix. In this section, we investigate the conditioning of the Schur complement matrix (30) of the \(LDLT^T\) direction. We need to define certain regularity properties of the solution to the SDP (1) which will be stated in the context of the \(LDLT^T\) factorization. The interested reader is referred to Appendix E and F for the equivalence of these conditions to those originally provided in Alizadeh, Haerdy and Overton [3].

For the purposes of the analysis in this section, we make the following assumptions on the optimal solution \((X^*, \lambda^*, z^*)\) to the SDP (4) satisfying the conditions in (5).

Assumptions
(A1) \((X^*, z^*)\) satisfy strict complementarity and \(X^*\) has rank \(p\) with \(L^*, D^*\) as given in (11) with

\[
d^*_1 \geq \cdots \geq d^*_p > d^*_{p+1} = \cdots = d^*_{n} = 0
\]

and

\[
0 = z^*_1 = \cdots = z^*_p < z^*_{p+1} = \cdots = z^*_n.
\]

(A2) \(X^*\) is primal nondegenerate, i.e.

\[
\begin{pmatrix}
(A_k^*)_{11} & (A_k^*)_{21}^T \\
(A_k^*)_{21} & 0_{n-p \times n-p}
\end{pmatrix}_{k=1}^{m}
\]

are linearly independent,

where \((L^*)^T A_k^* L^*\) and \((\cdot)_1 \in \mathbb{R}^p, (\cdot)_2 \in \mathbb{R}^{n-p \times n-p}\) refer to the subblocks consistent with the notation in (11).
(A3) \((\lambda^*, (L^*)^{-T} \text{Diag}(z^*)(L^*)^{-1})\) is dual nondegenerate, i.e.
\[
\left\{ (\tilde{A}_k^*)_{11} \right\}_{k=1}^m \text{ span } \mathbb{R}^p.
\]
Assumptions (A2) and (A3) have been shown to be generic in [3, Definition 19]. Informally, a property is said to be generic for an SDP if it holds in a measure theoretic-sense for almost all instances of the SDP, where an instance is defined by \((C, A, b)\). Assumptions (A1)-(A3) render the solution unique, which we state next.

Theorem 6.1. Suppose that (A2)-(A3) hold. Then the optimal solution \((X^*, \lambda^*, z^*)\) to (4) is unique. In addition, if (A1) holds then there exists a unique \(L^*\) for which (5) holds.

Proof. Uniqueness of multipliers \((\lambda^*, z^*)\) and \(X^*\) follow from Lemma E.2 and Lemma F.2, respectively. Suppose \(L^*\) is not unique and that there exists \(L^* \neq L^*\) such that (5) is satisfied. From (52a) in the proof of Lemma F.2

\[
L^* \neq L^* \implies L_{22}^* \neq L_{22}^* \\
\implies (L^*)^{-T} = \begin{bmatrix}
(L_{11}^*)^{-T} & -(L_{11}^*)^{-T}(L_{21}^*)^T(L_{22}^*)^{-T} \\
0_{(n-p) \times p} & (L_{22}^*)^{-T}
\end{bmatrix}, \text{ and}
\]

\[
(L^*)^{-T} = \begin{bmatrix}
(L_{11}^*)^{-T} & -(L_{11}^*)^{-T}(L_{21}^*)^T(L_{22}^*)^{-T} \\
0_{(n-p) \times p} & (L_{22}^*)^{-T}
\end{bmatrix}.
\]

Uniqueness of \((\lambda^*, z^*)\) and satisfaction of (5) with \(L^*\) and \(L^*\) imply that

\[
(L^*)^{-T} \text{Diag}(z^*)(L^*)^{-1} = (L^*)^{-T} \text{Diag}(z^*)(L^*)^{-1} =: S^*.
\]

The equality in (35b) can be simplified using Assumption (A1) as

\[
(L^*)^{-T} \text{Diag}(0, \ldots, 0, z^*_{p+1}, \ldots, z^*_{n}) (L^*)^{-1}
\]

\[
= (L^*)^{-T} \text{Diag}(0, \ldots, 0, z^*_{p+1}, \ldots, z^*_{n}) (L^*)^{-1}.
\]

From (35a) and (35c), we have that the matrix \(S^*\) in (35b) has two \(UDU^T\) factorizations. Further, the upper triangular factors differ in the columns that correspond to nonzero diagonal entries \((z^*_{{p+1}}, \ldots, z^*_n)\), contradicting Lemma 2.2. Hence, \(L_{22}^* = L_{22}^*\) proving that \(L^*\) is unique. \(\square\)

To analyze the conditioning of the Schur complement matrix, we will focus on the scaled transformation of the linear system in (22a). Substituting the expression for the Hessian of Lagrangian (18) into (22a) and using the definition of scaled quantities (27), we obtain

\[
(K - \text{Diag}(z \circ^{-1} d)) \circ \tilde{\Delta}X + \tilde{A}^*(\Delta \lambda) = \text{Diag}(\Delta z) = L^TR_dL
\]

\[
\tilde{A}(\Delta X) = r_p
\]

\[
z \circ \text{diag}(\tilde{\Delta}X) + d \circ \Delta z = r_c
\]

where we have used \(\nabla d_{ij}(X) = (L^{-T}e_ie_j^TL^{-1}) \cdot \Delta X = e_i^TL^{-1} \Delta X L^{-T}e_j = \tilde{\Delta}X_{[ij]}\). Defining the matrices \(D_K\) and \(Z_K\) by

\[
D_{K[ij]} = d_{[\min(i,j)]}, \ Z_{K[ij]} = z_{[\max(i,j)]}
\]

we have that \(K = Z_K \circ^{-1} D_K\).
Using D_K and Z_K, the linear system in (36) can be equivalently represented in a
dlifted space as

$$
\tilde{A}^*(\Delta \lambda) - \Delta Z = L^T R_d L
$$

(38)

$$
\tilde{A}(\Delta \tilde{X}) + D_K \circ \Delta Z = r_p
$$

where $R_c = \text{Diag}(r_c)$. We have introduced $\Delta Z \in \mathbb{R}^n$ as an unknown in (38) in the
place of Δz. We show the equivalence between (36) and (38), and relate ΔZ and Δz
in the following. Since $R_c = \text{Diag}(r_c)$, the third equation in (38) can be equivalently
written as

$$
\begin{cases}
\text{diag}(Z_K) \circ \text{diag}(\Delta \tilde{X}) + \text{diag}(D_K) \circ \text{diag}(\Delta Z) = r_c \\
Z_K[i,j] \Delta \tilde{X}[i,j] + D_K[i,j] \Delta Z[i,j] = 0 \quad i \neq j \\
z \circ \text{diag}(\Delta \tilde{X}) + d \circ \Delta v = r_c \\
\Delta Z = \text{Diag}(\Delta v) - (K - \text{Diag}(z \circ^{-1} d)) \circ \Delta \tilde{X}
\end{cases}
$$

(37)

where Δv represents the diagonal elements in ΔZ. The above equivalence can be used to
replace the third equation in (38). Further, the variable ΔZ in the first equation of
(38) can be eliminated to obtain a linear system in $(\Delta \tilde{X}, \Delta \lambda, \Delta v)$ that is identical
to (36). Thus, the step computation in (38) is equivalent to the computation in (22a)
for all $X > 0, z > 0$. We state this in the following without proof for brevity.

Lemma 6.2. Suppose $X > 0, z > 0$. Then $(\Delta \tilde{X}, \Delta \lambda, \Delta z)$ solves (36) if and only
if $(\Delta \tilde{X}, \Delta \lambda, \Delta Z)$ solves (38) with $\text{diag}(\Delta Z) = \Delta z$.

We show in the remainder of the section that system in (38) is nonsingular in the
limit. Note that this does not imply that the system in (22a) is nonsingular. However,
the proof techniques used in showing non-singularity of (38) mirror those used for the
AHO direction in [2]. This serves as a precursor to obtaining results on conditioning of
the Schur complement matrix.

We first consider the structure of the matrices $Z_K, D_K,$

$$
Z_K = \begin{bmatrix}
\vdots & \vdots & \ddots & \vdots & \vdots \\
z[n-1] & z[n-1] & \cdots & z[n-1] & z[n]
z[n] & z[n] & \cdots & z[n] & z[n]
\end{bmatrix},
D_K = \begin{bmatrix}
\vdots & \vdots & \ddots & \vdots & \vdots \\
\end{bmatrix}
$$

(39)

Under (A1), we have that Z_K^* and D_K^* have the following block-structure

$$
Z_K^* = \begin{bmatrix}0_{p \times p} & (Z_{21}^*)^T \\
Z_{21}^* & Z_{22}^*
\end{bmatrix},
D_K^* = \begin{bmatrix}D_{11}^T & (D_{21}^*)^T \\
D_{21}^* & 0_{(n-p) \times (n-p)}
\end{bmatrix}
$$

(40)

where $D_{11}^* \in \mathbb{R}^{p \times p}, Z_{22}^* \in \mathbb{R}^{(n-p) \times (n-p)}, D_{21}^*, Z_{21}^* \in \mathbb{R}^{(n-p) \times p}$ all having element-wise positive entries. The form of the step computation in (38) bears resemblance to
that of standard interior point methods. In particular, this is similar to the AHO-
direction $H_P(XS) = \frac{1}{2}(XS + SX)$ presented in Alizadeh, Haeberly and Overton [2].
The precise correspondence between the LDL^T and AHO directions is provided in
Table 2: Relating the quantities in the LDL^T and AHO directions.

<table>
<thead>
<tr>
<th></th>
<th>LDL^T</th>
<th>AHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ΔX$</td>
<td>$(L^)^{-1}ΔX(L^)^{-T}$</td>
<td>$(Q^)^T ΔXQ^$</td>
</tr>
<tr>
<td>$Ā_k$</td>
<td>$(L^)^T A_k L^$</td>
<td>$(Q^)^T A_k Q^$</td>
</tr>
<tr>
<td>$(Z_K^*)_{ij}$</td>
<td>$z^*_{[\text{max}(i,j)]}$</td>
<td>$\frac{1}{2}(ω^_i + ω^_j)$</td>
</tr>
<tr>
<td>$(D_K^*)_{ij}$</td>
<td>$d^*_{[\text{min}(i,j)]}$</td>
<td>$\frac{1}{2}(λ^_i + λ^_j)$</td>
</tr>
</tbody>
</table>

Table 2. We refer the interested reader to Appendix G for details on the AHO direction. In Table 2, Q^* is the matrix composed of eigenvectors for X^*, and $λ_i^*$, $ω_i^*$ are the eigenvalues for X^* and the multiplier matrix $S^* = (L^*)^{-T} \text{Diag}(z^*)(L^*)^{-1}$, respectively. Observe that the non-zero block structure of Z_K^*, D_K^* in (40) for the LDL^T method is identical to that for the AHO direction. The rest of quantities in (38) are non-singular transformations of the quantities in the step computation of the AHO direction. Hence, the arguments in the proof of [2, Theorem 3.1] can be invoked to obtain the main result on the conditioning of the linear system.

Theorem 6.3. Suppose $(A1)$–$(A3)$ hold at solution $(X^*,λ^*,z^*)$ to SDP (4). Then the linear system in (38) is well-conditioned at the solution. Let $M^μ$ be the Schur complement matrix (30) defined on the central path $(X^μ,λ^μ, z^μ)$. Then

$$\lim_{μ^0→0} (μM^μ)$$
exists and has rank $\frac{1}{2}p(p + 1)$.

If, in addition, $m > \frac{1}{2}p(p + 1) > 0$, then

$$\text{cond}(M^μ) ≥ \frac{c}{μ}$$

for some constant $c > 0$, where $\text{cond}(\cdot)$ denotes the condition number of matrix.

Proof. It can be verified that the arguments in proof of [2, Theorem 3.1] carry over to the linear system in (38) to yield that

$$\begin{aligned}
\tilde{A}^*(Δλ) &− ΔZ = 0 \\
Z_K^* ∘ ΔX + D_K^* ∘ ΔZ &= 0
\end{aligned}$$

(41) $⇒ (\tilde{A}ΔX, Δλ, ΔZ) = 0.$

This proves the claim on the linear system in (38). Since $d^μ_{i,j}/z^μ_{i,j} = μ$ holds on the central path, then $K_{[k]} = z^μ_{\text{max}(k,i)}/d^μ_{\text{min}(k,i)} = μ/(d^μ_{[i]}d^μ_{[i]})$. Hence,

$$μ^μ_{[k]} = \tilde{A}_k^μ ∗ (d^μ_{[i]}d^μ_{[i]}) ∗ (\tilde{A}_i^μ) = A_k^μ ∗ (\text{Diag}(d^μ)\tilde{A}_k^μ) = A_kX^μ ∗ A_iX^μ$$

which is identical to the AHO direction. The remaining claims on the Schur complement matrix follow from Theorems 4.1 and 4.2 in [2].

7. Implementation & Results. The standard interior point algorithms for SDPs compute a step by solving a linearization of (2). The nonlinearity in the step computation is restricted to the complementarity conditions. It is typically easy to satisfy the dual stationary (the first equation in (2)) and primal feasibility within a
Algorithm 3 LDLT-based Interior Point Method (LDLT)

1: Let $\epsilon \in (0, 1)$ be a desired convergence tolerance.
2: Let $\mathbf{v}^0 = (X^0, \lambda^0, z^0)$ be an initial iterate with $X^0 > 0, \lambda^0 > 0, z^0 > 0$.
3: Choose $\{\delta, \kappa, \tau\} \subset (0, 1)$.
4: Set $l = 0$.
5: repeat
6: Set $k = 0$.
7: repeat
8: Compute $\Delta \mathbf{v}^k = (\Delta X^k, \Delta \lambda^k, \Delta z^k)$ as described in Algorithm 2.
9: Set $\alpha_p^k := \frac{\sigma_{\text{max}}(-X^k)^{-1} X^k)}{\sigma_{\text{max}}(-X^k)^{-1} X^k)}$ if $\sigma_{\text{max}}(-X^k)^{-1} X^k) > 0$, otherwise.
10: $\sigma_{\text{max}}(-X^k)^{-1} X^k)$ denotes the largest eigenvalue of the matrix $-((X^k)^{-1} X^k)$.
11: Set $\alpha_d^k := \frac{\max_i \tau_i \max_i (\Delta z_i^k / z_i^0)}{\max_i (\Delta z_i^k / z_i^0)}$ if $\max_i (\Delta z_i^k / z_i^0) > 0$, otherwise.
12: Set $\mathbf{v}^{k+1} = (X^k + \alpha_p^k \Delta X^k, \lambda^k + \alpha_d^k \Delta \lambda^k, z^k + \alpha_d^k \Delta z^k)$.
13: Set $k = k + 1$.
14: until $\theta(\mathbf{v}^k; \mu^l) \leq \kappa \mu^l$
15: Set $\mu^{l+1} = \delta \mu^l$.
16: Set $\mathbf{v}^l = \mathbf{v}^k$, $\mathbf{v}^0 = \mathbf{v}(\mu^l)$.
17: Set $l = l + 1$.
18: until $\theta(\mathbf{v}(\mu^{l-1}); 0) \leq \epsilon$
19: return $\mathbf{v}(\mu^{l-1})$

few iterations of the interior point method. The remaining iterations of the algorithm are spent in converging on the complementarity constraints.

The LDL^T formulation (21) results in nonlinearity in the dual stationarity conditions and the complementarity conditions (the third equation of (21)). As a result, the LDL^T formulation typically satisfies the dual stationarity conditions only in the limit. In this sense, the LDL^T formulation has similarity to the classical barrier formulation for SDPs. Unlike the standard formulation, the dual variables are restricted to a space in which the primal variables X and multiplier matrix $L(X)^{-T} \text{Diag}(\sigma)L(X)^{-1}$ conform to a specific structure.

We implemented an infeasible interior point algorithm employing a monotone update strategy for the barrier parameter μ. The interior point algorithm is summarized in Algorithm 3. For the sake of brevity, we denote by $\mathbf{v} := (X, \lambda, z) \in S^+_m \times \mathbb{R}^m \times \mathbb{R}^m$ and $\Phi(\mathbf{v}; \mu) = 0$ the first-order stationary conditions in (5). The termination criterion in the algorithm is defined as

$$\theta(\mathbf{v}; \mu) := \max \left(\|\text{vec}(D^{1/2} L^T R_d LD^{1/2})\|_\infty, \|r_p\|_\infty, \max_{i \in \{1, \ldots, n\}} \left(\frac{|d_i|^2 z_i - \mu|}{1 + |d_i|^2 + z_i} \right) \right)$$

where R_d, r_p, r_c are as defined in (22b). The particular scaling of R_d is motivated by our analysis of the central path in the limit; refer Remark 5.1. The scaling of $L^T R_d L$ by $D^{1/2}$ removes the need for $L(X(\mu))^{-T}$ to converge to $U(C + A^*(\lambda(\mu)))$ in the limit. The scaling used in the complementarity term was observed in our numerical experiments to be beneficial in aiding convergence on ill-conditioned SDPs.
The computations of the quantities a_{p}^{k}, a_{d}^{k} in Lines 9 and 10 follow the standard techniques described in [43]. The choices of a_{p}^{k}, a_{d}^{k} ensures that

$$X^{k+1} \succeq (1 - \tau)X^{k} \succ 0 \text{ and } z_{k+1} \succeq (1 - \tau)z^{k} \succ 0.$$

The inversion of X^{k} in the computation of a_{p}^{k} is not necessary. Instead, one can equivalently compute the largest eigenvalue of $(D^{k})^{-\frac{1}{2}}\text{mat}(\Delta x)(D^{k})^{-\frac{1}{2}}$ where Δx is defined in (31) and D^{k} is the diagonal matrix in the LDL^T factorization of X^{k}. Thus, in our implementations we never invert $L(X^{k})$.

The convergence analysis of interior point methods typically require the iterates to lie in a neighborhood around the central path [32]. However, computational experiments with SDPT3 [45] have demonstrated that such restrictions are not necessary for good practical performance. Our computational experiments have also shown that the imposition of a neighborhood around the central path was not necessary.

The results are obtained using the following values for the parameters in the algorithm: $\delta = 0.5, \kappa = 0.5, \tau = 0.95$ and $\epsilon = 10^{-6}$. The initial value of barrier parameter was $\mu_{0} = 1$ and the initial iterates were set as $X^{0} = I_{n}, z^{0} = \mu_{0} I_{n},$ and $\lambda^{0} = (\frac{n}{2} \lambda_{0}^{0})^{-1} A^{T}(C - \text{Diag}(z^{0}))$. The choice of λ^{0} minimizes $\|C + A^{T}(\lambda) - \text{Diag}(z^{0})\|_{F}$ and is also referred to as the least-squares multiplier estimate.

Algorithm 3 was implemented in MATLAB R2014a and executed on a Linux machine with 3.20 GHz Intel(R) Core(TM) i7-3930K processor and 32 GB RAM. We tested the algorithm on 79 of the SPDLIB instances [7] available at http://euler.math. edu/~brian/sdplib.html. To compare the performance of the LDL^T direction against the standard SDP directions, we also implemented infeasible interior point based on:

- **primal barrier direction and monotone update strategy for barrier parameter (Barrier).** The primal barrier direction does not use the dual variables z in the algorithm and the termination condition for the algorithm was modified as

$$\theta(v; \mu) := \max\left(\|\text{vec}(D^{\frac{1}{2}}LT(C + A^{*}(\lambda)) LD^{\frac{1}{2}} - \mu I_{n})\|_{\infty}, \|r_{p}\|_{\infty}\right).$$

where $v = (X, \lambda, S)$.

- **HKM direction and monotone update strategy for barrier parameter (HKM).**

The termination condition for the algorithm was

$$\theta(v; \mu) := \max\left(\|\text{vec}(C + A^{*}(\lambda) - S)\|_{\infty}, \|r_{p}\|_{\infty}, |(X \cdot S)/n - \mu|\right).$$

where $v = (X, \lambda, S)$.

- **HKM direction and predictor-corrector based update strategy for barrier parameter (HKMPC).** The predictor step and centering parameter were computed as described in Algorithm NT-PC-QR of [43].

In our implementations, we scaled the constraint matrices A_{j} and right hand side b_{j} by $1/\|\text{vec}(A_{j})\|_{\infty}$. The objective matrix C was scaled by $1/\|\text{vec}(C)\|_{\infty}$. SDPT3 and SeDuMi also implement similar constraint scaling strategies. We also implemented iterative refinement [29] to address inaccurate solutions of the linear system (31) when computing $\Delta \lambda$. Iterative refinement was invoked whenever the error in satisfaction of the linear system was greater than 10^{-15} and was limited to a maximum of 10 refinement steps. SDPT3, for example, also employs iterative refinement.

Table 3 presents the number of problems solved by our implementations of the SDP algorithms at different convergence tolerances. We have also included the performance of the state-of-the-art SDP codes SeDuMi [41] and SDPT3 [45]. From Table 3,
it is clear that the barrier algorithm performs worse than the other algorithms. At a tolerance of $\epsilon = 10^{-6}$, LDL T (Algorithm 3) solved 58 instances while HKM and HKMPC solved 62 and 64 instances, respectively. The number of instances solved by HKMPC is comparable to that of SDPT3. On the other hand, SeDuMi solved only 45 of the instances. At a relaxed tolerance of $\epsilon = 10^{-5}$, LDL T and HKM solved 67 and 66 instances, respectively, while HKMPC solved all but one of the instances. Once again the performance of LDL T is better than that of SeDuMi which solved only 59 instances while SDPT3 solved 71 instances.

Detailed results on the performance of LDL T, HKM, HKMPC and SDPT3 are provided in Table 4 of Appendix H. A careful reading of the results will demonstrate to the reader that HKMPC and SDPT3 require far fewer iterations for convergence than LDL T and HKM. To compare the performance of algorithms we employ performance profiles, introduced by Dolan and Moré [14]. Figure 1(a) plots the performance profiles of the algorithms - LDL T, HKM, HKMPC, and SDPT3. The performance measure $r_s(\tau)$ in the vertical axis of Figure 1(a) is computed as follows. Let $it(i,s)$ denote the number of iterations taken by algorithm s to solve problem instance i. Then, the quantity $r_s(\tau)$ is computed as

$$r_s(\tau) = \frac{1}{n_p} \left\{ \left\{ i \left| \frac{it(i,s)}{\min_{s'} it(i,s')} \leq \tau \right\} \right\}$$

where n_p denotes the number of problem instances. For an algorithm s, $r_s(\tau)$ represents the fraction of problem instances that are solved by algorithm s within a factor τ of the fewest number of iterations taken among all algorithms on that problem. From Figure 1(a) it is clear that HKMPC and SDPT3 require the fewest number of iterations on most problems. However, it is not possible to draw conclusions on the relative performance of other algorithms. We refer the interested reader to Gould and Scott [20] for a discussion on the limitations of performance profiles.

In order to better understand the relative performance of LDL T and HKM, Figure 1(b) plots the performance profiles of just these two algorithms. From Table 3 and Figure 1(b), it is clear that the performance of the LDL T is comparable to that of the HKM. Figures 2(a) and 2(b) plots performance profiles in terms of time taken by the algorithms. The profiles show a similar trend to that for iterations. The superior performance of HKMPC is attributable entirely to the adaptive barrier strategy of the predictor-corrector algorithm. This is consistent with the existing understanding of the practical performance of interior point algorithms. The adaptive barrier strategy of the predictor-corrector algorithm generates search directions that are close to the central path, while also making significant progress towards the solution of the SDP. We believe such a strategy will benefit the LDL T algorithm since the stepsize α_k in the initial iterations is curtailed to ensure that iterates do not violate the inequality constraints $d_{[i]}(X), z_{[i]} \geq 0$. However, it is unclear how to extend this to the LDL T
Fig. 1: Performance profiles comparing iterations taken by different algorithms. The convergence tolerance was set to 10^{-6}.

Fig. 2: Performance profiles comparing computational time taken by different algorithms. The convergence tolerance was set to 10^{-6}.

algorithm given the nonlinearity in the dual stationary conditions.

8. Conclusions. We presented an interior point algorithm based on the LDL^T formulation for SDPs. The contributions of the paper can be summarized as: (i) derivation of the first and second derivative formulae for the SDPs that are efficient to compute; (ii) presentation of the LDL^T formulation in the context of standard interior point framework with comparable work per iteration; (iii) existence of the central path; and (iv) conditioning of the Schur complement matrix that arises in the step computation. The numerical results on SDPLIB problems clearly motivate the need to develop adaptive barrier strategies to improve the numerical performance. We also believe the dual formulation can exploit sparsity more effectively than the
primal formulation. We will explore these in a subsequent study.

Appendix A. Proof of Lemma 2.2.

Consider the statement in (a). Following Higham [24, Theorem 10.9(a)], we have there exists an upper triangular matrix such that \(X = R^T R \). The Cholesky factorization without pivoting described in [24, § 10.3] yields an upper triangular matrix \(R \) in which the \(i \)th row of \(R \) is zero whenever \(R_{i[i]} = 0 \). Defining the lower triangular matrix \(L = R^T \), unit lower triangular matrix \(L \) and diagonal matrix \(D \) as

\[
L_{[ii]} = \begin{cases} L_{[jj]}^2 / L_{[jj]} & \text{for } i > j, L_{[jj]} > 0 \\ L_{[ii]} & \text{otherwise.} \end{cases} \quad \text{and} \quad D_{[ii]} = L_{[ii]}^2 \quad \implies \quad LDL^T = \sum_{i=1}^{n} D_{[ii]} L_{[i]} L_{[i]}^T = \sum_{i \cdot D_{[ii]} > 0} L_{[i]} L_{[i]}^T = \sum_{i \cdot L_{[ii]} > 0} R_{[i]} R_{[i]} = X.
\]

We will prove uniqueness of \(D \) by contradiction. Suppose \(L', D' \) are also \(LDL^T \) factors of \(X \) with \(D \neq D' \) and that \(X \) is only positive semidefinite. In the following, we will show that \(L_{[1]} = L'_{[1]} \) and \(D_{[1]} = D'_{[1]} \) sequentially for each \(i \) starting from 1.

(i) Consider \(i = 1 \). From the definition of the \(LDL^T \) factorization, \(X_{[1]} = D_{[1]} L_{[1]} \) = \(D'_{[1]} L'_{[1]} \) and \(L_{[1]} = L'_{[1]} = 1 \) we have that \(D_{[1]} = D'_{[1]} \). Further if \(D_{[1]} > 0 \), then \(L_{[1]} = L'_{[1]} \). Thus the claim holds for \(i = 1 \).

(ii) For \(i = 2 \), consider the matrix \(X^{(2)} = X - D_{[1]} L_{[1]} L_{[1]}^T = X - D'_{[1]} L'_{[1]} (L'_{[1]})^T \). By the definition of the \(LDL^T \) factorization

\[
X^{(2)} = \sum_{j=2}^{n} D_{[jj]} L_{[j]} L_{[j]}^T = \sum_{j=2}^{n} D_{[jj]} L'_{[j]} (L'_{[j]})^T.
\]

From (i), we have that first row and column of \(X^{(2)} \) is zero. Among the terms involved in the summations on the right hand side, the term for \(j = 2 \) is the only contributor to the second row and column of \(X^{(2)} \). We can repeat the same argument in (i) for the second column of the matrix \(X^{(2)} \) and show that \(D_{[22]} = D'_{[22]} \) and \(L_{[2]} = L'_{[2]} \) if \(D_{[22]} > 0 \).

(iii) For all other \(i \geq 3 \), consider the matrix \(X^{(i)} = X - \sum_{j < i} D_{[jj]} L_{[j]} L_{[j]}^T \). The first \(i - 1 \) rows and columns of \(X^{(i)} \) are zero. The same arguments can be repeated for \(X^{(i)} \) to show that the claim holds for \(D_{[ii]} \) and \(L_{[i]} \).

This proves the claim on the uniqueness.

Consider (b). From Higham [24, Theorem 10.9(b)] there exists a permutation \(\Pi \) such that

\[
\Pi^T X \Pi = R^T R \text{ with } R = \begin{bmatrix} R_{11} & R_{12} \\ 0_{(n-p) \times p} & 0_{(n-p) \times (n-p)} \end{bmatrix}
\]

and \(R_{11} \in \mathbb{R}^{p \times p}, R_{12} \in \mathbb{R}^{p \times (n-p)} \) unique, \(R_{11} \) upper triangular with positive diagonal elements. Define the matrices \(D_1, L_{11}, L_{21} \) as

\[
D_{1[i]} = (R_{11[i]}^2)^2, \quad L_{11} = R_{11} D_1^{-\frac{1}{2}}, \quad L_{21} = R_{12} D_1^{-\frac{1}{2}}
\]

where \(D_1 \) is diagonal. The claim in (b) can be shown to hold for the above choice of \(D_1, L_{11}, L_{21} \) and any choice of an unit lower triangular matrix for \(L_{22} \).

Appendix B. Proof of Lemma 2.3.
Consider the if part of the statement. Then,
\[XS = L(X)D(X)L(X)^T L(X)^{-T} D(S)L(X)^{-1} = L(X)D(X)D(S)L(X)^{-1} \]
\[= L(X)(\mu I_n)L(X)^{-1} = \mu I_n \]
which proves the claim. To prove the only if part, suppose \(XS = \mu I_n \). Since \(X \in S^{n}_{++} \),
the matrix can be factorized as \(X = L(X)D(X)L(X)^T \) with \(D(X) > 0 \). Hence,
\[XS = \mu I_n \implies S = \mu X^{-1} = \mu L(X)^{-T} D(X)^{-1} L(X)^{-1}. \]
Thus, \(D(S) = \mu D(X)^{-1} > 0 \) which proves the only if part of the statement. The
uniqueness of \(U(S) \) follows by the same argument as uniqueness of \(L(X) \) (refer
Lemma 2.1).

Appendix C. Proof of Lemma 2.4.
The if part of the claim is straightforward. Consider the only if part of the claim.
We have that there exist factorizations \(X = LD(X)L^T \) and \(S = UD(S)U^T \) satisfying
Lemma 2.2(a). We assume without loss of generality that
\[(43a) \quad L_{[i]} = e_i \text{ for } i \text{ such that } D(X)_{[i]} = 0 \text{ and } U_{[j]} = e_j \text{ for } j \text{ such that } D(S)_{[j]} = 0. \]
Consider the statement \(XS = 0 \). Substituting the factorization and left-multiplying
by \(L^{-1} \) and right-multiplying by \(U^{-T} \) we obtain
\[XS = 0 \implies \underbrace{D(X) L^T U D(S)}_{= Y} = 0. \]
Since \(L^T, U \) are both unit upper triangular the matrix \(Y \) is also upper triangular and
satisfies
\[(43b) \quad Y_{[i]} = \begin{cases}
D(X)_{[i]} D(S)_{[i]} & \text{if } i = j \\
0 & \text{if } i > j \\
D(X)_{[i]} D(S)_{[j]} L_{[i]}^T U_{[j]} & \text{otherwise}. \end{cases} \]
Since
\[(43c) \quad Y_{[i]} = 0 \implies \begin{cases}
D(X)_{[i]} D(S)_{[i]} = 0 & \text{if } i = j \\
L_{[i]} U_{[j]} = 0 & \text{if } i < j, D(X)_{[i]} D(S)_{[j]} > 0 \end{cases} \]
and \(Y = 0 \) leads to \(D(X)D(S) = 0 \). The matrix \(L^T U \) is unit upper triangular. If
the matrix satisfies \((L^T U)_{[i]} = 0 \) for all \(i < j \), then \(L^T U = I_n \) and we have that
\(L(X) = U(S)^{-T} \), proving the claim. In the following, we will construct matrices \(\hat{L} \)
(unit lower triangular) and \(\hat{U} \) (unit upper triangular) satisfying the properties
\[(43d) \quad L^T U = \hat{L}^T \hat{U}, \quad X = (L \hat{L}^{-1})D(X)(L \hat{L}^{-1})^T, \quad \text{and } S = (U \hat{U}^{-1})D(S)(U \hat{U}^{-1})^T. \]
This allows to define \(L(X) = L \hat{L}^{-1}, \ U(S) = U \hat{U}^{-1} \) as factors of \(X, S \) satisfying
\[L(X)^T U(S) = (L \hat{L}^{-1})^T (U \hat{U}^{-1}) = L^{-T} L^T U \hat{L}^{-1} \hat{U}^{-1} = I_n \]
which proves the claim.
In the rest of the proof we construct \(\hat{L}, \hat{U} \) satisfying (43d). From (43c), we have that the possible nonzeros in \(L^T U \) correspond to \(i,j \) such that \(D(X)_{[i]} = 0 \) or \(D(S)_{[j]} = 0 \). Accordingly, define the unit lower triangular matrix \(\hat{L} \) and unit upper triangular matrix \(\hat{U} \) as

\[
\hat{L}_{[i]} = \begin{cases}
 e_i & \text{if } D(X)_{[i]} > 0 \\
 (L^T U)_{[i]} & \text{otherwise}
\end{cases}
\quad \hat{U}_{[j]} = \begin{cases}
 e_j & \text{if } D(S)_{[j]} > 0 \\
 (L^T U)_{[j]} & \text{otherwise}.
\end{cases}
\]

In other words the matrices \(\hat{L}, \hat{U} \) set the columns that are unique in the factorization of \(X, S \) (refer Lemma 2.2(a)) to unit vectors. Using (43c), it can be verified that

\[
(L^T \hat{U})_{[i]} = \begin{cases}
 1 & \text{if } i = j \\
 0 & \text{if } i > j \\
 0 & \text{if } i < j, D(X)_{[i]} D(S)_{[j]} > 0 \\
 (L^T U)_{[i]} & \text{if } D(X)_{[i]} = 0 \text{ or } D(S)_{[j]} = 0.
\end{cases}
\]

\(\implies L^T U = L^T \hat{U} \)

Therefore, the first part of (43d) is satisfied. Further, \(\hat{L}^{-1}, \hat{U}^{-1} \) satisfy

\[
\forall i : \text{ if } D(X)_{[i]} > 0, (\hat{L}^{-1} \hat{L})_{[i]} = e_i \implies \hat{L}^{-1} \hat{L}_{[i]} = e_i \quad \implies (\hat{L}^{-1})_{[i]} = e_i \\
\forall j : \text{ if } D(S)_{[j]} > 0, (\hat{U}^{-1} \hat{U})_{[j]} = e_j \implies \hat{U}^{-1} \hat{U}_{[j]} = e_j \quad \implies (\hat{U}^{-1})_{[j]} = e_j
\]

where in the above we have used the identity \((A^{-1} A)_{[i]} = e_i \) for any non-singular matrix \(A \), which follows from \(A^{-1} A = I_n \). Thus, the unique columns in \(L, U \) (refer to Lemma 2.2(a)) are retained as such in \(L\hat{L}^{-1}, U\hat{U}^{-1} \), respectively. Hence,

\[
(L\hat{L}^{-1}) D(X)(L\hat{L}^{-1})^T = \sum_{i; D(X)_{[i]} > 0} D(X)_{[i]} (L\hat{L}^{-1})_{[i]} (L\hat{L}^{-1})_{[i]}^T \quad (43f)
\]

\[
\text{and } (U\hat{U}^{-1}) D(S)(U\hat{U}^{-1})^T = \sum_{j; D(S)_{[j]} > 0} D(S)_{[j]} (U\hat{U}^{-1})_{[j]} (U\hat{U}^{-1})_{[j]}^T \quad (43f)
\]

Thus, we have constructed \(\hat{L}, \hat{U} \) satisfying (43d) which completes the proof.

Appendix D. Discussion on Scale Invariance of \(LDL^T \) Direction.

Suppose the data matrices \(C, A \) in the SDP (1) are scaled as \(U C U^T, U A U^T \) where \(U \) is an unit upper triangular matrix. We represent the scaled problem as

\[
\min_{W \in S^n} \quad (U C U^T) \bullet W \\
\text{s.t. } (U A U^T) \bullet W = b_{[j]} \forall j = 1, \ldots, m \\
W \succeq 0.
\]

The goal of this section is to show: If \((\Delta X, \Delta \lambda, \Delta z) \) is the \(LDL^T \) direction for the SDP in (1) at an iterate \((X, \lambda, z) \), then \((U^{-T} \Delta X U^{-1}, \Delta \lambda, \Delta z) \) is the \(LDL^T \) direction for the SDP in (44) at an iterate \((U^{-T} X U^{-1}, \lambda, z) \).
Observe that for every \(X \in S^n_{++} \) that is feasible to the SDP in (1), \(W = U^{-T}XU^{-1} \in S^n_{++} \) is feasible to the SDP in (44). Further, if \(L, D \) are the \(LDL^T \) factors for such an \(X \), then \(U^{-T}L, D \) are the \(LDL^T \) factors for \(W = U^{-T}XU^{-1} \). Let \((\Delta X, \Delta \lambda, \Delta z) \) denote the \(LDL^T \) direction for the SDP in (1) at the iterate \((X, \lambda, z) \). It can be readily verified that the residuals for the scaled SDP in (44) at an iterate \((U^{-T}XU^{-1}, \lambda, z) \) have the following relation to those defined in (22b)

\[
R_d(W, \lambda, z) = UR_dU^T, \\
r_p(W, \lambda, z) = r_p, \\
and r_c(W, \lambda, z) = r_c.
\]

The linear system for computing the \(LDL^T \) direction \((\Delta W, \Delta \lambda, \Delta z) \) for the SDP in (44) is

\[
\begin{align*}
&\text{mat} \left(-\sum_{i=1}^n z_{[i]} \nabla^2 d_{[i]}(W)\text{vec}(\Delta W) \right) + U A^T(\Delta \lambda)U^T - \sum_{i=1}^n \Delta z_{[i]} \nabla d_{[i]}(W) = UR_dU^T \\
&= A(U^T \Delta WU) + d_{[i]}(W)\Delta z_{[i]} \forall i = 1, \ldots, n \\
&= r_p = r_c_{[i]}
\end{align*}
\]

where we have used the identities \(\sum_{j=1}^m \Delta \lambda _j U A_j U^T = U A^T(\Delta \lambda)U^T \) and \((UA_j U^T) \bullet \Delta W = A_j \bullet (U^T \Delta WU) \). The steps outlined in §4.1 can be repeated to compute the \(LDL^T \) direction for (44). The key difference is that the occurrences of \(L \) in §4.1 should be replaced by \(U^{-T}L \). The step \(\Delta z \) in (45a) can be obtained as

\[
\Delta z_{[i]} = \frac{r_c_{[i]}}{d_{[i]}(X)} - \frac{z_{[i]}}{d_{[i]}(X)} \langle \nabla d_{[i]}(W) \bullet \Delta W \rangle.
\]

Substituting for \(\Delta z_{[i]} \) from (45b) into the first equation in (45a) results in

\[
\text{mat} \left(-\sum_{i=1}^n z_{[i]} \nabla^2 d_{[i]}(W)\text{vec}(\Delta W) \right) = UR_dU^T + UL^{-T}\text{Diag}(r_c \circ^{-1} d)L^{-1}U^T
\]

where the left hand side can be simplified as

\[
\text{mat} \left(-\sum_{i=1}^n z_{[i]} \nabla^2 d_{[i]}(W)\text{vec}(\Delta W) \right) + \sum_{i=1}^n \frac{z_{[i]}}{d_{[i]}(W)} \langle \nabla d_{[i]}(W) \bullet \Delta W \rangle \nabla d_{[i]}(W)
\]

\[
= UL^{-T} \left(K \circ (L^{-1}U^{-T} \Delta WUL^{-T}) \right) L^{-1}U^T.
\]

Note again that the simplification follows from replacing occurrences of \(L^{-1} \) and \(L^{-T} \) in (25) with \(L^{-1}U^T \) and \(UL^{-T} \) respectively. Substituting the simplification above into the left hand side of (45c), multiplying on the left and right by \(L^TU^{-1} \) and \(U^{-T}L \) respectively we obtain

\[
K \circ \Delta W + \tilde{A}^T(\Delta \lambda) = L^T R_d L + \text{Diag}(r_c \circ^{-1} d)
\]

where \(\Delta W = L^{-1}U^{-T} \Delta WUL^{-T} \) and \(\tilde{A}, \tilde{A}^T \) are defined in (27). The reduced system obtained by eliminating \(\Delta z \) can be written using (45e) and the scaled quantities in (27) as

\[
K \circ \Delta W + \tilde{A}^T(\Delta \lambda) = L^T R_d L + \text{Diag}(r_c \circ^{-1} d)
\]

\[
\Delta W = \tilde{A}(\Delta W) = r_p.
\]
A visual comparison of (28) and (45f) shows that \(\widetilde{\Delta X} = \widetilde{\Delta W} \). In other words, \(\Delta W = U^{-T} \Delta X U \) and substituting in (45b) allows to verify that the step \(\Delta z \) is identical to the one obtained in (23). Thus, scaling the data matrices \(C, A_j \) by an unit upper triangular matrix \(U \) results in the \(LDL^T \) direction being transformed from \((\Delta X, \Delta \lambda, \Delta z) \) to \((U^{-T} \Delta X U^{-1}, \Delta \lambda, \Delta z) \).

Appendix E. Discussion on Primal Nondegeneracy.

The primal nondegeneracy conditions are presented in terms of tangent spaces of semidefinite manifolds. In particular, we are interested in the following manifold of fixed rank, say \(p \), symmetric, semidefinite matrices

\[
\mathcal{M}_p = \{ X' \in \mathbb{S}^n \mid \text{rank}(X') = p \} \text{ and } \mathcal{M}_p^+ = \mathbb{S}_+^n \cap \mathcal{M}_p.
\]

where \(p \) for instance represents the rank of the solution to the SDP. Arnold [5] and Shapiro and Fan [39] derive the tangent space at \(X \in \mathcal{M}_p \) in terms of the spectral decomposition of \(X \). In the context of SDPs, it is sufficient to consider \(X \in \mathcal{M}_p^+ \). Further, we assume without loss of generality that \(X \in \mathcal{M}_p^+ \) satisfies

\[
d_{[1]}(X) \geq \cdots \geq d_{[p]}(X) > d_{[p+1]}(X) = \cdots = d_{[n]}(X) = 0.
\]

The tangent space to \(\mathcal{M}_p \) at \(X \in \mathcal{M}_p^+ \) can be defined by the linear equations [38, Eq. (23)],

\[
\mathcal{T}_X = \{ X' \in \mathbb{S}^n \mid v_i^T X' v_j = 0 \ \forall \ 1 \leq i \leq j \leq n - p \}
\]

where \(v_1, \ldots, v_{n-p} \) is a basis for the null space of the matrix \(X \). A basis for the null space of matrix \(X \in \mathcal{M}_p^+ \) can be obtained as follows. Let \(L, D \) denote the \(LDL^T \) factors of \(X \). Then \(X L^{-T} e_j = L D e_j \) holds for all \(j = (p + 1), \ldots, n \) where \(e_j \in \mathbb{R}^n \) is the unit vector. Hence, a basis for the null space of \(X \) is

\[
[v_1 \cdots v_{n-p}] = L(X)^{-T} [e_{p+1} \cdots e_n].
\]

It also follows from (48) that \(v_i^T X' v_j = 0 \implies e_{p+i}^T L^{-1} X' L^{-T} e_{p+j} = 0 \). Thus, at \(X \in \mathcal{M}_p^+ \) the tangent space is

\[
\mathcal{T}_X = \left\{ \begin{bmatrix} E & F \\ F^T & 0_{(n-p) \times (n-p)} \end{bmatrix} L^T \mid E \in \mathbb{S}^p, F \in \mathbb{R}^{p \times (n-p)} \right\}.
\]

Under the trace inner product for symmetric matrices, the space orthogonal to the tangent space \(\mathcal{T}_X \) is

\[
\mathcal{T}_X^* = \left\{ L^{-T} \begin{bmatrix} 0_p \times p & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & G \end{bmatrix} L^{-1} \mid G \in \mathbb{S}^{n-p} \right\}
\]

Further, define the set \(\mathcal{N} \) as the null space of the equality constraints

\[
\mathcal{N} = \{ X' \in \mathbb{S}^n \mid A_k \bullet X' = 0 \ \forall \ k = 1, \ldots, m \}
\]

and the space orthogonal to \(\mathcal{N} \) is

\[
\mathcal{N}^\perp = \left\{ Y \mid Y = \sum_{k=1}^m a_k A_k \right\}.
\]
From [3], \(X\) is said to be primal nondegenerate if \(X\) is feasible to SDP (1) and

\[\mathcal{T}_X + \mathcal{N} = \mathbb{S}^n. \]

We will prove a necessary and sufficient condition for primal nondegeneracy in terms of the defined spaces. Note this was shown in [3] using the spectral decomposition of the matrix \(X\).

Lemma E.1. Suppose \(X \in \mathcal{M}_p^+\) satisfying (46) is feasible for SDP (1) and \(\{A_k\}\) are linearly independent. Then, \(X\) is primal nondegenerate if and only if the matrices

\[\begin{bmatrix} (L^T A_k L)_{11} & (L^T A_k L)_{T1} \\ (L^T A_k L)_{21} & 0_{(n-p) \times (n-p)} \end{bmatrix} \]

are linearly independent, where \((\cdot)_{11} \in \mathbb{S}^p, (\cdot)_{21} \in \mathbb{R}^{(n-p) \times p}\) refer to the subblocks consistent with the notation in (11).

Proof. The condition (50) is equivalent to \(\mathcal{T}_X^\perp \cap \mathcal{N}^\perp = \{0\}\). Let \(B_k\) for \(k = 1, \ldots, m\) denote the matrices in (51). Suppose \(\{B_k\}\) are linearly dependent. Then

\[
\sum_{k=1}^{m} \beta_k B_k = 0 \text{ for some } \{\beta_k\} \text{ not all zero}
\]

\[
\iff \sum_{k=1}^{m} \beta_k L^T A_k L - \sum_{i=p+1}^{n} \sum_{j=p+1}^{n} \alpha_{ij} e_i e_j^T = 0 \text{ where } \alpha_{ij} = \sum_{k=1}^{m} \beta_k (L^T A_k L)_{ij}
\]

\[
\iff \sum_{k=1}^{m} \beta_k A_k = L^{-T} \left(\sum_{i=p+1}^{n} \sum_{j=p+1}^{n} \alpha_{ij} e_i e_j^T \right) L^{-1}
\]

\[
\iff T_X^\perp \cap N^\perp \neq \{0\}
\]

where the last statement follows by noting that the left hand side of the preceding statement is in \(N^\perp\) while the right hand side is in \(T_X^\perp\). This proves the claim. \(\square\)

A consequence of (51) is that the dual solutions are unique as shown next.

Lemma E.2. Suppose \(X^*\) is optimal to SDP (1) satisfying (46) and is primal nondegenerate. Then \((\lambda^*, z^*)\) satisfying (5) for \(\mu = 0\) are unique.

Proof. Suppose the multipliers are not unique. Since \(X^*\) is positive semidefinite, the unit lower triangular factor \(L(X^*)\) is not unique. Accordingly, suppose that

- \((\lambda^*, z^*)\) with \(L(X^*) = L^*\)
- \((\lambda^0, z^0)\) with \(L(X^*) = L^0\)

both satisfy (5) for \(\mu = 0\). By Lemma 2.2 and (46)

\[
L^* \neq L^0 \implies L_{22}^* \neq L_{22}^0
\]

\[
L^* = \begin{bmatrix} L_{11}^* & 0_{p \times (n-p)} \\ L_{21}^* & L_{22}^* \end{bmatrix}, \quad L^0 = \begin{bmatrix} L_{11}^0 & 0_{p \times (n-p)} \\ L_{21}^0 & L_{22}^0 \end{bmatrix}
\]

\[
\implies L^* = \hat{L} \begin{bmatrix} I_p & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & L_{22}^* \end{bmatrix}, \quad L^0 = \hat{L} \begin{bmatrix} I_p & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & L_{22}^0 \end{bmatrix}
\]

Note that \(\hat{L}\) is also an unit lower triangular factor of \(X^*\). By the complementarity condition in (5) and (46),

\[
z^*_{[1]} = \cdots = z^*_{[p]} = 0 \text{ and } z^0_{[1]} = \cdots = z^0_{[p]} = 0.
\]
Since \((\lambda^*, z^*)\) and \((\lambda^0, z^0)\) satisfy (5) we have by the first equation in (5) that
\[
C + A^*(\lambda^*) - (L^*)^{-T} \begin{bmatrix} 0_{p \times p} & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & D_2^* \end{bmatrix} (L^*)^{-1} = 0
\]
\[
C + A^*(\lambda^0) - (L^0)^{-T} \begin{bmatrix} 0_{p \times p} & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & D_2^0 \end{bmatrix} (L^0)^{-1} = 0
\]
where \(D_2^* = \text{Diag}(z_{[p+1]}, \ldots, z_{[n]})\) and \(D_2^0 = \text{Diag}(z_{[p+1]}, \ldots, z_{[n]})\). We multiply the equations in (52c) on the left and right by \(L^T\) and \(L\) respectively to obtain
\[
\hat{L}^T(C + A^*(\lambda^*))\hat{L} - \begin{bmatrix} 0_{p \times p} & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & D_2^* \end{bmatrix} (L^*)^{-T} D_2^* (L^*)^{-1} = 0
\]
\[
\hat{L}^T(C + A^*(\lambda^0))\hat{L} - \begin{bmatrix} 0_{p \times p} & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & D_2^0 \end{bmatrix} (L^0)^{-T} D_2^0 (L^0)^{-1} = 0.
\]
Subtracting the equations in (52d) obtain
\[
\sum_{k=1}^{m} (\lambda_{[k]}^* - \lambda_{[k]}^0) \hat{L}^T A_k \hat{L} - \sum_{i=p+1}^{n} \sum_{j=p+1}^{n} \alpha_{ij} e_i e_j^T = 0
\]
where \(\alpha_{ij} = (\langle L_{22}^* \rangle^{-T} D_2^* (L_{22}^*)^{-1} - \langle L_{22}^0 \rangle^{-T} D_2^0 (L_{22}^0)^{-1} \rangle_{ij} \)
\[
\implies \lambda^* - \lambda^0 = 0
\]
where the last implication follows by (51). Since \(\lambda^* = \lambda^0\), (52c) implies that \((L^*)^{-T}\), \(\text{Diag}(z^*)\) and \((L^0)^{-T}\), \(\text{Diag}(z^0)\) are both \(UDU^T\) factorizations of \((C + A^*(\lambda^*))\). By Lemma 2.2 and Remark 2.1 \(z^* = z^0\), proving the claim.

Appendix F. Discussion on Dual Nondegeneracy.

Let \((\lambda, S)\) be feasible for the dual SDP problem,
\[
\max_{\lambda \in \mathbb{R}^m, S \in \mathbb{S}^n} \quad \lambda^T \lambda
\]
\[
\begin{align*}
\text{s.t.} \quad & C + A^*(\lambda) - S = 0 \\
& S \succeq 0.
\end{align*}
\]
Let \(q = \text{rank}(S)\) and let \(U\) be the unit upper triangular factor in the \(UDU^T\) factorization of \(S\). According to Lemma 2.2 we have
\[
S = UDU^T \quad \text{with} \quad U = \begin{bmatrix} U_{11} & U_{12} \\ 0_{q \times (n-q)} & U_{22} \end{bmatrix}, \quad D = \begin{bmatrix} 0_{(n-q) \times (n-q)} & 0_{(n-q) \times q} \\ 0_{q \times (n-q)} & D_2 \end{bmatrix}
\]
where \(U_{11} \in \mathbb{R}^{(n-q) \times (n-q)}, U_{22} \in \mathbb{R}^{q \times q}\) are unit upper triangular, \(U_{12} \in \mathbb{R}^{(n-q) \times q}\) and \(D_2 > 0 \in \mathbb{R}^{q \times q}\) is diagonal. Following the exposition in Appendix E, the tangent space at \(S \in \mathcal{M}_q^+\) satisfying the decomposition in (54) is
\[
\mathcal{T}_S = \left\{ U \begin{bmatrix} 0_{(n-q) \times (n-q)} & F \\ F^T & G \end{bmatrix} U^T \mid G \in \mathbb{S}^q, F \in \mathbb{R}^{(n-q) \times q} \right\}.
\]
From [3], \((\lambda, S)\) is said to be dual nondegenerate if \((\lambda, S)\) is feasible to (53) and
\[
\mathcal{T}_S + \mathcal{N}^\perp = \mathbb{S}^n.
\]
We will prove a necessary and sufficient condition for dual nondegeneracy in terms of the defined spaces. This was shown in [3] using the spectral decomposition of \(S\).
Lemma F.1. Suppose \((\lambda, S) \in \mathbb{R}^n \times \mathcal{M}_q^+\) with \(S\) satisfying (54) is feasible to SDP (53) and \(\{A_k\}\) are linearly independent. Then, \(S\) is dual nondegenerate if and only if the matrices

\[(U^{-1}A_kU^{-T})_{11}\] span \(\mathbb{S}^{n-q},\]

where \((\cdot)_{11} \in \mathbb{S}^{(n-q)\times (n-q)}\) refers to the subblock consistent with the notation in (54).

Proof. Let \(U\) be an upper triangular factor in the \(UDU^T\) factorization of \(S\). Let \(W \in \mathbb{S}^n\) be any matrix. Then,

\[
W = U(U^{-1}WU^{-T})U^T = U \begin{bmatrix}
(U^{-1}WU^{-T})_{11} & (U^{-1}WU^{-T})_{21} \\
(U^{-1}WU^{-T})_{21} & (U^{-1}WU^{-T})_{22}
\end{bmatrix} U^T \\
= U \begin{bmatrix}
(U^{-1}WU^{-T})_{11} & \mathbf{0}_{(n-q)\times q} \\
\mathbf{0}_{q\times (n-q)} & \mathbf{0}_{q\times q}
\end{bmatrix} U^T + U \begin{bmatrix}
\mathbf{0}_{(n-q)\times (n-q)} & (U^{-1}WU^{-T})_{21} \\
(U^{-1}WU^{-T})_{21} & (U^{-1}WU^{-T})_{22}
\end{bmatrix} U^T.
\]

There exist \(\alpha_k\) for \(k = 1, \ldots, m\) such that

\[
(U^{-1}WU^{-T})_{11} = \sum_{k=1}^{m} \alpha_k(U^{-1}A_kU^{-T})_{11} \text{ if (57) holds.}
\]

Then,

\[
W = U \left(\sum_{k=1}^{m} \alpha_kU^{-1}A_kU^{-T} \right) U^T + U \begin{bmatrix}
\mathbf{0}_{(n-q)\times (n-q)} & F \\
F^T & G
\end{bmatrix} U^T \text{ if (57) holds,}
\]

with \(F^T = (U^{-1}WU^{-T})_{21} - \sum_{k=1}^{m} \alpha_k(U^{-1}A_kU^{-T})_{21}\)

\[
G = (U^{-1}WU^{-T})_{22} - \sum_{k=1}^{m} \alpha_k(U^{-1}A_kU^{-T})_{22}
\]

\(\Rightarrow \mathbb{S}^n = \mathcal{N}^\perp + \mathcal{T}_S\) if (57) holds.

where the implication follows from (49) and (55). The only if part of the claim follows from the definition of dual nondegeneracy in (55) and the form of \(\mathcal{N}^\perp\) in (49) and \(\mathcal{T}_S\) in (55).

A consequence of (57) is that the primal solution is unique as shown next.

Lemma F.2. Suppose \((\lambda^*, S^*)\) is optimal to the dual SDP (53) and is dual nondegenerate. Then the optimal solution \(X^*\) is unique.

Proof. By the complementarity condition and the decomposition for \(S^*\) in (54), any optimal solution \(X^*\) to SDP (1) must be of the form

\[
X^* = (U^*)^{-T} \begin{bmatrix}
X_{11} & \mathbf{0}_{(n-q)\times q} \\
\mathbf{0}_{q\times (n-q)} & \mathbf{0}_{q\times q}
\end{bmatrix} (U^*)^{-1}
\]

where \(X_{11} \succeq 0\). Substituting for \(X^*\) in the equality constraints obtain

\[
((U^*)^{-1}A_k(U^*)^{-T})_{11} \cdot X_{11} = b_{|k|} \forall k = 1, \ldots, m \Rightarrow X_{11} \text{ is unique}
\]

where the implication follows by (57), proving the claim. \(\Box\)
Appendix G. AHO Step Transformation.

The Newton step of the stationary conditions (2) corresponding to the AHO direction \((P = I)\) is computed by solving the linear system
\begin{equation}
\begin{align*}
\mathcal{A}(\Delta \lambda) - \Delta S &= R_p \quad (= -(C + A^*(\lambda) - S)) \\
\frac{1}{2}(S\Delta X + \Delta XS) + \frac{1}{2}(X\Delta S + \Delta SX) &= R_c \quad (= -\frac{1}{2}(XS + SX)).
\end{align*}
\end{equation}

At a solution \((X^*, \lambda^*, S^*)\) to SDP (1), it is well known that \(X^*, S^*\) share the eigenvectors [25] i.e.
\begin{equation}
X^* = Q^*\text{Diag}(\lambda^*)(Q^*)^T \quad \text{and} \quad S^* = Q^*\text{Diag}(\omega^*)(Q^*)^T
\end{equation}
where \(Q^* \in \mathbb{R}^{n \times n}\) is an orthonormal matrix of the eigenvectors of \(X^*\) and \(S^*\), and \(\lambda^*, \omega^* \in \mathbb{R}^n\) are the eigenvalues of \(X^*, S^*\), respectively. Further, \(\lambda^* \circ \omega^* = 0\) since \(X^*S^* = 0\). For the purposes of this section, we will assume that strict complementarity holds, \(\lambda^* + \omega^* > 0\) and further
\begin{equation}
\begin{align*}
\lambda^*_1 \geq \cdots \geq \lambda^*_p > \lambda^*_{p+1} = \cdots = \lambda^*_n = 0, \\
0 = \omega^*_1 = \cdots = \omega^*_p < \omega^*_{p+1} \leq \cdots \leq \omega^*_n.
\end{align*}
\end{equation}
Consider the following transformation of the step \(\Delta X\) and \(\Delta S\)
\begin{equation}
\widetilde{\Delta X} := (Q^*)^T \Delta X Q^* \quad \text{and} \quad \widetilde{\Delta S} := (Q^*)^T \Delta S Q^*.
\end{equation}

With this transformation of variables the linear system in (58) can be recast as
\begin{equation}
\begin{align*}
\widetilde{\mathcal{A}}(\Delta \lambda) - \Delta S &= (Q^*)^T R_p Q^* \\
\Omega_K \circ \Delta X + \Lambda_K \circ \Delta S &= (Q^*)^T R_c Q^*
\end{align*}
\end{equation}
where \(\widetilde{\mathcal{A}}(\Delta \lambda) = \lfloor (Q^*)^T A_1 Q^* \rfloor \cdots \lfloor (Q^*)^T A_m Q^* \rfloor \Delta \lambda \rfloor, \Omega_K = \frac{1}{2}(1_n(\lambda^*)^T + (\lambda^*)1_n^T)\) and \(\Lambda_K = \frac{1}{2}(1_n(\omega^*)^T + (\omega^*)1_n^T)\). The correspondences listed in Table 2 can be inferred by comparing the linear systems in (61) and (38).

Appendix H. Detailed Numerical Results.

Table 4 presents the results from solving the SDPLIB [7] instances using different algorithms described in §7. The reported results are for the convergence tolerance of \(10^{-6}\). We set an iteration limit of 200 for all algorithms. The results reported in Table 4 are for the iterate \(v^k\) that has the least \(\theta(v^k; 0)\) defined in §7. We will term this iterate the best iterate for short and denote it as \(v^\text{best} = (X^\text{best}, \lambda^\text{best}, \omega^\text{best})\). The best iterate is indeed the optimal solution when the algorithm achieves the tolerance of \(10^{-6}\). In Table 4, Primal Obj reported is \(C \cdot X^\text{best}\), Dual Obj corresponds to \(-b^T \lambda^\text{best}\), Opt Tol corresponds to \(\theta(v^\text{best}, 0)\) and \# iter - number of iterations taken by the algorithm, Time (s) - computational time in seconds, and Status reports the status of the algorithm at termination. The possible termination status are: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered. Termination of the algorithm with NUM is typically due to the Schur complement matrix being ill-conditioned with condition numbers on order of \(10^{15}\) or higher.
Table 4: Summary of performance on SDPLIB problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt Tol - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.

<table>
<thead>
<tr>
<th></th>
<th>LDT</th>
<th></th>
<th></th>
<th>HKM</th>
<th></th>
<th></th>
<th>HKMPC</th>
<th></th>
<th></th>
<th>SDPT3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primal Obj</td>
<td>Opt Tol</td>
<td>Dual Obj</td>
<td>Opt Obj</td>
<td># iter</td>
<td>Time (s)</td>
<td>Primal Obj</td>
<td>Opt Tol</td>
<td>Dual Obj</td>
<td>Opt Obj</td>
<td># iter</td>
</tr>
<tr>
<td>arch0</td>
<td>-5.66385×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-5.66385×10⁻³</td>
<td>9.5×10⁻²</td>
<td>36</td>
<td>-5.66767×10⁻³</td>
<td>3.3×10⁻²</td>
<td>OPT</td>
<td>-5.66516×10⁻³</td>
<td>3.1×10⁻²</td>
</tr>
<tr>
<td>arch2</td>
<td>-6.71143×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-6.71143×10⁻³</td>
<td>9.5×10⁻²</td>
<td>31</td>
<td>-6.71332×10⁻³</td>
<td>7.5×10⁻²</td>
<td>OPT</td>
<td>-6.71513×10⁻³</td>
<td>9.8×10⁻²</td>
</tr>
<tr>
<td>arch4</td>
<td>-9.72246×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-9.72246×10⁻³</td>
<td>9.5×10⁻²</td>
<td>24</td>
<td>-9.72604×10⁻³</td>
<td>7.7×10⁻²</td>
<td>OPT</td>
<td>-9.72979×10⁻³</td>
<td>7.7×10⁻²</td>
</tr>
<tr>
<td>arch8</td>
<td>-7.53671×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-7.53671×10⁻³</td>
<td>9.5×10⁻²</td>
<td>21</td>
<td>-7.54591×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-7.54607×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control1</td>
<td>-1.77802×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.77802×10⁻³</td>
<td>9.5×10⁻²</td>
<td>17</td>
<td>-1.77802×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.77802×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control2</td>
<td>-8.29908×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-8.29908×10⁻³</td>
<td>9.5×10⁻²</td>
<td>18</td>
<td>-8.29908×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-8.29908×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control3</td>
<td>-1.56329×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.56329×10⁻³</td>
<td>9.5×10⁻²</td>
<td>14</td>
<td>-1.56329×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.56329×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control4</td>
<td>-1.07947×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.07947×10⁻³</td>
<td>9.5×10⁻²</td>
<td>18</td>
<td>-1.07947×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.07947×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control5</td>
<td>-1.68395×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.68395×10⁻³</td>
<td>9.5×10⁻²</td>
<td>21</td>
<td>-1.68395×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.68395×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control6</td>
<td>-1.37026×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.37026×10⁻³</td>
<td>9.5×10⁻²</td>
<td>20</td>
<td>-1.37026×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.37026×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control7</td>
<td>-2.06205×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-2.06205×10⁻³</td>
<td>9.5×10⁻²</td>
<td>19</td>
<td>-2.06205×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-2.06205×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control8</td>
<td>-2.02859×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-2.02859×10⁻³</td>
<td>9.5×10⁻²</td>
<td>18</td>
<td>-2.02859×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-2.02859×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control9</td>
<td>-1.46753×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.46753×10⁻³</td>
<td>9.5×10⁻²</td>
<td>17</td>
<td>-1.46753×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.46753×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control10</td>
<td>-3.53203×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-3.53203×10⁻³</td>
<td>9.5×10⁻²</td>
<td>16</td>
<td>-3.53203×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-3.53203×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control11</td>
<td>-1.35946×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.35946×10⁻³</td>
<td>9.5×10⁻²</td>
<td>15</td>
<td>-1.35946×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.35946×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>control12</td>
<td>-1.29106×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.29106×10⁻³</td>
<td>9.5×10⁻²</td>
<td>14</td>
<td>-1.29106×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-1.29106×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
<tr>
<td>equalG11</td>
<td>-6.28833×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-6.28833×10⁻³</td>
<td>9.5×10⁻²</td>
<td>13</td>
<td>-6.28833×10⁻³</td>
<td>9.5×10⁻²</td>
<td>OPT</td>
<td>-6.28833×10⁻³</td>
<td>9.5×10⁻²</td>
</tr>
</tbody>
</table>
Table 4: Summary of performance on SDPLIB problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt Tol - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.

<table>
<thead>
<tr>
<th>Problem</th>
<th>LDT</th>
<th>HKM</th>
<th>HKPC</th>
<th>SDPT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpp100</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp142-1</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp142-2</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp142-3</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp142-4</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp250-1</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp250-2</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp250-3</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp250-4</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp600-1</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp600-2</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp600-3</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>gpp600-4</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>hinf1</td>
<td>NUM</td>
<td>NUM</td>
<td>NUM</td>
<td>NUM</td>
</tr>
<tr>
<td>hinf2</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
<td>OPT</td>
</tr>
<tr>
<td>hinf3</td>
<td>NUM</td>
<td>NUM</td>
<td>NUM</td>
<td>NUM</td>
</tr>
</tbody>
</table>
Table 4: Summary of performance on SDPLIB problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt Tol - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Primal Obj</th>
<th>Dual Obj</th>
<th># iter</th>
<th>Opt Tol</th>
<th>Time (s)</th>
<th>Status</th>
<th>Primal Obj</th>
<th>Dual Obj</th>
<th># iter</th>
<th>Opt Tol</th>
<th>Time (s)</th>
<th>Status</th>
<th>Primal Obj</th>
<th>Dual Obj</th>
<th># iter</th>
<th>Opt Tol</th>
<th>Time (s)</th>
<th>Status</th>
<th>Primal Obj</th>
<th>Dual Obj</th>
<th># iter</th>
<th>Opt Tol</th>
<th>Time (s)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>hin54</td>
<td>-5.094129e+01</td>
<td>0.9</td>
<td></td>
<td>OPT</td>
<td>-5.094105e+01</td>
<td>0.2</td>
<td>OPT</td>
<td>-5.094408e+01</td>
<td>0.2</td>
<td>OPT</td>
<td>-5.094438e+01</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin55</td>
<td>-2.141507e+01</td>
<td>9.5e-07</td>
<td>33</td>
<td></td>
<td>-2.141706e+02</td>
<td>4.2</td>
<td></td>
<td>-2.141706e+02</td>
<td>5.6e-08</td>
<td>18</td>
<td>OPT</td>
<td>-2.141700e+02</td>
<td>17</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin56</td>
<td>-3.230856e+02</td>
<td>0.05e-05</td>
<td>42</td>
<td>NUM</td>
<td>-3.230856e+02</td>
<td>13</td>
<td>NUM</td>
<td>-3.230856e+02</td>
<td>1.1e-05</td>
<td>35</td>
<td>OPT</td>
<td>-3.230856e+02</td>
<td>19</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>hin57</td>
<td>-4.180277e+02</td>
<td>0.5e-07</td>
<td>10</td>
<td>OPT</td>
<td>-4.180277e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-4.180277e+02</td>
<td>2.3e-07</td>
<td>24</td>
<td>OPT</td>
<td>-4.180277e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin58</td>
<td>-4.180186e+02</td>
<td>0.5e-07</td>
<td>29</td>
<td>NUM</td>
<td>-4.180186e+02</td>
<td>0.2</td>
<td>NUM</td>
<td>-4.180186e+02</td>
<td>3.5e-07</td>
<td>24</td>
<td>OPT</td>
<td>-4.180186e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin59</td>
<td>-1.611856e+02</td>
<td>9.5e-07</td>
<td>23</td>
<td>OPT</td>
<td>-1.611846e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-1.611846e+02</td>
<td>1.9e-06</td>
<td>20</td>
<td>OPT</td>
<td>-1.611846e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin60</td>
<td>2.624890e+01</td>
<td>9.5e-07</td>
<td>34</td>
<td>OPT</td>
<td>-2.624889e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-2.624889e+02</td>
<td>3.9e-07</td>
<td>25</td>
<td>OPT</td>
<td>-2.624889e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin61</td>
<td>2.624956e+01</td>
<td>9.5e-07</td>
<td>28</td>
<td>OPT</td>
<td>-2.624956e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-2.624956e+02</td>
<td>3.9e-07</td>
<td>25</td>
<td>OPT</td>
<td>-2.624956e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin62</td>
<td>-1.087506e+02</td>
<td>8.3e-07</td>
<td>39</td>
<td>OPT</td>
<td>-1.087491e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-1.087491e+02</td>
<td>5.5e-07</td>
<td>31</td>
<td>OPT</td>
<td>-1.087491e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin63</td>
<td>6.587348e+01</td>
<td>0.5e-07</td>
<td>95</td>
<td>NUM</td>
<td>-6.587345e+02</td>
<td>24</td>
<td>NUM</td>
<td>-6.587345e+02</td>
<td>7.6e-08</td>
<td>24</td>
<td>NUM</td>
<td>-6.587345e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin64</td>
<td>-3.193765e+01</td>
<td>2.2e-06</td>
<td>46</td>
<td>NUM</td>
<td>-3.193764e+01</td>
<td>2.2</td>
<td>NUM</td>
<td>-3.193764e+01</td>
<td>3.5e-07</td>
<td>37</td>
<td>NUM</td>
<td>-3.193764e+01</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin65</td>
<td>2.918496e+01</td>
<td>0.5</td>
<td>33</td>
<td>ITL</td>
<td>-2.918496e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-2.918496e+01</td>
<td>0.6</td>
<td>ITL</td>
<td>-2.918496e+01</td>
<td>0.5</td>
<td>ITL</td>
<td></td>
</tr>
<tr>
<td>hin66</td>
<td>1.960049e+01</td>
<td>9.5e-03</td>
<td>190</td>
<td>ITL</td>
<td>-1.960048e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-1.960048e+01</td>
<td>0.6</td>
<td>ITL</td>
<td>-1.960048e+01</td>
<td>0.5</td>
<td>ITL</td>
<td></td>
</tr>
<tr>
<td>hin67</td>
<td>1.299079e+01</td>
<td>0.5e-05</td>
<td>299</td>
<td>ITL</td>
<td>-1.299079e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-1.299079e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-1.299079e+01</td>
<td>0.5</td>
<td>ITL</td>
<td></td>
</tr>
<tr>
<td>hin68</td>
<td>-2.962077e+01</td>
<td>1.1e-06</td>
<td>129</td>
<td>ITL</td>
<td>-2.962076e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-2.962076e+01</td>
<td>0.5</td>
<td>ITL</td>
<td>-2.962076e+01</td>
<td>0.5</td>
<td>ITL</td>
<td></td>
</tr>
<tr>
<td>hin69</td>
<td>-3.231557e+01</td>
<td>9.5e-07</td>
<td>230</td>
<td>ITL</td>
<td>-3.231564e+02</td>
<td>0.5</td>
<td>ITL</td>
<td>-3.231564e+02</td>
<td>0.5</td>
<td>ITL</td>
<td>-3.231564e+02</td>
<td>0.5</td>
<td>ITL</td>
<td></td>
</tr>
<tr>
<td>hin70</td>
<td>8.291444e+02</td>
<td>5.4e-07</td>
<td>30</td>
<td>NUM</td>
<td>-8.291437e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-8.291437e+02</td>
<td>5.4e-07</td>
<td>25</td>
<td>NUM</td>
<td>-8.291437e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin71</td>
<td>8.291468e+02</td>
<td>5.4e-07</td>
<td>230</td>
<td>NUM</td>
<td>-8.291468e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-8.291468e+02</td>
<td>5.4e-07</td>
<td>25</td>
<td>NUM</td>
<td>-8.291468e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin72</td>
<td>-2.615712e+02</td>
<td>0.5e-07</td>
<td>248</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin73</td>
<td>-2.615714e+02</td>
<td>0.5e-07</td>
<td>248</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>NUM</td>
<td>-2.615714e+02</td>
<td>0.5</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin74</td>
<td>-1.149006e+02</td>
<td>9.5e-07</td>
<td>24</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>6.5e-08</td>
<td>10</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>0.2</td>
<td>OPT</td>
<td></td>
</tr>
<tr>
<td>hin75</td>
<td>-1.149006e+02</td>
<td>9.5e-07</td>
<td>24</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>0.2</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>6.5e-08</td>
<td>10</td>
<td>OPT</td>
<td>-1.149006e+02</td>
<td>0.2</td>
<td>OPT</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table represents the performance of various implementations across different problems, showing how well they handle the problems in terms of objective values, computational time, and convergence criteria.
Table 4: Summary of performance on SDPLIB problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt Tol - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.

| Problem | Primal Obj | Dual Obj | Opt Tol | # iter | Time (s) | Primal Obj | Dual Obj | Opt Tol | # iter | Time (s) | Primal Obj | Dual Obj | Opt Tol | # iter | Time (s) | Primal Obj | Dual Obj | Opt Tol | # iter | Time (s) |
|---------|------------|----------|---------|--------|---------|------------|----------|---------|--------|--------|---------|------------|----------|---------|--------|--------|---------|------------|----------|---------|--------|--------|
| mp124-2 | -3.08430e+01 | 5.0e-07 | OPT | -2.99859e+02 | 22 | 1.7 | -3.08430e+01 | 5.0e-07 | OPT | -2.99859e+02 | 22 | 1.7 |
| mp124-3 | -3.07701e+02 | 1.0e-07 | OPT | -2.99859e+02 | 22 | 1.7 | -3.07701e+02 | 1.0e-07 | OPT | -2.99859e+02 | 22 | 1.7 |
| mp124-4 | -5.04410e+02 | 9.5e-07 | OPT | -5.04410e+02 | 22 | 1.7 | -5.04410e+02 | 9.5e-07 | OPT | -5.04410e+02 | 22 | 1.7 |
| mp250-1 | -3.17354e+02 | 9.6e-07 | OPT | -3.17354e+02 | 22 | 1.7 | -3.17354e+02 | 9.6e-07 | OPT | -3.17354e+02 | 22 | 1.7 |
| mp250-2 | -3.19390e+02 | 9.6e-07 | OPT | -3.19390e+02 | 22 | 1.7 | -3.19390e+02 | 9.6e-07 | OPT | -3.19390e+02 | 22 | 1.7 |
| mp250-3 | -9.81716e+02 | 9.5e-07 | OPT | -9.81716e+02 | 22 | 1.7 | -9.81716e+02 | 9.5e-07 | OPT | -9.81716e+02 | 22 | 1.7 |
| mp250-4 | -3.91856e+01 | 9.5e-07 | OPT | -3.91856e+01 | 22 | 1.7 | -3.91856e+01 | 9.5e-07 | OPT | -3.91856e+01 | 22 | 1.7 |
| mp500-1 | -5.05748e+03 | 9.6e-07 | OPT | -5.05748e+03 | 22 | 1.7 | -5.05748e+03 | 9.6e-07 | OPT | -5.05748e+03 | 22 | 1.7 |
| mp500-2 | -1.07056e+03 | 9.5e-07 | OPT | -1.07056e+03 | 22 | 1.7 | -1.07056e+03 | 9.5e-07 | OPT | -1.07056e+03 | 22 | 1.7 |
| mp500-3 | -1.84790e+03 | 9.5e-07 | OPT | -1.84790e+03 | 22 | 1.7 | -1.84790e+03 | 9.5e-07 | OPT | -1.84790e+03 | 22 | 1.7 |
| mp500-4 | -3.56073e+03 | 9.5e-07 | OPT | -3.56073e+03 | 22 | 1.7 | -3.56073e+03 | 9.5e-07 | OPT | -3.56073e+03 | 22 | 1.7 |
| qap6 | +1.43091e+02 | 9.6e-07 | OPT | +1.43091e+02 | 22 | 1.7 | +1.43091e+02 | 9.6e-07 | OPT | +1.43091e+02 | 22 | 1.7 |
| qap7 | +1.24839e+02 | 9.5e-07 | OPT | +1.24839e+02 | 22 | 1.7 | +1.24839e+02 | 9.5e-07 | OPT | +1.24839e+02 | 22 | 1.7 |
| qap8 | +1.56574e+02 | 9.5e-07 | OPT | +1.56574e+02 | 22 | 1.7 | +1.56574e+02 | 9.5e-07 | OPT | +1.56574e+02 | 22 | 1.7 |
| qap9 | +1.43344e+03 | 9.6e-07 | OPT | +1.43344e+03 | 22 | 1.7 | +1.43344e+03 | 9.6e-07 | OPT | +1.43344e+03 | 22 | 1.7 |
Table 4: Summary of performance on SDPLIB2 problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt Tol - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.

<table>
<thead>
<tr>
<th>Problem</th>
<th>LDL<sup>T</sup></th>
<th>HKM</th>
<th>HKMPC</th>
<th>SDPT3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primal Obj</td>
<td>Dual Obj</td>
<td># iter</td>
<td>Time (s)</td>
</tr>
<tr>
<td>lqap10</td>
<td>-1.992738e+03</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>s30</td>
<td>-2.023393e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>theta1</td>
<td>-2.259950e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>theta3</td>
<td>-3.287590e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>theta4</td>
<td>-4.216686e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>theta5</td>
<td>-5.232111e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>theta6</td>
<td>-6.347689e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true1</td>
<td>-8.309586e+00</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true2</td>
<td>-1.233864e+02</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true3</td>
<td>-9.110905e+00</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true4</td>
<td>-9.016096e+00</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true5</td>
<td>-1.320357e+02</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true6</td>
<td>-1.018138e+01</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true7</td>
<td>-1.242145e+02</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>true8</td>
<td>-1.331146e+02</td>
<td>9.6e-07</td>
<td>OPT</td>
<td>2.3e-07</td>
</tr>
<tr>
<td>Problem</td>
<td>HCM</td>
<td>IKCPC</td>
<td>DQFT</td>
<td>OPT</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Primal Obj</td>
<td>Time (s)</td>
<td>Status</td>
<td>Time (s)</td>
<td>Status</td>
</tr>
<tr>
<td>1</td>
<td>2.1</td>
<td>OK</td>
<td>3.2</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>OK</td>
<td>3.4</td>
<td>OK</td>
</tr>
</tbody>
</table>

Summary of performance on SDPLIB problems with different implementations. Primal Obj - primal objective, Dual Obj - dual objective, Opt. Tol. - norm of the error in termination criterion, # iter - number of iterations, Time (s) - computational time in seconds, Status - termination status: OPT - solved to tolerance, ITL - iteration limit reached, NUM - numerical issues encountered.
Acknowledgement. We thank Ajit Gopalakrishnan for his efforts in the initial development of the ideas. We are grateful to the anonymous referees for their careful reading of the manuscript and suggestions that have significantly improved the presentation.

REFERENCES

