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Abstract
In this work, we propose a novel adaptive control on digital Doherty Power Amplifier (DPA)
for efficiency andgain enhancement. Unlike traditional DPA design, we propose Simultane-
ously Perturbated Stochastic Approximation (SPSA) optimization algorithm by considering
phase difference, power distribution and gate voltage parameters of main and peak amplifiers
in order to achieve optimal performance. The optimal performance is defined as good linear-
ity, Power Added Efficiency (PAE) and gain. We mainly investigate the efficiency and gain
improvements since the linearity can be separately addressed by traditional DPD techniques.
Even though we found that the cost function of optimization exists in several local optimums,
they are very close, and thereby local minimum is not of great concern in this optimization.
In addition, we approximate the DPA circuit model for the fast verification using regression
model. Finally, we exam the algorithm in SystemVue and ADS co-simulation environment.
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Abstract—In this work, we propose a novel adaptive control
on digital Doherty Power Amplifier (DPA) for efficiency and
gain enhancement. Unlike traditional DPA design, we propose
Simultaneously Perturbated Stochastic Approximation (SPSA)
optimization algorithm by considering phase difference, power
distribution and gate voltage parameters of main and peak
amplifiers in order to achieve optimal performance. The optimal
performance is defined as good linearity, Power Added Efficiency
(PAE) and gain. We mainly investigate the efficiency and gain
improvements since the linearity can be separately addressed by
traditional DPD techniques. Even though we found that the cost
function of optimization exists in several local optimums, they are
very close, and thereby local minimum is not of great concern in
this optimization. In addition, we approximate the DPA circuit
model for the fast verification using regression model. Finally,
we exam the algorithm in SystemVue and ADS co-simulation
environment.

Index Terms—Doherty Power Amplifier, adaptive control,
SPSA.

I. INTRODUCTION

Traditional Doherty Power Amplifier (DPA) offers high
efficiency over limited RF bandwidth. In order to resolve
efficiency and bandwidth bottleneck while maintaining the
simple DPA configuration, we propose a digital DPA [1] based
adaptive control to optimize its efficiency, gain and linearity.

Traditional DPA (Fig. 1-(top)) design which is based on
single-end input configuration consists of an analog power
splitter, tuned phase aligner, carrier PA at class-AB and peak
PA at class-C mode, and output combiner. In order to improve
DPA performance, the designer needs to manually tune the
circuit parameters, and the tuning process only specifies for
fixed parameters such as input power, frequency, etc. While in
the practical scenarios, the optimal control parameters vary for
different inputs and circuit states, which is a common problem
in pure analog based design.

Unlike traditional DPA, digital DPA (Fig. 1-(bottom)) is
programmable so that it can reduce circuit tuning complexity
for designer and can fully take into account circuit impair-
ments. Therefore, digital DPA is flexible providing better
performance compared with analog DPA. In our work, we
propose a dual input digital DPA based on online optimization
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Fig. 1: Single input traditional DPA (top) and, Dual-input digital DPA (bottom)

technique to adaptively tune the control parameters of DPA.
To the best of our knowledge, this work reports the first online
learning based optimization of dual input DPA with the state-
of-the-art performance.

II. RELATED WORK

There are many research works that have been done towards
optimizing the performance of the DPA. Authors in [2][3],
using tradition DPA proposed an uneaven power distribution
mechanism where more input power was delivered to the
peaking amplifier rather than the main amplifier for optimized
linear power operation and envelope tracking[3] to increase the
load modulation efficiency. Besides, work [4] proposed asym-
metric power distribution for improved linearity, efficiency and
peak envelope power by increasing the size of the peaking
amplifier transistor and its conduction angle. In a recent work
[5], a two stage DPA with an optimized current for the peak
amplifier by making use of two stage opearion capability of
the DPA. In addition, works [6] and [7], proposed one DPD
configuration for dual-input nonlinearity: main PA utilize 2D
Generalized Memory Polynomial (GMP) based DPD model.
The efficiency-optimized function is a polynomial function,
and the coefficients are extracted via sweeping both amplitudes



of the RF and envelop input signals. Since traditional analog
DPA requires cumbersome configurations, [2], [3], [4],and [5]
use the LUT-based method in DSP to compensate the phase
misalignment of main PA and peak PA. Recently, a machine
learning approach, Multiobjective Bayesian Optimization for
Active Load Modulation for Doherty amplifier is proposed in
work [8] which can optimize the DPA’s matching networks to
align the desired and the realized impedance trajectories both
at saturation and power backoff from 1.5GHz to 2.4 GHz. This
work still considers single input DPA in their work. To achieve
highly efficient operation of RF power amplifier requires
normally driving PA to its saturation, which unfortunately,
results in distortion of signal. In our project, we focus on
dual-input DDPA with aim to achieve optimal PAE, Gain and
linearity.

III. PROPOSED MODEL

Our proposed approach is to adaptively optimize the input
parameters on the fly. As we will show in later sections
that different performance goals contain the trade-off, our
algorithm still offers high flexibility and efficiency to obtain
a variety of optimal solutions based on design constraints.
Additionally, our method is based on black-box optimization,
and thereby it suits for a variety of PA without engineering
tuning.

A. RF configuration
As we mentioned previously, our RF circuit configuration

doesn’t require hand-tuned phase shifter and analog splitter.
Our design goal is to maximize the PAE, while maintaining
high gain and good linearity. Traditional digital linearity is
achieved through Digital Pre-Distortion (DPD). We decoupled
the problem into linearity and efficiency, since the linearity
can be resolved by DPD, which is out of scope of this paper.

We have four control ports: power ratio, phase alignment,
main gate bias, peak gate bias, illustrated as follows:

1) Power ratio, α: Power ratio controls the amount of input
power distribution between both main PA branch and peak PA
branch as follows,

Pmain = α ·Pin W; Ppeak = (1−α) ·Pin W (1)

Where Pin is the input power to the DPA. The ratio could
control the input power of peak PA to be completely off during
the low power region to prevent unnecessary power leakage

2) Phase alignment, φ: phase alignment between main
PA path and peak PA path is critical which affects overall
performance (gain, linearity,and PAE), but phase varied based
on many known and unknown factors, such as gate bias,
temperature, bandwidth, and modulation format. Hence, pa-
rameter φ defines the phase difference between the main PA
and peak PA input signals. Note that the control ports contains
phase alignment component, and running phase shift on RF
frequency is very challenging on digital circuit. We therefore
implement the phase shift issue at the baseband signal as
follows:

ym(t) = Re{Am · e j(2π fmt+φm)} (2)

Where Am, fm, and φm are the amplitude, frequency and
phase of the based band signal. Assuming that the carrier
signal follows the pattern yc = Re{Ac · e j(2π fct+ξc)} with carrier
frequency fc and initial phase ξc, the modulated signal can be
expressed as:

yRF = yc · ym = Re{Am ·Acexp j(2π( fc+ fm)t+ξc+φm)} (3)

3) Main gate bias, Vgsm and Peak Gate bias,Vgsp: gate
bias adjusts the amplifier performance over temperature as well
as RF signal. Gate bias, together with power ratio, α, decides
the output contribution ratio for main PA and peak PA. Note
that bias configuration is also affecting phase alignment.

According to ADS simulation, the optimal control ports
only determined by input configurations, such as input power
level, carrier frequency, etc. This is caused by the simplified
model from EDA tools, but in real cases there exist other
factors affecting the circuit dynamics (ex: temperature).

Fortunately, some latent factors such as temperature varied
slowly in time, and in small time window we can treat them
as constants so that these dynamics can be ignored. If we take
into account the dynamics in real time, this becomes a typical
control problem. Besides, we assume that the circuit model
are unknown, then, the problem is actually a reinforcement
learning. Solving reinforcement learning on DPA circuit is
not trivial due that state space and action space are both
in continue space, and DPA circuit normally running at RF
frequency, which is very difficult for digital circuit to control
in real time.

If we ignore the minor dynamics, the optimal control
parameters only depends on the input configurations, which
becomes an optimization problem. To compensate these minor
dynamics, we simply re-estimate parameters of the circuit in a
temporal window. This method is simple due to gradient-free
approach but effective.

The optimization problem can be defined as the optimal
control parameter, u∗ with loss J(u∗) defined as:

u∗ = argmin
u∈U

J(u) (4)

Where we use J(u) to represent DPA objective output since it
does not have explicity mathmatic model, details are described
in Section III-C. While the updates rule to find u based on:

un+1 = un−λn · ĝn(un) (5)

Where λn is the learning rate which decays in every iter-
ation. In our DPA circuit, we relaxed our problem that we
assume the function which projects control ports to PAE and
gain remains unknown, and thereby ĝn(un) is an estimated
gradient. Recall that Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm [9][10], in order to estimate
the gradients (we assume control ports form a p-dimensional
vector), we have:



ĝn(un) =



J(un+cnδ0)−J(un−cnδ0)
2cnδ0

J(un+cnδ1)−J(un−cnδ1)
2cnδ1
...

J(un+cnδp)−J(un−cnδp)
2cnδp


(6)

And δ is random perturbation vector that control the search
directions. Simply replacing the ĝn(un) in (5) with (6) will find
the local optimal.

Baysian optimization is an alternatives compared with SPSA
algorithm. [8] utilizes Baysian optimization to search the PA
design varaibles, while our work falls into the adaptive control
problem. Unlike design variables in [8], control ports needs to
be re-estimated for certian periods, requiring efficient compu-
tation whereas baysian optimization is restricted to problems
of moderate dimensions [11]. Additionally, the underlying
DPA dynamics are affected by many hidden factors and thus
the control ports are not stationary whereas common Bayisan
optimizer assume parameteric prior like Gaussian process to
be stationary.

B. Local Optima and Global Optima

It turns out that the DPA optimization problem is highly
non-convex and NP-hard to solve. In order to visualize con-
vexity of the object function, for intuitive purpose, we plot
the cost function on PAE as optimization goal shown in Fig.
2. Because that the control port is a 4-dimensional vector, we
use TSNE [12] for dimension reduction while keeping original
high dimensional data distribution. In our ADS sweep setup,
we set very coarse step size for less computation time and to
cover wide range of control parameters. In Fig. 2, the dots
represent the cost function and red dots are the optimal points
in which PAE ranges between 60% to 70%.

Fig. 2: Objective function of our DPA model based on ADS swept results: X label and
Y label are dimension reduced control ports, they don’t have any physical meaning but
used for visualization purpose.

As shown in Fig. 2 that the DPA optimization is highly
non-convex, but it contains very large amount of the local

minimums and they are very close. It is also interpretable
that peak gate bias is coupled with peak branch phase (For
example, while changing the peak gate bias that affects peak
branch phase, phase shifter should adaptively align to keep
high PAE) and power ratio is correlated with peak gate
bias, which also affects main gate bias. All these coupled
relations lead the optimization problem to multiple solutions,
and thereby cost function is non-convex.

Even though gradient based optimization algorithm would
easily fall into the local optimum, adding randomness can
overcome such issue. In our algorithm, by using multiple
random initialization helps us to obtain multiple optimal
points, but as we will show many optimal are close, in terms
of the objective function.

C. Optimization Algorithm

Algorithm 1 SPSA based optimization of digital DPA
Input: θ = [Vgsm,Vgsp,φ,α]; % Initial control parameters
Input: θL = [VgsmL,Vgsp,L,φL,αL]; % Lower bound
Input: θU = [VgsmU ,Vgsp,U ,φU ,αU ]; % Upper bound
Input: c, λ0 γ and γ1; % perturbation parameters
Output: θ∗ % Optimal control parameters

1: while adaptation==True do
2: while converge==False do
3: k ++
4: clip θ between θL and θU
5: ck = c

kγ
6: λk = λ

(λ0+k)α
7: ∆ = Bernouli(1, p) ; % Bernouli perturbation
8: θ+ = theta + ck ·∆; % +ve perturbation
9: θ− = theta− ck ·∆; % -ve perturbation

10: Determine C(θ−) and C(θ+)
11: Calculate: g =

(C(θ+)−C(θ−))
2·ck ·∆

12: Update: θ = θ−λk ·g
13: end while
14: Obtain optimal control parameter, θ∗
15: end while

The optimization procedure for digital DPA is shown in
Algorithm 1. In the previous section, our optimization was
with respect to single objective function, PAE. Whereas, here
we set the optimization goal as multi-task optimization, which
optimize amplifier gain and PAE simultaneously. Gain typi-
cally varies from 10 dB to 16 dB, while the PAE numerically
ranges from 30% to 70%. In addition, we set an additional
factor ω, a weight factor to decide the importance of each
parameter of the objective function. The weight factor could
be either fixed or variable type. The varied weight offered a
flexible way for objective function control parameter based
on design specifications and requirements. For example, when
user sets ω as function of input power, the optimization could
prefer high PAE in low input power range, while high gain
in high input power range. In our current scenario, we have
set ω = 0.75 as we performed our experiment at input power
Pin = 28dBm. In general, it can be set as ω = Pin

Pinmax
.The

optimization equation with modified objective function is
defined as follows,

max C(θ) = ω∗Gain + (1−ω)∗PAE

s.t: θL ≤ θ ≤ θU (7)



where θ is the vector of control parameters defined as,
θ = [Vgsm,Vgsp,φ,α] which is bounded by upper and lower
bounds θU and θL respectively.

For SPSA, proper initialization of control parameters is
critical to search within the limit to achieve convergence
speed and optimal control performance (PAE, gain). We use
random initialization of parameters which could overcome
the local optima and can stay close to the global optima.
We also consider that there exists circuit dynamics but to
simplify the problem, we assume that these dynamics are
slowly changing, for example, temperature of the amplifier
doesn’t change rapidly. Re-estimating the circuit parameters
periodically is the most simple and effective way to keep the
DPA working in optimal condition.

IV. BENCHMARK AND RESULTS

We simulate the adaption algorithm in ADS EDA co-
simulated with SystemVue. To verify the algorithm, we use a
regression model to approximate DPA model. Then based on
this approximated model, we optimize the control parameters.
After verifying the algorithm, we co-simulate it in ADS and
SystemVue. More detailed setup is described in later part of the
section. Finally, we illustrate how to implement the algorithm
in the Test Bench environment for real devices.

A. Approximated Regression Model

Approximation of the optimization algorithms serves two
main purposes: A) quick verification of the optimization algo-
rithm. B) before operate on the real device, instead of directly
optimizing in real time test-bench, we can perform adaption
on the regression model[13] and we can take the optimized
parameters and use those parameters in real time test-bench.
We experimented several regression techniques based on DPA
swept data shown in Table I.

Regression Accuracy
Algorithm Standardization Accuracy (MSE)

Polynomial + L2 norm No 0.012
Polynomial + L2 norm Yes 0.012

Neural Network (6-layer) No 0.057
Neural Network (6-layer) Yes 0.00027

TABLE I: Regression model performance and comparison

We swept DPA parameters in ADS and stored them as re-
gression training/testing set. The training and testing dataset is
based upon cross-validation for better generalization purpose.
Note that for dumped data, input is a continous wave(CW)
signal running at 3.6 GHz, and input power increases steadily
from 22 dBm to 29 dBm. We adopted Polynomial regression
via scikit-learn Python package, and we found that when the
polynomial order is set to 3, the accuracy is reasonably good
(we set the PAE and gain as label). Higher order will cause
overfitting. L2 normalization is used as prior to normalize the
input data. The accuracy is measured based on Mean Squared
Error (MSE) (loss criterion is also MSE). Additionally, stan-
dard neural network based regression, which is implemented

by 6-layer feedforward neural network with rectifier activation
using Tensorflow [13] shows worse results than the polynomial
regression. With the pre-processing by standardization, which
normalize the feature with the same mean and variance,
significantly improves the prediction accuracy.

Fig. 3: Single-ended DPA PAE for different frequency

Fig. 4: Gain performance when we use different optimization criterion.

Fig. 5: PAE performance when we use different optimization criterion.
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Based on the regression model, we perform the Algorithm
1 to achieve optimized PAE. Our comparison base line is a
single ended analog DPA design. The parameters are manually
tuned to obtain the optimal PAE for 3.6 GHz. Therefore, the
performance dropped when operating other frequencies shown
in Fig. 3 (non-adaptive traditional design).

In our design, instead of engineering tuning, we quickly run
the optimization. Again, the origin curve performance is tuned
specified for 3.6 GHz with non-adaptive property. Running
in other frequency is much worse than the baseline, while
our algorithm is able to adapt different frequencies and input
power. We found that PAE and gain is also trade-off shown
in Fig. 4 and 5 (input power from 22 dBm to 29 dBm): when
we optimize only on PAE, gain decrease heavily shown as
red line. Instead, if we optimize only on gain, the results
is slightly better than engineering tuned results in terms of
PAE and gain. Therefore, in our design, we set our cost
function to as multi-parameter optimization as we mentioned
in Algorithm 1. Furthermore, we can set the constrained
optimization: Maximize the PAE while keep gain at certain
level.

B. SystemVue and ADS co-simulation
We also setup the design for SystemVue and ADS co-

simulation environment. In the SystemVue, we use Matlab
script to implement the Algorithm 1, sampled at 15.36 MHz
phase, the system gradually converge to minimize the loss
function (shown in Fig. 6). In SystemVue setup, we have one
source and split into two branches. Then, we feedback two
branches output into the control module (optimization), which
mimic the digital DPA approach. Figures 7 and 8 shows the co-
simulation results where the PAE is achieved around 70% and
Gain is achieved around 16 dB with the input source running
at 26 dBm with 3.6 GHz. The results illustrate the algorithm
convergence in less than 1000 iterations, becoming stable.

Additionally, the hyper parameters in Algorithm 1 needs to
be handled carefully: we choose γ1 to be 0.606 and γ to be
0.101 according to [10] and the parameter c to be 1 since
during the optimization step [C(θ+)−C(θ−)] will create the

large value for PAE term. We found that c could be set as 0.1
if we only optimize on gain.

Fig. 7: ADS SystemVue co-simulation: Achieved PAE under SPSA optimization

Fig. 8: ADS SystemVue co-simulation: Achieved Gain under SPSA optimization.



C. Testbench implementation
Figure 6 shows the testbench setup when implementing the

co-simulation flow on real PA. We replace the ADS simulation
block with the physical DPA. When running the testbench, it
contains training phase and prediction phase, and we describe
each one as following.

1) Training phase: During the training phase, the input is
set as CW signal which swept input power and frequency.
The swept configurations are further processed by Algorithm
1 to optimize the DPA performance via control ports. When
Algorithm 1 estimates the control ports for optimal PAE
and gain, the optimal control parameters could be recorded
by the Look-Up Table (LUT) at each step, where step size
represents the granularity of different configurations (input
power, frequency). The training resources (training time, LUT
memory size, etc.) will be larger but more precise if the LUT
step size is smaller. In our case, we set the step size as
1 for each input power (0 dBm to 30 dBm, 30 steps), and
frequency as 0.1 (3.3 GHz to 3.9 GHz, 7 steps). Therefore,
the LUT for optimization is needed to run the Algorithm 1
for 210 iterations. Note that this process only consumes longer
computation time at the initial stage since all parameters are
randomly initialized and future estimation are carried on from
the previous optimal values, the convergence speed will be
much faster.

2) Prediction phase: After the training phase, the pre-
trained control ports is already stored in LUT. As we men-
tioned in training phase, our experiment has 210 parameters
(≈ 3.3 MB) to store, which is small enough for modern
DSP/FPGA/ASIC devices. The computation in prediction
phase is also light due to control on-chip SRAM based on
input configurations. All context switch for control ports is
adapted by baseband signal frequency, which is desirable for
digital circuit.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel adaptive DPA design
to enhance the PAE and gain. We take into account several
control factors not only limited on phase alignment, but also
gate bias and power distribution ratio at the source. Our
performance shows significant improvement in the gain and
PAE as compared with single-ended DPA design. And our
implementation is generalizable for all different types of DPA.
We summarize our future works as follows: 1) Implementation
of the Optimization technique in Real-time testbench. 2) Rein-
forcement learning agent as controller to control the dynamics.
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