From Reeds-Shepp’s paths to continuous curvature path-
Part I: transition schemes & algorithms

Dai, J.; Wang, Y.; Bortoff, S.A.; Burns, D.J.

TR2017-122 August 2017

Abstract

This work considers real-time continuous curvature (CC) path planning for car-like robots. It is motivated by the fact that Reeds-Shepp’s (RS) based path planning remains unmatched in terms of computation efficiency and reliability when compared with various CC path planning results. Similar to [1], this paper post-processes RS paths to enforce the CC property, while ensuring CC paths contained in a neighborhood of the RS paths to maintain obstacle clearance. Targeting to alleviate concerns about reliability and computational efficiency, we exploit the geometric insights casted by tangency conditions [2] to post-process RS paths. Specifically, distinctive postprocessing scheme is devised offline for each type of discontinuous curvature junctions. The proposed schemes, though suboptimal, are straightforward, and result in CC path planning with guaranteed completeness at the negligible increase of computation. Effectiveness of proposed schemes and resultant algorithms is validated by numerical simulations.

IEEE Conference on Control Technology and Applications
From Reeds-Shepp’s paths to continuous curvature paths—Part I: transition schemes & algorithms

Jin Dai, Yebin Wang, Scott A. Bortoff, and Daniel J. Burns

Abstract—This work considers real-time continuous curvature (CC) path planning for car-like robots. It is motivated by the fact that Reeds-Shepp’s (RS) based path planning remains unmatched in terms of computation efficiency and reliability when compared with various CC path planning results. Similar to [1], this paper post-processes RS paths to enforce the CC property, while ensuring CC paths contained in a neighborhood of the RS paths to maintain obstacle clearance. Targeting to alleviate concerns about reliability and computational efficiency, we exploit the geometric insights casted by \(\mu - \text{tangency conditions} \) to post-process RS paths. Specifically, distinctive post-processing scheme is devised offline for each type of discontinuous curvature junctions. The proposed schemes, though sub-optimal, are straightforward, and result in CC path planning with guaranteed completeness at the negligible increase of computational efficiency of the underlying steering algorithms is of paramount importance. Recent work [14] benchmarks the RS steering and a sub-optimal CC steering and demonstrates that the latter is about 10 times slower.

This work performs CC path planning, with the hope to achieve similar computational efficiency as the RS path planning. The proposed CC path planning contains two stages: first an RS path is computed, where the RS path is collision-free with a tolerance; then a CC path is constructed according to the RS path. The resultant CC path has to stay inside a neighborhood of the RS path, indicated by the tolerance, to ensure collision-free. It is noteworthy that similar idea has been exploited in [1]. However, work [1] resorts to optimal control theory and ends up with solving boundary value problems. Instead, by utilizing \(\mu - \text{tangency conditions} \), this work proposes transition schemes to treat DCJs and develops algorithms, which guarantee successful construction of the CC path in an efficient way.

The remainder of this paper is organized as follows. Section II introduces kinematic models of a car-like robot and formulates the RS path post-processing problem. In Section III, we present CC transition schemes and algorithms to accomplish such transitions. Section IV validates the proposed schemes and algorithms by simulation. Concluding remarks are made in Section V.

I. INTRODUCTION

Path planning for robots has been extensively investigated over decades, with the consideration of kinematic, dynamic and environmental constraints [3]–[5]. A vast majority of research efforts have been oriented to robots with nonholonomic dynamics [6]–[9] and particularly car-like robots, due to their widespread applications [10].

Pioneering work [7], [8] has shown that shortest length paths, known as Reeds-Shepp (RS) paths, are composition of line segments and tangential circular arcs of the minimum turning radius. Nevertheless, RS paths possess a finite number of discontinuous curvature junctions (DCJs), which results in stationary steering, a cause of extra tire wearing.

Aiming to address limitations of RS paths, many contributions proposed continuous curvature (CC) paths for car-like robots. Work [11]–[13] established the existence of shortest length CC paths, which consist of clothoid curves and line segments; however, they exhibit infinite chattering at the presence of line segments. This discovery motivates search for sub-optimal CC paths. For instance, work [2], [13] proposed a group of sub-optimal CC paths, which are formed of clothoid turns and lines. The sub-optimal CC paths are generalization of RS paths because they share exactly the same patterns. An extension to [2], [13] can be found in [14], which offers analytical formula to compute such CC paths. Work [15] planned CC paths based on Bézier curve fitting, and [16] developed a numerically efficient planning scheme, which is only applicable to forward-moving robots.

The aforementioned prior art, assuming obstacle-free environment, are typically employed to realize local steering in decomposition-based path planning [4], [9], [17]. It is understood that exploration of collision-free configuration space involves a huge amount of steering operations. In order to achieve real-time path planning, the computational efficiency of the underlying steering algorithms is of paramount importance. Recent work [14] benchmarks the RS steering and a sub-optimal CC steering and demonstrates that the latter is about 10 times slower.

This work performs CC path planning, with the hope to achieve similar computational efficiency as the RS path planning. The proposed CC path planning contains two stages: first an RS path is computed, where the RS path is collision-free with a tolerance; then a CC path is constructed according to the RS path. The resultant CC path has to stay inside a neighborhood of the RS path, indicated by the tolerance, to ensure collision-free. It is noteworthy that similar idea has been exploited in [1]. However, work [1] resorts to optimal control theory and ends up with solving boundary value problems. Instead, by utilizing \(\mu - \text{tangency conditions} \), this work proposes transition schemes to treat DCJs and develops algorithms, which guarantee successful construction of the CC path in an efficient way.

The remainder of this paper is organized as follows. Section II introduces kinematic models of a car-like robot and formulates the RS path post-processing problem. In Section III, we present CC transition schemes and algorithms to accomplish such transitions. Section IV validates the proposed schemes and algorithms by simulation. Concluding remarks are made in Section V.

II. PRELIMINARIES

A car-like robot, illustrated in Fig. 1, is equipped with a front-fixed steering wheel and fixed parallel rear wheels. The point \(R \) is located in the mid of the rear wheels. The robot pose is uniquely described by a triple \((x, y, \theta) \) where \((x, y) \) represent the coordinates of \(R \) in the global frame and \(\theta \) is the orientation angle of the robot with respect to the \(x \)-axis. The robot has a wheelbase \(b \), and a steering angle \(\phi \).
A. RS Paths

Assume that the robot shown in Fig. 1 moves within a planar environment $\mathcal{W} \subseteq \mathbb{R}^2$. A path P is a mapping from \mathbb{R} to the configuration space $C = \mathcal{W} \times \mathbb{S}^1$, giving a configuration $q(s) = (x(s), y(s), \theta(s))$ for each $s \in [0, l]$, where l is the total length of P. Intuitively, P is a continuous curve in C. Given an initial configuration q_0 and a final configuration q_f, a path P is said to be feasible if $P(0) = q_0$ and $P(l) = q_f$ and it can be followed by the car-like robot. Work [8] established shortest path solutions, termed as RS paths, based on the following model

$$
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{bmatrix} = \begin{bmatrix}
\cos \theta \\
\sin \theta \\
0
\end{bmatrix} v + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u,
$$

where v is the driving velocity of the rear wheels and u the rate of orientation. Note that $v \in [-1, 1]$, and $u \in [-1, 1]$. RS paths can be categorized into 12 classes, and admit a total of 48 patterns [8]. All classes and patterns are listed in Table I, where C stands for a circular arc and S stands for a line segment; while L and R specify left and right turns with + or − denoting forward or backward motion, respectively. The subscripts denote the (absolute) angular value of a certain circular arc and $|$ the represents a cusp.

TABLE I: Classes of RS paths

<table>
<thead>
<tr>
<th>Classes</th>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC−1</td>
<td>L+S+L+, L−S−L−, R+S+R+, R−S−R−</td>
</tr>
<tr>
<td>CSC−2</td>
<td>L+S+R+, L−S−R−, R+S+L+, R−S−L−</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

B. CC Path Planning

A major downside of RS paths is the presence of DCJs. This work addresses DCJs in RS paths by constructing a solution of the following model

$$
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\phi}
\end{bmatrix} = \begin{bmatrix}
\cos \theta \\
\sin \theta \\
\kappa
\end{bmatrix} v + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \bar{\sigma},
$$

where the curvature κ is an extra configuration parameter. System (2) has two control inputs: v and the steering rate $\bar{\sigma}$. The relationship between ϕ, κ and $\bar{\sigma}$ is as follows:

$$
\kappa = \frac{\tan \phi}{b}, \quad \bar{\sigma} = \frac{\dot{\phi}}{b \cos^2 \phi}.
$$

With mechanical constraint on the steering wheel, $|\dot{\phi}| \leq \phi_{\text{max}}$, system (2) is subject to constraints

$$
|v| \leq v_{\text{max}}, \quad |\kappa| \leq \kappa_{\text{max}}, \quad |\bar{\sigma}| \leq \bar{\sigma}_{\text{max}},
$$

where $\kappa_{\text{max}} = \tan \phi_{\text{max}}/b$ and $\bar{\sigma}_{\text{max}} = |\dot{\phi}|_{\text{max}}/b$. Thus, the set of admissible control inputs is defined by

$$
\mathcal{U} = \{ u \in \mathcal{U} : u(t) \in U, t \in [0, T_f] \},
$$

where \mathcal{U} is the set of all measurable functions defined over $[0, T_f]$, and $U := [-v_{\text{max}}, v_{\text{max}}] \times [-\bar{\sigma}_{\text{max}}, \bar{\sigma}_{\text{max}}]$. For a vector $\zeta \in \mathbb{R}^n$, $||\zeta||$ denotes the standard 2-norm. Denote ϵ a small positive constant. The continuous curvature path planning problem aims to design a feasible and sub-optimal path in the augmented configuration space $C' := C \times [-\kappa_{\text{max}}, \kappa_{\text{max}}]$.

Problem 1: Given an RS path P_{RS} connecting initial/final configurations q_0 and q_f in C', find a continuous curvature path P_{CC} with a finite l such that

(i) $P_{CC}(0) = q_0, P_{CC}(l) = q_f$;
(ii) P_{CC} satisfies (2)-(3) for certain $\{v, \bar{\sigma}\} \in \mathcal{U}$;
(iii) P_{CC} remains in a neighborhood $B(P_{RS}, \epsilon)$.

Problem 1 leverages the design freedom v and ϵ to post-process RS paths into CC paths. It is well-posed, i.e., its solutions are guaranteed to exist. This claim can be loosely shown by the following argument. By treating the path length s as the independent variable, system (2) can be rewritten

$$
dx/ds = \cos \theta, \quad dy/ds = \sin \theta, \quad d\theta/ds = \kappa, \quad ds/d\bar{\sigma} = \bar{\sigma}/v.
$$

Let us define a velocity profile v_{cc} along P_{rs}, where v_{cc} takes a small value \bar{v} in neighborhoods of DCJs. This means that around DCJs, $ds/d\bar{\sigma}$ is large, and thus instantaneous curvature changes of P_{rs} can be approximated well. Each v_{cc} gives rise to a CC path P_{cc} by integrating system (2). By choosing different \bar{v}, one can obtain a family of CC paths $P_{cc}(\bar{v})$, which are parameterized by \bar{v} and have continuous dependence on it. As $\bar{v} \to 0$, $P_{cc}(\bar{v}) \to P_{rs}$. Hence, given a neighborhood $B(P_{RS}, \epsilon)$, one can always find $\bar{v} > 0$ such that as long as $0 < \bar{v} < \epsilon$ around DCJs, the CC path $P_{cc}(\bar{v})$ satisfies conditions in Problem 1.

C. Clothiod Turns

CC path planning can be fulfilled by combining clothoid turns (CTs) and line segments in the similar manner as the RS path [2]. This section overviews clothoid, CT, and CC circle. Details can be found in [2].
A clothoid is a curve whose curvature κ varies linearly with respect to its arc length s, i.e., $\kappa(s) = \sigma s + s_0$, where σ is the sharpness of the clothoid and s_0 is the initial arc length. Take $s_0 = 0$ for simplicity. Integrating system (2) gives the configuration along the clothoid

$$q(s) = \begin{pmatrix} x(s) \\ y(s) \\ \theta(s) \\ \kappa(s) \end{pmatrix} = \begin{pmatrix} \sqrt{\pi/\sigma_{\max}} C_f \left(\frac{s}{\sqrt{\pi/\sigma_{\max}}} \right) \\ \sqrt{\pi/\sigma_{\max}} S_f \left(\frac{s}{\sqrt{\pi/\sigma_{\max}}} \right) \\ \frac{1}{2} \sigma_{\max} s^2 \\ \sigma_{\max} s \end{pmatrix},$$

where $C_f(s) = \int_0^s \cos \frac{\pi}{\sigma_{\max}} t^2 d\tau$ and $S_f(s) = \int_0^s \sin \frac{\pi}{\sigma_{\max}} t^2 d\tau$ are the Fresnel cosine and sine integrals, respectively. For a clothoid beginning with q_s and ending at q_f, it has a deflection $\delta = \theta_f - \theta_s$. Given σ_{\max} and δ_{\max}, the clothoid has a constant deflection $\delta_c = \kappa_{\max}^2/(2\sigma_{\max})$ and a constant arc length $s = \kappa_{\max}/\sigma_{\max}$.

The deflection of a CT can be defined exactly the same as a clothoid. Depending on its deflection δ, a CT could consist of up to two clothoids and one circular arc. Fig. 2 illustrates a CT performing a left forward turn maneuver, where without loss of generality, the CT begins with $q_s = (0, 0, 0, 0)$. The CT, exemplifying case 2, consists of

(i) a clothoid from q_s to q_1, with sharpness σ_{\max};
(ii) a circular arc of radius κ_{\max}^{-1} and of angle $\delta - 2\delta_c$, starting from q_1 and ending at q_2;
(iii) a second clothoid starting from q_2 with sharpness $-\sigma_{\max}$ and ending at q_f.

When $\delta = 0$, the CT reduces to a line segment of length $2R_\Omega \sin \mu$. For $0 \leq \delta < 2\delta_c$, a clothoid of sharpness $\sigma \leq \sigma_{\max}$ and a symmetric clothoid of sharpness $-\sigma$ are used in the CT, where the desired sharpness σ is given by

$$\sigma = \frac{\pi \left(\cos \frac{\delta}{2} C_f \left(\sqrt{\frac{\delta}{\pi}} \right) + \sin \frac{\delta}{2} S_f \left(\sqrt{\frac{\delta}{\pi}} \right) \right)^2}{R_\Omega^2 \sin^2 \left(\frac{\delta}{2} + \mu \right)},$$

and the length of each clothoid is $\sqrt{\delta/\sigma}$. The case with $2\delta_c + \pi \leq \delta < 2\pi$ corresponds to left backward motions, and can be treated similarly.

Fig. 2: CC circles C_i^+, C_i^-, C_i^+ and C_i^- originated at q_s

A crucial concept in simplifying CC path planning from geometric perspective is CC Circle. Fig. 2 shows four CC circles associated with a configuration q_s, where $C_i^+(q_s), C_i^-(q_s), C_i^+(q_s), C_i^-(q_s)$ correspond to a left forward CT, a left backward CT, a right forward CT, and a right backward CT, respectively. Interestingly, each CC circle has exactly the same center as the circular arc of its respective CT. For instance, Ω, the center of CC circle $C_i^+(q_s)$, coincides with the center of the circular arc which is tangential to the robot orientation at q_1. Coordinates of Ω are given by

$$\begin{pmatrix} x_\Omega \\ y_\Omega \end{pmatrix} = \begin{pmatrix} x_1 - \kappa_{\max}^{-1} \sin \theta_1 \\ y_1 + \kappa_{\max}^{-1} \cos \theta_1 \end{pmatrix}.$$

Given κ_{\max} and σ_{\max}, the CC circle radius is given by

$$\begin{pmatrix} R_\Omega \\ \mu \end{pmatrix} = \begin{pmatrix} \sqrt{x_1^2 + y_1^2} \\ \arctan \frac{x_1}{y_1} \end{pmatrix},$$

where μ is the angle between the robot orientation and the tangent vector of the CC circle at q_s.

III. CONTINUOUS CURVATURE TRANSITIONS

Classes of RS paths in Table I reveal that DCJs occur at connections between straight line segments and circular arcs, specifically, SC, CS, CC, C_iC_i. This section develops schemes to treat these four types of DCJs. That is, we work on Problem 1 with P_{rs} being restricted to a simple RS path including only one DCJ.

A. SC Transition

We investigate how to make a CC transition between a line and a circular arc. Without loss of generality, this corresponds to solve the following problem.

Problem 2: Let a simple RS path P_{rs}^SC consist of

(i) A line S described by $-\infty < x_0 \leq x \leq 0$ and $y = 0$;
(ii) A circular arc C, which is tangent to S at the origin $(0, 0)$. The radius and angle of C are given by κ_{max}^{-1} and θ, respectively.

Construct a CC path P_{CC} which remains in $B(P_{\text{RS}}^{SC}, \epsilon)$ while satisfying conditions (i)-(ii) in Problem 1.

![Fig. 3: A simple RS path: SC type](image)

The simple RS path P_{RS}^{SC} is depicted in Fig. 3.

1) SC Transition Scheme: Due to space limitation, we assume $\theta > 2\delta_c$. The following SC transition scheme is proposed to make CC connection between S and C.

(i) A forward straight line segment that starts from the initial configuration $q_0 = (x_0, 0, 0, 0)$ and ends at the configuration $q_s = (x^*, 0, 0, 0)$ with $x_0 \leq x^* \leq 0$.

(ii) A forward right CT that starts from the configuration $q_s = (x^*, 0, 0, 0)$ and ends at $q_1 = (x_1, y_1, \delta, 0)$ with a deflection $\delta < 0$.

(iii) A forward left CT with a deflection $-\delta$ that starts from q_1 and ends at a configuration $q_2 = (x_2, y_2, 0, 0)$.

(iv) A forward left clothoid that connects q_2 and $q_3 = (x_3, y_3, \delta, \kappa_{\text{max}})$, such that the point $(x_3, y_3) \in C$.

Remark 1: In the case that $\delta < 2\delta_c$, one can find $\sigma_{\text{SC}} \geq \sigma_{\text{max}}$ such that the forward left clothoid with σ_{SC} yields a deflection $\delta_{\text{SC}} \leq \delta/2$. A continuous curvature connection can be formed between the forward left clothoid and the circular arc in P_{RS}^{SC}.

Fig. 4 illustrates a procedure to determine parameters in the SC transition scheme, i.e., q_s, q_1, q_2.

(i) As depicted by Fig. 4, both the CC Circle $C^+_{\Omega_1}(q_2)$ and the circular arc C share the same center $\Omega_1 = (0, \kappa_{\text{max}}^{-1})$. Coordinates of q_2 are then computed by

$$q_2 = \begin{pmatrix} x_2 \\ y_2 \\ \theta_2 \\ \kappa_2 \end{pmatrix} = \begin{pmatrix} R_1 \cos \left(-\frac{\pi}{2} - \mu \right) \\ -R_1 \sin \left(-\frac{\pi}{2} - \mu \right) \\ 0 \\ 0 \end{pmatrix}.$$ \hspace{1cm} (6)

(ii) Considering that q_2 is the end configuration of the forward left CT, one can immediately determine the center Ω_2 of the CC Circle $C^-_{\Omega_2}(q_2)$.

(iii) For a certain x^*, the CC circle $C^+_{\Omega_1}(q_s)$ has a center $\Omega_1(x^*)$, which is uniquely defined by x^*. On the other hand, the CC circle $C^+_{\Omega_1}(q_s)$, corresponding to the first right CT starting from q_s, should be tangent to $C^-_{\Omega_2}(q_2)$. Therefore, x^* can be determined by solving the following nonlinear equation

$$\|\Omega_1 - \Omega_2\| = 2R_1, \quad -M \leq x^* < 0,$$ \hspace{1cm} (7)

where M is a constant.

(iv) With x^*, $\Omega_1 = (x_{\Omega_1}, y_{\Omega_1})$ and $\Omega_2 = (x_{\Omega_2}, y_{\Omega_2})$, we compute an auxiliary angle α

$$\alpha = \arctan \left(\frac{y_{\Omega_2} - y_{\Omega_1}}{x_{\Omega_2} - x_{\Omega_1}} \right).$$

The deflection of the two CTs are given by δ and $-\delta$ accordingly, where $\delta = \alpha - \pi/2 + \mu$. The length of the straight line segment is given by $x^* - x_0$.

![Fig. 4: SC transition scheme](image)

2) SC Transition Algorithm: Algorithm 1 summarizes the previous procedure. The $CCP - SC$ algorithm takes the initial and final configurations q_0, q_f, along with the error bound ϵ, as inputs. The initial design parameter σ_{max}^0 is selected in such a way that $\theta > 2\delta_c$ is satisfied. First, the $CCP - SC$ algorithm computes (lines 2 to 9) an appropriate σ_{max} such that $|y_2| \leq \epsilon$ to guarantee that $P_{CC} \subseteq B(P_{\text{RS}}, \epsilon)$. After obtaining σ_{max}, the $CCP - SC$ algorithm computes (lines 10 to 14) the corresponding x^*. As explained in the computation procedure, x^* should satisfy both (7) and the path constraint $x_0 < x^* < 0$. We reduce (7) to the equation in Line 13 based on simple geometric analysis. Once a proper x^* is obtained, the iteration loop terminates and the $CCP - SC$ algorithm computes and outputs the CC path P_{CC} accordingly (lines 15 to 16); otherwise, Algorithm 1 increases the value of σ_{max} and updates the value of x^*.

B. CC Transition

In the RS path classes, two circular arcs of radius κ_{max}^{-1} can be connected with or without a cusp. Here we treat a CC connection (no cusp). Mathematical formulation of the CC transition problem is stated as follows.

Problem 3: Let a simple RS path P_{RS}^{CC} consist of

(i) A circular arc C_1 which starts from the origin $q_0 = (0, 0, 0, 0)$ and ends at A. The radius and angle of C_1 are given by κ_{max}^{-1} and θ_1, respectively.

(ii) A circular arc C_2 which is tangent to C_1 at A, moves in the same direction as C_1, and has the radius and angle given by κ_{max}^{-1} and θ_2, respectively.

Construct a CC path P_{CC} which remains in $B(P_{\text{RS}}^{CC}, \epsilon)$ while satisfying conditions (i)-(ii) in Problem 1.
Algorithm 1 CCP – SC Algorithm

Input: Error bound ε, initial steering rate σ₀, steering rate increment Δσ, iteration step N, initial configuration \(q₀ = (x₀, 0, 0, 0) \) with \(x₀ < 0 \).

Output: A continuous curvature path \(\mathcal{P}_{CC} \) connecting \(q₀ \) and \(q_f \), steering rate \(σ_{max} \).

1: Initialization: \(k = 0 \)
2: repeat
3: \(σ_{max}^k = σ_{max}^0 + kΔσ \)
4: Compute \(R_{l1}^k \) and \(μ_k \) with respect to \(σ_{max}^k \) according to (5)
5: Compute \(q_2 = (x_2, y_2, 0, 0) \) according to (6)
6: if \(|y_2| > ε \) then
7: \(k = k + 1 \)
8: end if
9: until \(|y_2| \leq ε \)
10: repeat
11: \(σ_{max}^k = σ_{max}^0 + kΔσ \)
12: Compute the center \(Ω₂ = (x_{Ω₂}, y_{Ω₂}) \) of \(C_{l1}^- (q₂) \)
13: Solve the equation

\[
\left(\frac{x₂ + x^⋆}{2} - x_{Ω₁} \right)^2 + \left(\frac{y₂ - y_{Ω₁}}{2} \right)^2 = (R_{l1}^k)^2
\]

14: until \(x₀ < x^⋆ < 0 \) and \(k \leq N \)
15: Compute \(\mathcal{P}_{CC} \)
16: return \(\mathcal{P}_{CC} \) and \(σ_{max} = σ_{max}^k \)

For illustration purpose, we assume that \(θ₁ \in [0, π] \) (counterclockwise) and \(θ₂ \in [0, π] \) (clockwise). This scenario is represented by Fig. 5. Centers of \(C₁ \) and \(C₂ \) are given by

\[
Ω₁ = \left(0, \kappa_{max}^{-1} \right), \quad Ω₂ = \left(\frac{2κ_{max}^{-1} sin \ θ₁}{κ_{max}^{-1} - 2κ_{max}^{-1} cos \ θ₁} \right).
\]

The final configuration of the arc \(C₂ \) is then obtained as

\[
q_f = (2κ_{max}^{-1} sin \ θ₁ + κ_{max}^{-1} sin(θ₂ - θ₁), \quad κ_{max}^{-1} - 2κ_{max}^{-1} cos \ θ₁ + κ_{max}^{-1} cos(θ₂ - θ₁), \quad θ₁ - θ₂, \quad 0).
\]

(8)

Algorithm 1 CCP – SC Algorithm

1) CC Transition Scheme: Solving Problem 3 is similar to computing a CC path that connects configurations \(q₀ \) and \(q_f \). We propose a CC path of the pattern \(S || CC \) to solve Problem 3, where \(S \) and \(C \) denotes line segments and CT, respectively. Specifically, the proposed CC path is composed of:

(i) \(S \): a backward line segment that starts from \(q₀ \) and ends at a configuration \(qₐ = (x^*, 0, 0, 0) \), \(-ε \leq x^* < 0 \);
(ii) \(CT₁ \): a forward left CT with a deflection \(δ₁ \) that starts from \(qₐ \) and ends at a configuration \(q₁ = (x₁, y₁, δ₁, 0) \);
(iii) \(CT₂ \): a forward right CT with a deflection \(δ₂ = θ₁ - θ₂ - δ₁ \) that starts from \(q₁ \) and ends at \(q_f \).

Given an appropriate \(σ_{max} \), the following procedure can be employed to compute transition parameters \(x^*, x₁, y₁, δ₁ \) and \(δ₂ \). Please refer to Fig. 6 for further illustration.

(i) With \(CT₂ \) ending at \(q_f \), given by (8), we have the center \(Ω₂ = (x_{Ω₂}, y_{Ω₂}) \) of the CC Circle \(C_{r}^- (q_f) \).
(ii) Since \(CT₁ \) starts from \(qₐ \), the center \(Ω₁(x^*) \) of CC Circle \(C_{l}^- (qₐ) \) is a vector-valued function of \(x^* \).
(iii) CC Circles \(C_{l}^- (qₐ) \) and \(C_{r}^- (q_f) \) must be tangent to each other. Towards this end, \(x^* \) shall satisfy

\[
||Ω₁(x^*) - Ω₂|| = 2R_{Ω₁} \quad -ε \leq x^* < 0
\]

where \(R_{Ω₁} \) is given by (5).

(iv) Given \(x^* \) solved from (9), \(Ω₁ = (x_{Ω₁}, y_{Ω₁}) \) can be determined. Compute the auxiliary angle \(α \) as follows

\[
α = \arctan \left(\frac{y_{Ω₁} - y_{Ω₂}}{x_{Ω₁} - x_{Ω₂}} \right).
\]

The deflections of \(CT₁ \) and \(CT₂ \) are given by \(δ₁ = α + π/2 - μ \), and \(δ₂ = θ₁ - θ₂ - δ₁ \), respectively, while the length of the line segment is obtained as \(|x^*| \).

2) CC Transition Algorithm: We summarize the computation procedure of the \(S || CC \) path that connects \(q₀ \) and \(q_f \) as the \(CCP - CC \) algorithm, as shown in Algorithm 2. Intuitively, the \(CCP - CC \) algorithm computes an appropriate \(x^* \) in an iterative manner such that (9) can be satisfied. For such a purpose, at the \(k \)-th iteration step, the \(CCP - CC \) computes \(R_{Ω₁} \) and \(μ \) with respect to \(σ_{max}^k \) (Lines 3 to 4). Next, the center \(Ω₂ \) of \(C_{r}^- (q_f) \) is obtained (Line 5). On the other hand, from a simple geometric reasoning, the center \(Ω₁ \) of \(C_{l}^- (qₐ) \) can be obtained from \(x^* \) and \(Ω₀ \) of.
$C_1^+(q_0)$ (Lines 6-7). Based on the coordinates of Ω_1, (9) can then be reduced to the equation presented in Line 8 of the CCP – CC algorithm. Solving this equation yields a valuation of x^*; and x^* can be accepted whenever $|x^*| < \epsilon$ (Lines 9-12). Afterwards, the desired P_{CC} can be computed in terms of x^* and σ_{max}^k accordingly.

Algorithm 2 CCP – CC Algorithm

Input: Error bound ϵ, initial steering rate σ^0_{max}, steering rate increment $\Delta \sigma$, iteration step N, configurations q_0 and q_f.

Output: A continuous curvature $S|CC$ path P_{CC} connecting q_0 and q_f, steering rate σ_{max}.

1. Initialization: $k = 0$
2. repeat
3. $\sigma^k_{\text{max}} = \sigma^0_{\text{max}} + k\Delta \sigma$
4. Compute $R_{\Omega_1}^k$ and μ^k w.r.t. σ^k_{max} according to (5)
5. Compute the center $\Omega_0^k = (x_{\Omega_0^k}, y_{\Omega_0^k})$ of $C_{f}^{-}(q_f)$ with $R_{\Omega_0^k}^k$ and μ^k
6. Compute the center $\Omega_0^k = (x_{\Omega_0^k}, y_{\Omega_0^k})$ of $C_{f}^{-}(q_0)$ with $R_{\Omega_0^k}$ and μ^k
7. Let $\Omega_k^1 = (x_{\Omega_1^k}, y_{\Omega_1^k})$ be the center of $C_{f}^{-}(q_1)$
8. Determine x^* by solving
 $$(x_{\Omega_1^k} + x^* - x_{\Omega_1^k})^2 + (y_{\Omega_1^k} - y_{\Omega_1^k})^2 = (2R_{\Omega_1^k})^2$$
9. if $|x^*| > \epsilon$ or $x^* > 0$ then
10. $k = k + 1$
11. end if
12. Compute P_{CC} from σ_{max}^k and x^*
13. return P_{CC} and $\sigma_{\text{max}} = \sigma_{\text{max}}$

C. C|C Transition

When a cusp emerges in an RS path, we design a corresponding CC path by constructing C|C transition. The C|C transition problem is stated as follows.

Problem 4: Let a simple RS path $P_{RS}^{C|C}$ consist of

(i) A circular arc C_1 that starts from the origin $q_0 = (0, 0, 0, 0)$ with the radius and angle of C_1 given by κ_{max}^{-1} and θ_1, respectively.

(ii) A circular arc C_2 that is tangent to C_1 at point A, and moves in the opposite direction as in C_1. The radius and angle of C_2 are given by κ_{max}^{-1} and θ_2, respectively.

Construct a CC path $P_{CC} \subseteq B(P_{RS}^{C|C}, \epsilon)$ while satisfying conditions (i)-(ii) in Problem 1.

For illustration purpose, we assume that $\theta_1 \in [0, \pi]$ (counterclockwise) and $\theta_2 \in [0, \pi]$ (counterclockwise). This scenario is shown in Fig. 7.

Centers of circular arcs C_1 and C_2 are computed similarly as in the CC transition case. The path $P_{RS}^{C|C}$ ends at the configuration

$$q_f = (2\kappa_{\text{max}}^{-1} \sin \theta_1 - \kappa_{\text{max}}^{-1} \sin(\theta_1 + \theta_2))$$

$$\kappa_{\text{max}}^{-1} - 2\kappa_{\text{max}} \cos \theta_1 + \kappa_{\text{max}}^{-1} \cos(\theta_1 + \theta_2), \theta_1 + \theta_2, 0).$$

1) $C|C$ Transition Scheme: We propose to construct a CC path of the pattern $S|C|C$ that connects q_0 to q_f. In particular, the proposed CC path consists of

(i) S: a backward line segment from q_0 to a configuration $q_s = (x^*, 0, 0, 0)$, $-\epsilon \leq x^* < 0$;

(ii) CT_1: a forward left CT with a deflection δ_1 that starts from q_s and ends at a configuration $q_1 = (x_1, y_1, \delta_1, 0)$;

(iii) CT_2: a backward right CT with a deflection $\delta_2 = \theta_1 + \theta_2 - \delta_1$ that starts from q_1 and ends at q_f.

![Fig. 7: A simple RS path: C|C type](image)

![Fig. 8: C|C transition scheme](image)

Given σ_{max}, the following procedure can be employed to determine transition parameters x^*, x_1, y_1, δ_1 and δ_2. Please refer to Fig. 8 for illustration.

(i) With CT_2 ending at q_f, given by (10), we have coordinates of the center of $C_{f}^{-}(q_f)$ as $\Omega_2 = (x_{\Omega_2}, y_{\Omega_2})$.

(ii) With CT_1 starting at q_s, the center $\Omega_1(x^*)$ of CC circle $C_{f}^+(q_s)$ is given by a vector-valued function of x^*.

(iii) Based on μ–tangency conditions, CC Circles $C_{f}^+(q_s)$ and $C_{f}^+(q_f)$ must be μ–intersecting. That is, x^* shall ensure

$$\|\Omega_1(x^*) - \Omega_2\| = 2R_{\Omega} \cos \mu, \quad -\epsilon \leq x^* < 0. \quad (11)$$

(iv) Given x^* solved from (11), $\Omega_1 = (x_{\Omega_1}, y_{\Omega_1})$ can be
determined. Compute the auxiliary angle α as follows:

$$\alpha = \arctan \left(\frac{y_{g2} - y_{g3}}{x_{g2} - x_{g1}} \right).$$

The deflections of CT_1 and CT_2 are given by $\delta_1 = \alpha + \pi/2$, and $\delta_2 = \theta_1 + \theta_2 - \delta_1$, respectively; whereas the length of the line segment is given by $|x^*|.$

2) $C|C$ Transition Algorithm: We summarize the aforementioned computation procedure of the $S|C|C$ as the $CCP-C|C$ algorithm, as shown in Algorithm 3. Intuitively, the $CCP-C|C$ algorithm determines x^* iteratively such that it solves (11). Towards this end, the $CCP-C|C$ first computes R_{Ω}^k and μ^k with respect to $\sigma_{\text{max}}^k = \sigma_{\text{max}}^0 + k\Delta\sigma$ at the kth iteration step (Lines 3 to 4). Next, the center Ω_2 of $C_r^+(q_f)$ is obtained (Line 5). In addition, the center Ω_1 of $C_l^+(q_f)$ can be computed based on the center Ω_0 of $C_l^+(q_0)$ (Lines 6-7). From the coordinates of Ω_1, (11) can then be reduced to the equation presented in Line 8. Solving this equation yields x^*, which can be accepted whenever $|x^*| < \epsilon$ is satisfied before the iteration terminates (Lines 9-12). Afterwards, the desired P_{CC} can be computed in terms of x^* and σ_{max} accordingly.

Algorithm 3 $CCP - C|C$ Algorithm

Input: Error bound ϵ, initial steering rate σ_{max}^0, steering rate increment $\Delta\sigma$, iteration step N, configurations q_0 and q_f.

Output: A continuous curvature $S|C|C$ path P_{CC} connecting q_0 and q_f, steering rate σ_{max}.

1: Initialization: $k = 0$

2: repeat

3: $\sigma_{\text{max}}^k = \sigma_{\text{max}}^0 + k\Delta\sigma$

4: Compute R_{Ω}^k and μ^k with σ_{max}^k according to (5)

5: Compute the center $\Omega_2 = (x_{\Omega2}, y_{\Omega2})$ of $C_r^+(q_f)$ with R_{Ω}^k and μ^k

6: Compute the center $\Omega_1 = (x_{\Omega1}, y_{\Omega1})$ of $C_l^+(q_f)$ with R_{Ω}^k and μ^k

7: Let $\Omega_3 = (x_{\Omega3}, x^*, y_{\Omega3})$ be the center of $C_l^+(q_1)$

8: Determine x^* by solving

\[
(x_{\Omega3} + x^* - x_{\Omega2})^2 + (y_{\Omega3} - y_{\Omega2})^2 = (2R_{\Omega}^k \cos \mu^k)^2
\]

9: if $|x^*| > \epsilon$ or $x^* > 0$ then

10: $k = k + 1$

11: end if

12: until $|x^*| \leq \epsilon$ and $k \leq N$

13: Compute P_{CC} from $\sigma_{\text{max}}^k, x^*$

14: return P_{CC} and $\sigma_{\text{max}} = \sigma_{\text{max}}^k$

IV. SIMULATION RESULTS

In this section, simulation is conducted to verify the effectiveness of the aforementioned computation schemes and algorithms, where three types of transition are considered.

For the SC transition case, we assume that $\kappa_{\text{max}} = 1$, $\sigma_{\text{max}} = 1$ and $\theta = \pi/3$. The line and the circular arc are shown in Fig. 9. Based on the proposed computation procedure, we have $x^* = -2.5616$, and the centers of CC Circles $C_l^+(q_2), C_l^+(q_2)$ and $C_r^+(q_s)$, shown in Fig. 9, are obtained as $\Omega_1 = (-2.0657, -1.0413), \Omega_2 = (-0.9917, 1), \Omega_3 = (0, 1)$. The auxiliary angle is $\alpha = 1.0864 rad$ and the deflection of the right CT is $\delta = -0.04 rad$. The planned CC path is zoomed in Fig. 10.

![Fig. 9: RS path, CC circles and CC path: SC case](image)

![Fig. 10: CC path: SC case](image)
results in almost equivalent computational efficiency and reliability as Reeds-Shepp’s based path planning by post-processing Reeds-Shepp’s paths. The post-processing stage, different from conventional optimization approaches, resorts to geometric μ—tangency conditions, which not only allow a majority of planning work done offline, but also enable development of convergence guaranteed algorithms. Effectiveness of the proposed path planning method was validated by simulation.

REFERENCES

V. CONCLUSION

This paper proposed a real-time continuous curvature path planning method for car-like robots. The proposed method

\[\sigma_{\text{max}} = 5, \ \theta_1 = \pi/3, \ \text{and} \ \theta_2 = \pi/2. \]

The \(C|C \) RS path is shown in Fig. 12. We first compute the center of the CC Circle = \(C_1(q_1) \) and have \(\Omega_2 = (1.6463, 0.0514) \). Next, we solve (11) for \(x^* \) and have \(x^* = -0.2172 \). The auxiliary angle and deflections of two CTs are computed:

\[\alpha = -0.4942 \text{rad}, \ \delta_1 = 1.0766 \text{rad}, \ \delta_2 = 1.5414 \text{rad}. \]

The center of the CC Circle \(C^+_2(q_0) \) is obtained as \(\Omega_1 = (-0.1172, 1.0017) \). Blue dashed circles in Fig. 12 show the CC Circles, while the planned \(S|C|C \) path is represented by yellow solid lines.

Fig. 11: RS path, CC circles and CC path: \(CC \) case

Fig. 12: RS path, CC circles and CC path: \(C|C \) case