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Automated Driving: Safe Motion Planning Using
Positively Invariant Sets

Karl Berntorp, Avishai Weiss, Claus Danielson, Ilya V. Kolmanovsky, and Stefano Di Cairano

Abstract—This paper develops a method for safe lane changes.
We leverage feedback control and constraint-admissible positively
invariant sets to guarantee collision-free closed-loop trajectory
tracking. Starting from an initial state of the vehicle and obstacles
in the region of interest, our method steers the vehicle to the
desired lane while satisfying constraints associated with the future
motion of the obstacles with respect to the vehicle. We connect
the initial state with the desired lane using equilibrium points and
associated positively invariant sets of the vehicle dynamics, where
the positively invariant sets are used to guarantee safe transitions
between the equilibrium points. An autonomous highway-driving
example with a receding-horizon implementation shows that
our method is capable of generating safe dynamically feasible
trajectories in real-time while accounting for obstacles in the
environment and modeling errors.

I. INTRODUCTION

Autonomous vehicles are complex decision-making systems
that integrate advanced and interconnected sensing and control
components. While autonomous vehicles increasingly begin
testing on public roads, production vehicles are more com-
monly being equipped with advanced driver-assistance systems
(ADAS) such as adaptive cruise control and lane-change assist.
This is driven by both safety and economic aspects such as
the high number of traffic accidents associated with overtaking
and lane-change maneuvers and potential fuel savings [1].

A fundamental component in the control and guidance layer
of an autonomous vehicle control system or in a sophisticated
ADAS is the motion planner, which produces a desired tra-
jectory that the vehicle should follow based on the output
from a sensing & mapping module. Autonomous vehicle
control is commonly divided into trajectory generation (motion
planning) and trajectory tracking (vehicle control) [2]. Tra-
jectory generation is often performed using either sampling-
based methods such as rapidly-exploring random trees (RRTs)
[3], [4] or graph-search methods [5]. Trajectory tracking in
automotive is frequently done by leveraging classical control
methods, for example, PID control, or more advanced methods
such as model-predictive control (MPC) [6]. Integrating the
planning and control into a single module has also been
considered [7], however, in such a case a more complex and
difficult problem needs to be solved. Decoupling is appealing
as it simplifies the problem and makes it more tractable. This
is the dominant approach in the robotics community [8] and
is also used in automotive applications [9], [10]. However, the
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time scales, dynamics, and stringent performance and driving
requirements that are present in automotive systems motivate
to pursue a more integrated approach to planning and control
than in traditional robotics. Thus, an important question is how
to connect the motion planning and vehicle control to ensure
performance and safety of the vehicle [6], [11]. There are
methods for unifying motion planning and real-time vehicle
control into one module [7], [12]–[14]. However, this often
leads to nonconvex problems [13].

This paper develops a method for motion planning and
tracking which enables overtaking and lane-change maneuvers.
Our method steers the vehicle to the desired lane using
state-feedback controllers, while satisfying input and state
constraints associated with the future motion of the obstacles
with respect to the vehicle. Our method uses a graph search
over a finite set of lateral displacements on the road to find
a path from initial state to desired lane, where a constraint
admissible positively invariant set is associated with each
lateral displacement. The positively invariant sets determine
a safe trajectory to reach the desired lane, thereby integrating
motion planning and vehicle control in a systematic manner.

We leverage a similar method as in [15], [16], which
addressed constrained spacecraft relative motion control prob-
lems. We extend the applicability of that approach to road
vehicles on multi-lane roads including moving obstacles. We
formulate the planning and tracking problem in the error
coordinates of the vehicle with respect to the road-aligned
coordinate frame. We therefore reduce the dimensionality
of the graph-search problem such that computational times
become suited for real-time execution. Our results demonstrate
the ability to perform efficient and safe maneuvers with this
approach. Compared to methods for lane-change maneuvers
based on MPC (e.g., [12]–[14]), our method does most compu-
tations offline. MPC relies on solving constrained optimization
problems in real time, whereas our approach solves a low-
dimensional graph-search problem and uses a computationally
inexpensive unconstrained linear quadratic controller. We ex-
ploit a receding-horizon implementation, which provides feed-
back both in planning stage and in the vehicle-control stage;
obstacle avoidance and constraint-satisfaction are accounted
for already at the planning stage and the state-feedback control
takes care of the remaining modeling errors.

II. MODELING AND PROBLEM STATEMENT

We refer to the automated vehicle as the ego vehicle (EV),
whereas other moving entities in the region of interest (ROI)
of the EV are designated as other vehicles (OV). Note that
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Fig. 1. Definition of the coordinate frames and related notation. The origin
in the road-aligned frame is located at a point in the middle of the road
corresponding to the EV at the start of determining the motion plan.

the OVs can be either in autonomous or manual mode. The
modeling of the EV is done in the local error coordinates with
respect to a road-aligned frame (Fig. 1), with the origin at the
start of each planning step fixed to the middle of the road. We
introduce the following assumption.

Assumption 1: Positions and velocities of the OVs relative
to the EV at the current time are known.

In practice these can be measured and estimated by cameras,
lidars, radars, and/or ultrasound sensors attached to the EV.
Note that the future states of the OVs over the planning horizon
are not assumed to be known a priori in the method we propose
in this paper. We introduce the following assumption on the
driving behavior.

Assumption 2: The driving behavior is typical of highway
driving. The velocity is approximately constant over the plan-
ning horizon and the steering angle adheres to sin δ ≈ δ.

According to Assumption 2, emergency braking and/or
aggressive evasive maneuvers are handled by a different layer
in the decision logic. Motivated by this, we focus on the
lateral dynamics of the vehicle, which we model using a
planar single-track model with lumped right and left wheels
on each axle, where the lateral tire forces are modeled by the
linear approximations Ff ≈ Cfαf , Fr ≈ Crαr, and Cf , Cr
are the front and rear lateral tire stiffness coefficients. Under
assumption 2 on moderate steering the slip angles αf , αr can
be approximated as [17] αf ≈ δ − vy+lf ψ̇

vx
, αr ≈ lrψ̇−vy

vx
,

where δ is the steering angle of the front wheel, which is
the control input, vx and vy are the longitudinal and lateral
velocity of the vehicle, respectively, ψ̇ is the yaw rate, and lf ,
lr are the distances from the center of mass to the front and
rear wheel base. We introduce the state vector

x =
[
ey ėy eψ ėψ

]T
, (1)

where ey and eψ = ψ − ψd denote the lateral position and
vehicle orientation, respectively, in the road-aligned coordinate

frame, and ψd is the angle of the tangent of the road with
respect to the inertial frame, as defined in Fig. 1.

The vehicle model in the error coordinates (1) can be written
on the form [18], [19]

ẋ = Aex + Beδ + Deψ̇d. (2)

Remark 1: The term ψ̇d acts as a disturbance on the vehicle
dynamics and arises because we model the vehicle motion in
the noninertial road-aligned frame. The model is consistent
with [14], [18], but is an approximation because we ignore
higher-order effects. We consider lane-change maneuvers with
moderate steering and approximately constant velocity over
the planning horizon, where this approximation is reasonable.
However, for high-performance maneuvering, such as during
emergency collision avoidance, higher-order terms may be
needed. Note that ψ̇d is not considered known, but is estimated
during driving (see Sec. III-C).

A. Problem Statement

This paper focuses on generating safe overtaking and lane-
change maneuvers for normal driving scenarios. We consider
a discrete-time linear model in the form

xk+1 = Axk + Bδk + Ddk, (3a)
yk = Cxk, (3b)

where k is the time index corresponding to time tk and
d = ψ̇d is the disturbance disturbance term. We obtain (3a) by
discretizing the continuous-time system (2) using a zero-order
hold on the input with sampling time ∆t. Eq. (3b) models the
outputs of the system (3a) that we wish to plan a trajectory for
and, subsequently, control. The input δ is subject to constraints
δmin ≤ δk ≤ δmax. These constraints are determined by the
physical limitations of the vehicle (i.e., maximum steering
angle) or induced by ensuring that the assumptions made for
deriving (2) hold. For instance, the linear single-track model
is valid for lateral accelerations up to approximately 0.4g on
dry asphalt, where g is the gravitational acceleration. Hence,
limitations on δ can be set by the relation to ψ̇ for steady-state
cornering [18].

The output yk is constrained as yk ∈ Yk ∈ Rm, where
the output set Yk can be time-varying and is determined
from different constraints. The road boundaries in the road-
aligned frame impose constraints −ey,max ≤ ey,k ≤ ey,max

on the lateral position of the EV. The term ψ̇d associated
with the curvature of the road in the global frame, together
with bounds on the allowed lateral accelerations, gives the
constraints ėψ,min ≤ ėψ,k ≤ ėψ,max. Limitations on local
lateral velocity error can also be set, leading to bounds
ėy,min ≤ ėy,k ≤ ėy,max. The constraints can compactly be
written as

Yk = {yk : Hkyk ≤Kk} (4)

for appropriately defined matrices Hk and Kk. In this paper,
(4) is determined offline, hence do not depend on time.



If the motion of the OVs is estimated by means of statistical
methods, a natural choice is to model the OVs as ellipsoids. Al-
ternatively, the vehicles can be modeled as rectangular, which
is rather common [13]. The positions and velocities of the OVs
relative to the EV inform additional time-varying constraints
on the outputs of the EV. Let yov,Tp1

denote the predicted
lateral position of an OV relative to the EV at prediction time
Tp1 and introduce the safety time ts. Then, the EV is prevented
to enter the critical zone [yov,Tp1 − w, yov,Tp1 + w] in the
time interval [Tp1 − ts, Tp1 + ts], where w denotes a lateral
safety margin. The safety time ts is introduced to account for
sensing and estimation errors with respect to the OVs. The
predicted sets Sk,i of the ith of M OVs over the planning
horizon [tk, tk + Tp] are denoted with

Sk =

M⋃
i=1

Sk,i(tk, tk + Tf ), (5)

where Sk is the combination of all obstacles over the time
horizon Tf over which the motion plan is to be determined,
which can be constrained by the range of the sensors (i.e.,
the ROI). Hence, given the vehicle dynamics (3), the goal is
to generate an input trajectory satisfying the input constraints
that when applied to (3) leads to a trajectory that satisfies (4)
and avoids the obstacle set (5) for all Tp ∈ [tk, tk + Tf ].

III. SAFE MOTION PLANNING USING POSITIVELY
INVARIANT SETS

In this section we describe our method for solving the
motion-planning problem for safe overtaking and lane-change
maneuvers. Our focus is real-time motion planning when
computing capabilities are scarce. This implies that the main
objective is to quickly find smooth, drivable motion profiles
that avoid collision, rather than searching for the optimal one.

The main idea of the method is that we determine regions
on the road where it is safe to travel, each associated with the
controller that makes such region invariant. Then we compute
the trajectory to navigate the road by means of graph search to
find a safe path through the regions with associated tracking
control for computing the trajectories.

A. Feedback Control and Positively Invariant Sets

Fig. 2 shows the proposed control architecture. The motion
planner uses the steering system as the actuator. The velocity
control is handled outside of the motion planner, thus in effect
decoupling velocity and steering control. This is rather com-
mon (see, e.g., [6], [14]) and is reasonable for maneuvers with
moderate steering and acceleration. The upper-most block in
Fig. 2 generates the commanded longitudinal velocity profile
to control the vehicle velocity, sent to the actuator control
block and the motion-planning block.

The motion planner integrates trajectory generation and
trajectory tracking by exploiting state-feedback steering con-
trollers of the form

δk = −L(ri − xk) + δffk , (6)

Longitudinal velocity generation

Motion planning

vx

Actuator control

δ,x

vx

Vehicle

Environment

Sensing & mapping Motion tracking

Fig. 2. Structure of the control architecture.

where L is the feedback gain and ri is the setpoint that the
vehicle should reach. The term δffk is a feedforward term that
corrects for the disturbance dk due to the curvature of the road.
The setpoint location ri is chosen to be an equilibrium point of
the system (3) that satisfies ȳ ∈ Yk. With the feedforward term
δffk , from (3a) it follows that an equilibrium point satisfies
x̄ = [ēy 0 ēψ 0]T, which means that an equilibrium point
satisfies (4). We have a collection of setpoints {ri}nr

i=1,

ri = x̄i, i = 1, . . . , nr, (7)

where the middle of the lanes are included in (7). We design
the feedback gain L such that the closed-loop system, when
inserting (6) into (3a) is asymptotically stable. Since the
control (6) asymptotically stabilizes the vehicle with the model
(3a), at the target equilibrium point corresponding to ri we can
associate a quadratic Lyapunov function with L,

V (x) = (x− ri)
TP (x− ri) (8)

where P is a symmetric matrix that fulfills ĀTPĀ−P < 0,
and where Ā = A − BL. Each level set of the Lyapunov
function (8) defines a positively invariant set; that is, a set
that guarantees that whenever the initial condition is in this
set, the ensuing trajectory will remain in that set. We rely
on positively invariant sets to guarantee that the closed-loop
trajectory satisfies the input and output constraints. For a
setpoint ri and a Lyapunov function (8) associated with the
feedback gain L, a positively invariant set Oi is the set

Oi = {x ∈ R4 : (x− ri)
TP (x− ri) ≤ ρi}. (9)

Since V (x) is a Lyapunov function associated with the
feedback gain L, any state trajectory that initially satisfies
xk0 ∈ Oi at a time index k0 will remain inside Oi for
all k > k0 if ri is not changed. The scale factor ρi is
determined as the largest value such that Oi does not violate
the input constraints and the static output constraints (4). The
determination of ρi is posed as an optimization problem, which
for our constraints and equilibrium points has an analytic
solution (see [16]).

Remark 2: Note that δffk depends on the road curvature,
so ρi should ideally be determined online. It is possible to



set offline bounds on the maximum curvature, for example,
by utilizing knowledge of the maximum curvature on regular
highways. Then it is possible to precompute ρi offline, and
the difference for low-curvature roads where limited actuation
is used is negligible.

Remark 3: The positively invariant sets do not depend on the
OV locations. However, given a prediction of the OVs over the
planning horizon, it is possible to determine (see Sec. III-B1)
whether any of the OVs (5) intersect with (9). If not, then
the closed-loop trajectory starting in Oi will also satisfy the
constraints (5) imposed by the OVs over the planning horizon,
provided the setpoint ri is maintained.

B. Determining the Connectivity Graph and Graph Search

To determine a safe trajectory that avoids the obstacles and
satisfies the input and output constraints, we find a sequence
of setpoints ri that, when tracked using (6), steers the vehicle
from the initial state xk at time tk to the setpoint corre-
sponding to the desired lane before the end of the planning
horizon Tf . The initial setpoint is determined by finding which
invariant sets the initial state xk is contained in.

We formulate the problem as a graph-search problem over
the graph G = (V, E) of vertices V and edges E , and divide
the planning horizon into N steps with discretization time
Ts, where Ts = `∆t for a positive integer ` is a multiple
of the discretization time ∆t of the vehicle dynamics. The
vertices are the indices (m, i) corresponding to the setpoints
{{rmi }

nr
i=1}Nm=0 ∈ V for the different time steps m, where

m = 0 corresponds to the initial time tk. Then the graph-
search problem consists of finding a sequence of setpoints
that can be used to safely navigate the vehicle from the initial
state to the middle of any of the lanes.

The edges E indicate which of the setpoints are connected
by safe trajectories. An equilibrium point ri with positively
invariant set Oi is connected to rj with positively invariant
set Oj in l time steps (i.e., in one planning step) if Oi is
contained in Ō`j ,

Oi ⊆ Ō`j , (10)

where

Ō`j = {x ∈ R4 : (x− rj)
T(Ā`)TPĀ`(x− rj) ≤ ρj}. (11)

Eq. (10) and the corresponding connectivity can be interpreted
as in Fig. 3 for a case where l = 3. At m = 1, no states from
O1 can reach O2. At m = 2, O1 and Ō2

2 intersect but not all
points in O1 can reach O2. However, at m = 3, O1 is covered
in the interior of Ō3

2 . This ensures that all points in O1 can
reach O2 in m = ` time steps; hence, r01 is connected to r12 .

Suppose that the vehicle state xm is in the positively
invariant set Oi associated with the setpoint rmi at planning
index m. If there exists an edge between rmi and rm+1

j , it is
safe to move from xm to rj over the time period Ts. Exact
evaluation of (10) requires solving a nonconvex quadratically-
constrained quadratic program. However, it can be shown

ey

r1 r2

O1 O2

m = 1

m = 2

m = 3

Fig. 3. A schematics of how positively invariant sets are connected, illustrated
by iterative use of (11) for successively increasing m for a case where l = 3.
The states that can reach Oj in m = 1, 2, 3 timesteps are shown as ellipses
with increasing size. The setpoint r0

1 is connected to r1
2 because all states in

O1 can reach O2 in m = l timesteps.

that a sufficient condition for (10) to hold can be evaluated
analytically through

(ri − rj)
T(Āl)TPĀl(ri − rj) ≤ ρj − ρi

∥∥P−1/2ĀP 1/2
∥∥
F
,

(12)
where ‖ ·‖F is the Frobenius norm. Checking for connectivity
using (12) may be conservative but has low computational
cost and is an offline procedure if the bound determination in
Remark 2 is used.

1) Obstacle Avoidance: The connectivity test (12) between
equilibrium points is done offline and in absence of any OVs.
While it is possible to online change the size of ρi and ρj in
(9) and (4), respectively, depending on the obstacle constraints
Sk, the computational cost will be high. Instead, suppose that
the OVs have been predicted over the time of the planning
horizon, leading to the obstacle set (5). In general, if

Oi
⋂
Sk(Tp1, Tp2) 6= ∅, (13)

the equilibrium point ri associated with Oi is marked as
unsafe and eliminated from the graph search between Tp1 and
Tp2. In practice, (13) amounts to checking for intersection
between EV and OVs in the lateral position coordinate and
by accounting for the safety time ts introduced in Sec. II-A.
The method is compatible with motion-prediction and threat-
assessment methods that have been proposed in literature but
further elaboration on this is out of the scope of the paper.

2) Graph Search: With all edges between the vertices deter-
mined, we construct a weighted adjacency matrix M between
all {{rmi }

nr
i=1}Nm=0 ∈ V . If two vertices are not connected, the

corresponding edge weight is set to∞. A connection between
two vertices is indicated by setting the edge weight to the cost
of moving between the different vertices. For instance, edges
corresponding to transitions between the middle of either of
the lanes might have a low cost, whereas transitions close to
the road boundaries may have larger cost. Because of time-
causality and size limitations of the positively invariant sets,
the matrix will be upper-block diagonal and very sparse.

We employ Dijkstra’s algorithm for the graph search in our
numerical experiments. To efficiently solve the corresponding



graph-search problem there exist a variety of graph-search
methods [8]. When the graph search is completed and the
setpoints that should be tracked have been found, the controller
(6) tracks these points and switches between them until the
setpoint corresponding to the target point has been reached.

C. Implementation Aspects

The vehicle model (2) assumes knowledge of the distur-
bance ψ̇d, which has to be estimated. The disturbance can be
written as ψ̇d(t) = vxc(t), where c(t) is the road curvature,
which is unknown. However, it is possible to point-wise
estimate the curvature given data points of the road boundary
or the lane markers. We fit a circle segment to the data points at
each time step and from that estimate the radius of curvature.

The steering inputs and corresponding trajectory are imple-
mented as a receding horizon strategy; that is, the computed
trajectory is Tf s long but is only applied for Tr ≤ Tf s.
This ensures that feedback is not only imposed during the
trajectory tracking but also in the planning stage. To not switch
between trajectories excessively, the cost associated with the
previously determined sequence of setpoints is decreased in
the next graph search to favor the same solution.

The dynamics is discretized assuming a sampling time ∆t,
which is typically determined by the update rate of the sensor
or the available computing power. However, nr and Ts that
indicate the number of setpoints and the discretization time in
the planner, respectively, are tightly connected. For instance, a
small Ts means that a large number of setpoints nr is needed.

D. Algorithm Summary

One step of the complete algorithm is summarized in Al-
gorithm 1. Most of the computations are done offline. Online,
the most demanding task is to perform the prediction of obsta-
cles (Line 2). The computational complexity depends on the
number of obstacles in the region of interest and the method
employed. The graph search (Line 5) is computationally fast,
since the graph matrix M is upper block-diagonal and sparse.
On Line 5, Ir is the set of indices found in the graph search
to reach the target setpoint from the initial state. Tracking
of the sequence of setpoints (Lines 7 and 8) is a matter of
trigonometry (Line 7) and applying standard state-feedback
control (Line 8) is computationally inexpensive.

IV. SIMULATION STUDY

We consider an autonomous vehicle (EV) that travels on
a single-directed two-lane road. The road coordinates are
taken from a real test track (the JARI test track), and the
road includes both straight-line driving and curved segments.
The desired velocity is vx = 20 m/s. There are surrounding
vehicles in both lanes with velocities between 9 − 18 m/s.
The EV tries to maintain the right lane whenever possible,
but otherwise changes lane. The planning is done in the road-
aligned, local frame. However, in the simulation, the control
inputs δ are used in a vehicle modeled in the global frame.

The vehicle parameters are those of a real mid-size SUV,
see [20] for more details. Table I provides the set of algorithm

Algorithm 1 Proposed method
Offline: Compute Oi using (9) ∀i ∈ [1, . . . , nr].
Offline: Construct adjacency matrix M between all set-
points ri by determining (10) using (12).

1: Input: xk, estimates of OVs, target lane.
2: Predict obstacle set (5).
3: Check for intersection using (13) and remove correspond-

ing edges in M .
4: Determine the setpoint xk belongs to.
5: Perform a graph search to find a sequence {ri}i∈Ir .
6: for t = {tk, tk+1, . . . , tk + Tr} do
7: Estimate ψ̇d.
8: Control the vehicle using (6) with setpoint Ir(t).
9: end for

10: Go to Line 1.

TABLE I
PARAMETER VALUES USED FOR THE SIMULATION STUDY.

Parameter value Unit Description

∆t 0.1 s Sampling time Vehicle dynamics
Tf 10 s Planning horizon
Ts 0.5 s Sampling time in planner
N 20 - Tf/Ts
Tr 0.5 s Control horizon
nr 15 - # road discretization points

parameters. These values correspond to a weighted adjacency
matrix M ∈ R485×485, out of which approximately 1600
elements are nonzero (i.e., less than 1%).

Fig. 4 shows snapshots of the planning for four timesteps.
In the figure, the time at which switching between setpoints
occur can be seen in the second to fourth subplots. Eq. (12)
is the magnified positively invariant set when the switching
between setpoints is initiated (c.f. Fig. 3).

The computation time of the proposed approach is low
enough for real-time implementation. Fig. 5 displays how the
computation time varies as the number of elements in the
weighted adjacency matrix change, that is, the product Nnr.
The complexity grows linearly with the number of elements
and the computation times are competitive when comparing
with recent lane-change approaches based on MPC.

V. CONCLUSION

We presented a method for lane-change maneuvers that
connects motion planning and vehicle control by exploiting
positively invariant sets. A positively invariant set guarantees
that whenever a state trajectory is inside that set, the state
trajectory will remain in that set. By leveraging this, we
developed a method that can enforce the vehicle to satisfy con-
straints on the vehicle motion as well as avoiding collisions.
The method uses a graph search to determine the full lane
change, and then executes state-feedback control combined
with setpoint switching to perform the lane change.

Our method assumes that the longitudinal velocity is con-
stant over the planning horizon. We will in future work relax
this limitation.
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Fig. 4. Four snapshots with one second between each snapshot. EV in red and OVs in blue. Resulting trajectory for the planning horizon is in red and the
corresponding time the EV reaches a particular point on the trajectory is enumerated to the left in each snapshot. The positively invariant sets corresponding
to the tracked setpoints are shown in green, projected on the road. The OV present in the ROI is measured at m = 0, and the predictions over the planning
horizon are also visualized. In the left-most figure, no OVs are predicted to intersect with the positively invariant sets over the planning horizon (Tf = 10 s).
One second later, the OV is predicted to be within the safety margin (shown in magenta) and the planner therefore decides to initiate an overtaking maneuver.
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Fig. 5. Computation time as function of the number of elements in the
weighted adjacency matrix. The implementation is done in MATLAB and the
results are obtained on a standard 2014 i5 2.8GHz laptop.
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