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Abstract—An axiomatic approach to signal reconstruction is
formulated, involving a sample consistent set, defined as a set
of signals sample-consistent with the original signal, and a given
guiding set, describing desired reconstructions. New frame-less
reconstruction methods are proposed, based on a reconstruction
set, defined as a shortest pathway between the sample consistent
set and the guiding set, where the guiding set is a closed
subspace and the sample consistent set is a closed plane in
a Hilbert space. Existence and uniqueness of the reconstruction
set are investigated. Connections to earlier known consistent,
generalized, and regularized reconstructions are clarified, and
new and improved reconstruction error bounds are derived.

I. INTRODUCTION

Signal reconstruction is a standard technique that arises
naturally in signal processing and machine learning. A classical
example is reconstruction of band-limited signals from their
time-domain samples. Recently, the reconstruction of signals on
graphs from signal samples on a subset of nodes of the graph
has been gaining popularity, e.g., [1], [2], and finds applications
in graph based semi-supervised learning; see, e.g., [3]. In
this context, the signals are considered to be band-limited with
respect to eigenvalues of a graph Laplacian.

A Hilbert space framework allows investigating signal
reconstruction in a general and concise manner. To this end,
we consider a problem of determining a reconstruction f̂ ∈ H
of an unknown original signal f ∈ H from a sample of f ,
where H is a Hilbert space equipped with a scalar product
〈·, ·〉 and a corresponding norm ‖ · ‖. The sampling of f is
defined as an orthogonal projection Sf on a closed subspace
S ⊆ H called the sampling subspace.

The original signal f is typically not known, only the sampled
original signal Sf is available as an input to a reconstruction
method. Since sampling involves loss of information, we
need some a priori assumptions on the original signal f
to be recovered. One such assumption may be that the
signal f belongs to a closed subspace T ⊆ H that can be
thought of as a target reconstruction subspace. Alternatively,
the signal f may not lie strictly in T , but may be well
approximated by its projection on the subspace T ⊆ H.
We prefer to call T a guiding reconstruction subspace, since
in our technique the reconstructed signal f̂ is not necessarily
restricted to T . Another example of the prior structure is that
the signal f belongs to a compact subset of H, determined

∗An extended version of this paper is posted as [4].

by the “smoothness” of f . In any case, the reconstruction that
minimizes the reconstruction error ‖f̂ − f‖ is naturally desired.

The guiding set can be determined using a model or other
form of description of desirable reconstructed signal behavior,
e.g., learned from training datasets. For signals with natural
spectral properties, spectral transforms, e.g., Fourier, cosine,
and wavelet transforms, can be used to transform signals into
a spectral domain, where the guiding subspace can be chosen
as corresponding to certain frequency ranges, e.g., assuming
that the desired signal is band-limited.

For signals without self-evident spectral properties, the sig-
nals are embedded into a specially constructed structure,
depending on a type of the signal, e.g., a graph, or a Riemannian
manifold, wherein spectral properties are determined by an “en-
ergy” norm and its defining operator, e.g., graph Laplacian, or
the Laplace-Beltrami operator, correspondingly [5]. The guiding
subspace can then be chosen to approximate an invariant
subspace of the energetic operator, corresponding to certain
ranges in its spectrum, e.g., assuming that the desired signal is
band-limited, having components primarily from the low part
of the spectrum of the energetic operator. The embedding also
involves choosing a distance in the embedded space, depending
on a signal similarity measure in the signal space, which can
comprise, e.g., correlation, coherence, divergence, or metric,
depending on the type of the signal.
A. Notation

Let S and T be the orthoprojectors onto the closed subspaces
S and T , respectively. Let S⊥ = I − S and T⊥ = I − T,
where I is the identity operator, denote the orthoprojectors onto
their orthogonal complements S⊥ and T ⊥. Let R(A) denote
the range of operator A and N(A) its null space, then, e.g.,
S = R(S) and S⊥ = R(S⊥) = N(S).

We sample an element f ∈ H by its projection on S, i.e.
the observed sample is given by Sf , and want to reconstruct
f from Sf . The signal f to be reconstructed can be split into
two orthogonal components:

f = Sf + x, where Sf ∈ S and x ∈ S⊥, (1)

where Sf is the observed sample of f and x contains the
missing information to be reconstructed.
B. Prior work

Two main kinds of sample consistent reconstructions are
known: subspace-based constrained reconstructions using
oblique projectors leading to f̂ ∈ T , e.g., [6]–[8], and energy



minimization-based reconstructions, e.g., in [8] and generalized
abstract splines [9, Section 4]. Practical reconstruction is usually
performed using frames for S and T , correspondingly. In this
context, S is separable and comes, e.g., with an orthonormal
countable frame F . Consequently, TF is also a frame for
T , having the frame operator TST restricted to T , assuming
S⊥ ∩ T = {0} and strict positivity of the minimal gap [10,
Section IV-4] between S⊥ and T , which makes the inverse
of the frame operator bounded. The approach we present in
this paper is frame-less, dealing directly with the orthogonal
projectors S and T onto the subspaces S and T .

A set of all signals, having the same sample Sf , is a closed
plane Sf+S⊥ that we call a consistent plane. But Sf+S⊥ and
T generally do not intersect, in which case no reconstruction
f̂ can be constrained to both sets as required in [6], [7].

For a solution, which is in both T and Sf +S⊥, to exist for
any f , we need S⊥ +T = H. Additionally, for such a solution
to be unique we need S⊥ ∩ T = {0}. Otherwise there can be
multiple signals in T having the same samples. If both of these
conditions are satisfied, then a unique sample consistent solu-
tion in T is given by PT ⊥Sf where PT ⊥S an oblique projector
on T along S⊥. Non-uniqueness caused by S⊥ ∩ T 6= {0}
can be mathematically resolved by replacing H with a quotient
space H/{T ∩ S⊥}. After such a replacement, we have
S⊥ ∩ T = {0}, which we assume for the rest of this section.

The assumption S⊥ + T = H can be disadvantageous and
very restrictive in applications. Even if Sf + S⊥ and T do
intersect, finding their intersection numerically may be difficult,

The generalized reconstruction methods from [11] and the
minimax regret in [12] may be sample inconsistent, since they
place the reconstructed signal into the guiding subspace. In
contrast, [13] puts the reconstructed signal into the sampling
subspace, relaxing the property that f̂ ∈ T by minimizing
instead the energy in T ⊥. The reconstructed signal is defined
as a point in the sample consistent plane Sf + S⊥ having
the smallest distance to T . This approach is motivated by
a realization that in practical applications, such as bandwidth
expansion of narrowband audio signals, it may be difficult to
explicitly find a frame of or even choose a trustworthy target
reconstruction subspace T . Thus, the subspace T is used as
a guide, not as a true target, trusting the sampling more than
the guiding. In [13], the subspace T is obtained by learning
from a database of relevant signals.

Regularization-based methods, suggested in [1], [5], deter-
mine the reconstructed signal by solving an unconstrained
problem minimizing a weighted sum, using a regularization
parameter. The regularization parameter needs to be chosen a
priori. The authors of [1] assume existence and uniqueness of
the intersection of the sample-consistent reconstruction plane
Sf + S⊥ with the guiding reconstruction subspace T for any
original signal f , the same way as in [14], [15].

C. Main contributions

In the present work, we always assume that the guiding
reconstruction subspace T is available in some form, e.g.,

implicitly via an action of the corresponding (possibly approxi-
mate) orthogonal projector T. If, in addition, it is advantageous
to utilize a specific norm such as in problems (2) and (3),
we also assume that this knowledge is already incorporated
into a definition of the norm ‖ · ‖ of the Hilbert space H
that sets the stage for our reconstruction setup. We formulate
a least squares approach that allows an implicit, frame-less,
and approximate description of T ⊥, e.g., in a form of a filter
function, approximately suppressing T components of a signal.
Additionally, the least squares approach allows and can benefit
from oversampling, as in the generalized reconstruction of [11],
making our reconstruction algorithms more stable, compared to
classical constrained reconstructions using oblique projectors
in [6], [7]. We describe a unified view of consistent, generalized
and regularization based reconstruction methods. Conditions
of existence and uniqueness of the reconstructed signal are
obtained, using [16]. Moreover, stability and reconstruction
error bounds are derived that improve on the bounds in [16].
The proofs of Theorems 4, 6, and 7 as well as numerical
examples can be found in an extended journal version of this
paper available from [4].

II. OVERVIEW OF RECONSTRUCTION IN A HILBERT SPACE

The intersection S⊥ ∩ T consists of signals in the guiding
subspace T with zero samples, projections on S . Its important
role in the reconstruction is stated in the following assumption.

(A0) Reconstruction Uniqueness: A reconstruction f̂ of a given
signal f is unique if and only if S⊥∩T = {0}. Otherwise
all possible reconstructions form the following closed
plane f̂ + {S⊥ ∩ T }.

Possible basic assumptions on the reconstruction can be:
(A1) Sample Consistent: The reconstructed signal yields

the same sample as the original signal, i.e. Sf̂ = Sf , ∀f .
(A2) Sample Sufficient: The reconstructed signal is fully de-

termined, up to signals in S⊥ ∩ T , by the sample of
the original signal, i.e. f̂1− f̂2 ∈ S⊥∩T , ∀f1 and f2 such
that Sf1 = Sf2.

(A3) Guiding Subspace Reconstruction: Signals in the guiding
reconstruction subspace are reconstructed within the sub-
space, i.e. f̂ ∈ T , ∀f ∈ T .

(A4) Reconstruction Stability: A small change in the original
signal results in a proportionally small change in the re-
constructed signal, up to signals in S⊥ ∩ T .

Axioms (A1) and (A2) imply that repeated reconstruction
does not change, up to signals in S⊥ ∩ T , an already
reconstructed signal, i.e. f̂2 − f2 ∈ S⊥ ∩ T , ∀f2 such that
f2 = f̂1, for an arbitrary f1. Indeed, Sf̂1 = Sf1 by (A1), so let
us denote f3 = Sf̂1 = Sf1. Axiom (A2) gives f̂2− f̂3 ∈ S⊥∩T ,
using f3 = Sf̂1 = Sf2, and f̂3 − f̂1 ∈ S⊥ ∩ T , using f3 = Sf1,
thus f̂2 − f̂1 ∈ S⊥ ∩ T , which proves the claim.

Axioms (A1) and (A3) imply full conditional reconstruction,
where signals in the guiding reconstruction subspace are exactly
reconstructed, up to signals in S⊥ ∩ T , i.e. we have that
f̂ − f ∈ S⊥ ∩ T , ∀f ∈ T . Indeed, (A1) is equivalent to
f̂ − f ∈ S⊥, ∀f ∈ H; at the same time, (A3) is equivalent to
f̂ − f ∈ T , ∀f ∈ T . Thus, f̂ − f ∈ S⊥ ∩ T , ∀f ∈ T .



On the one hand, we want to define a reconstruction operator
R : H → H, i.e. the reconstructed signal f̂ of f is given by
f̂ = Rf , which requires uniqueness of f̂ . On the other hand,
the nontrivial intersection S⊥ ∩ T 6= {0} naturally appear
in some applications; see, e.g., [14]. Not having additional
information, one cannot decide if any one reconstruction from
the plane f̂+{S⊥∩T } is better or worse than another, according
to (A0). Mathematically, we can resolve the issue by replacing
the space H with a quotient-space H/{S⊥ ∩ T }, collapsing
S⊥ ∩ T into zero, and consistently replacing the subspaces S
and T with similar quotient-spaces. After such replacements,
we have S⊥ ∩ T = {0}, which we assume in the rest of this
section, so the reconstruction operator R is defined by f̂ = Rf .

Sometimes, no target or even guiding reconstruction subspace
is available or known at all, so Rf ∈ T is inapplicable
and replaced with signal energy minimization. E.g., in [8]
the reconstructed signal f̂ = Rf is determined as a solution of
the following constrained minimization problem

inf
f̂
‖Hf̂‖ subject to Sf̂ = Sf , (2)

where ‖Hf̂‖ is an H-dependent norm of the signal f̂ for
a nonsingular operator H. According to [8], problem (2) is
equivalent to minimizing the worst case reconstruction error, i.e.

inf
f̂

sup
y∈T
‖f̂ − y‖,

where T = {y : Sy = Sf and ‖Hy‖ ≤ U}, (3)

and the solution does not depend on the constant U > 0.
III. PROPOSED RECONSTRUCTION METHODS

We propose a novel formulation and algorithms for the sam-
ple consistent reconstruction, used in [13], which relaxes
the constraint that f̂ ∈ T , used in [6], [7], instead minimizing
the energy in T ⊥, consistently with the sample, as in (A1).
Specifically, the reconstructed signal f̂ is determined as a
solution of the following constrained minimization problem

inf
f̂
‖f̂ −Tf̂‖ subject to Sf̂ = Sf , (4)

which is equivalent to the problem

inf
x̂∈S⊥

〈
(x̂ + Sf) ,T⊥ (x̂ + Sf)

〉
, (5)

where x̂ = f̂−Sf . If the solutions f̂ and x̂ to problems (4) and
(5), correspondingly, are not unique, we choose solutions in
the corresponding factor-spaces, e.g., the normal (i.e. with the
smallest norm) solutions f̂n and x̂n to guarantee the uniqueness
required to define the reconstruction operator R.

Equivalently, problem (5) has the following operator form,(
S⊥T⊥) ∣∣

S⊥x = −S⊥T⊥Sf , (6)

where (·) |S⊥ denotes the operator restriction to its invariant
subspace S⊥ (i.e. the domain of S⊥T⊥ is restricted to S⊥).
If x̂ is a solution to the above problem, then the reconstructed
signal f̂ = x̂ + Sf satisfies

S⊥T⊥f̂ = 0 and Sf̂ = Sf , (7)
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Fig. 1: 3D example showcasing the reconstruction interval
between the sample consistent reconstruction f̂c and the gener-
alized reconstruction f̂g = Tf̂c. The proposed reconstruction
f̂α exists anywhere on the reconstruction interval.

which is an operator form of our constrained minimization (4).
System of equations (7) is a particular case of the following

system, investigated in [16], see also [9],

S⊥(Af̂ − g) = 0 and S(f̂ − f) = 0, (8)

where A is a bounded self-adjoint non-negative operator on
H, i.e. A = A? ≥ 0. When g = 0 and A = T⊥, we get
system (7) and N(A) = T . If we split f̂ as in (1) then system
(8) is equivalent to(

S⊥A
) ∣∣

S⊥x = S⊥ (g −ASf) . (9)

Conditions for existence and uniqueness of the solutions of
equations (8) and (9) derived in [16] can be adapted for our
reconstruction problem.

If the sample consistent reconstruction f̂ exists and is
unique, we define a reconstruction set as a closed interval
with the end points f̂ ∈ Sf + S⊥ and t = Tf̂ ∈ T . If
we trust that the sample-consistent closed plane Sf + S⊥ is
actually accurate, we choose our reconstruction to be sample
consistent, f̂ ∈ Sf + S⊥, given by the first end point that
solves, e.g., minimization problem (4). If there is noise in
sample measurements, we may decide to trust the guiding
closed subspace T more than the sample Sf and choose
as our output reconstruction a convex linear combination
f̂α := αf̂ + (1 − α)Tf̂ within the reconstruction set, where
0 ≤ α < 1. The other extreme choice α = 0 gives the strictly
guided reconstruction Tf̂ suggested in [11]. Fig. 1 shows a 3D
illustration of the proposed reconstruction f̂α and its relation to
the sample consistent reconstruction f̂c := f̂ and the generalized
reconstruction f̂g = Tf̂c.

The reconstruction based on solving (4) satisfies assumptions
(A0), (A1), and (A2) by design. In the next section, we
provide mathematical background, taking advantage of a theory
developed in [16], that is then used to address the issues of
existence, uniqueness, and to prove (A3) and (A4).

IV. UNIQUENESS OF THE RECONSTRUCTED SIGNAL

The following theorem gives a uniqueness condition of our
reconstruction f̂ .



Theorem 1. (Based on [16, Lemma 4.2]) Let x̂ ∈ S⊥ be
a solution of (6) and f̂ = x̂ + Sf be a solution of (7).
The solutions x̂ and f̂ are unique if and only if S⊥ ∩T = {0}.
Otherwise, all solutions form a plane x̂ + {S⊥ ∩ T } for (6)
and a plane f̂ + {S⊥ ∩T } for (7). There exists unique normal
solutions (with minimal norm in H) x̂n ∈ S⊥ of (6) and f̂n
of (7), which belong to the intersection of the corresponding
plane and the closed subspace

(
S⊥ ∩ T

)⊥
= S⊥ + T , and

where f̂n = x̂n + Sf .

Theorem 2. Reconstruction method (5) satisfies (A3).

Proof. According to (A3), f ∈ T , but then f̂ = x̂+Sf = f ∈ T
is a solution of (4), since the minimizing quantity turns into
zero, which is its smallest possible value. By Theorem 1, all
solutions of (7) form the plane f̂ + {S⊥ ∩ T } ⊆ T , since
f̂ = f ∈ T and {S⊥ ∩ T } ⊆ T . �

By Theorem 1, if S⊥ ∩ T 6= {0}, the solution x̂ to
the reconstruction problem (6) and the reconstruction f̂ =
x̂ + Sf determined by (7) are both not unique, and vice
versa, consistently with the assumption (A0). This can happen,
e.g., if the number of samples is too small or when the
guiding reconstruction subspace is too large. A similar issue
appears in [14], dealing with non-unique strictly consistent
reconstructions in T by choosing a subspace in T , i.e.
constraining the guiding reconstruction space. Instead, we
propose constraining the orthogonal complement of the sam-
pling subspace S.

V. EXISTENCE AND STABILITY

We begin by stating conditions for wellposedness, i.e.
existence and stability of a solution, of problem (8) since
it is later used to give us a bound on a reconstruction error.
We denote operator K =

(
S⊥A

) ∣∣
S⊥ obtaining

R(K) = S⊥AS⊥, N(K) = N(S⊥A) ∩ S⊥ = N(A) ∩ S⊥.

A normal solution of equation Kx = b depends continuously
on b ∈ R(K) if and only if the pseudo-inverse operator K† :
R(K) → S⊥/N(K) is bounded. Here S⊥/N(K) denotes
the quotient space such that y, z ∈ S⊥ are equivalent if and
only if y− z ∈ N(K). The operator K† is bounded iff R(K)
is closed. The following theorem restates these conditions in
terms of A and S for problem (8).

Theorem 3. (Based on [16, Theorem 4.3]) A normal solution
f̂n = x̂n + Sf to (8) with x̂n = S⊥f̂ ∈ S⊥R(A) exists and
depends continuously on arbitrary g ∈ R(A) + S and f ∈ H
if and only if

1

ρ
:= inf

x∈S⊥R(A), x6=0

〈x,Ax〉
〈x,x〉

> 0 (10)

Moreover, condition (10) implies

‖x̂n‖2 ≤ ρ2‖S⊥(g −ASf)‖2, (11)

that also leads to an upper bound for ‖f̂n‖2 = ‖Sf‖2+‖x̂n‖2.

Taking g = 0 and A = T⊥, we obtain system (7) and
N(A) = T . Condition (10) with A = T⊥ is equivalent to

κ := inf
x∈S⊥T ⊥

‖T⊥x‖
‖x‖

> 0, where ρ =
1

κ2
, (12)

which becomes the key assumption. Let us describe (12) via
concepts of the minimal gap γ and angles Θ between subspaces.

Theorem 4. (Based on [16, Lemma 4.6]) Let κ be defined
by (12). Then

κ = γ(S, T ⊥) = cos (θmax) ,

where

γ
(
S, T ⊥) := inf

f∈S,f /∈T ⊥

dist
(
f , T ⊥)

dist (f ,S ∩ T ⊥)
, (13)

is the minimal gap between closed subspaces S and T ⊥, and

θmax = sup{Θ(S, T ) \ {π/2}}, (14)

is the largest non-trivial angle between closed subspaces S
and T .

Let us also note that by [16, Lemma 4.6] we have

γ(S, T ⊥) = γ(T ,S⊥) = inf
x∈TS

‖Sx‖
‖x‖

. (15)

The assumption γ(T ,S⊥) > 0 is equivalent to assuming that
the sum S⊥ + T is closed. The latter is automatically satisfied
if S⊥ + T = H as traditionally assumed in reconstruction
literature; see, e.g., [6], [7]. Theorems 3 and 4 imply

Theorem 5. If cos θmax > 0, then there exists a solution of
the reconstruction problem (7) for any signal f ; the normal
solution f̂n of (7) is unique and bounded by

‖f̂n‖2 ≤ ‖Sf‖2 + ‖S⊥T⊥Sf‖2/ cos4 θmax. (16)

Let us note that Theorem 5 applies Theorem 3 with g = 0
and leaves open a question whether condition (10) or condition
(12) is still necessary in this case. In the rest of the section,
we go beyond the results presented in [16] and address this
question, using a powerful theory for a pair of two orthogonal
projectors; see, e.g., [17].

Theorem 6. We denote by H0 the subspace of H that is
orthogonal to all four subspaces S ∩T , S⊥ ∩T , S ∩T ⊥, and
S⊥ ∩ T ⊥, as introduced in [18]. Let P0 be the orthogonal
projector onto the subspace H0. The assumption cos θmax > 0
is necessary and sufficient for existence of a solution of the
reconstruction problem (7) for any signal f . A normal solution
x̂n to (6), giving the normal reconstruction f̂n = x̂n + Sf
exists and depends continuously on arbitrary f ∈ H if and
only if cos θmax > 0. If cos θmax > 0, bound (16) holds, as
well as

‖x̂n‖ ≤ ‖T⊥SP0f‖/ cos θmax (17)

and
‖x̂n‖ ≤ ‖SP0f‖ tan θmax (18)

in ‖f̂n‖2 = ‖Sf‖2 + ‖x̂n‖2.



We finally note that neither of the bounds (16), (17), and
(18) can be derived from the other one, i.e. none of them is in
general sharper than the other.

VI. RECONSTRUCTION ERROR BOUNDS

If the original signal satisfies f ∈ T and S⊥∩T = {0}, then
the proposed reconstruction (7) perfectly recovers it. Suppose
now that we obtain a reconstruction f̂ of some f /∈ T by
solving (7). An important question in this context is to bound
the reconstruction error f̂ − f .

If S⊥ ∩ T 6= {0}, then the solution to reconstruction
problem (7) is evidently not unique. In this case, it is still
possible to bound the reconstruction error, but in the factor
space H/

(
S⊥ ∩ T

)
. Let M be an orthogonal projector onto(

S⊥ ∩ T
)⊥

= S + T ⊥, such that M = PH −PS⊥∩T . Then
the norm of the error in the factor space equals the norm of
its projection on the subspace S + T ⊥, representing the factor
space H/

(
S⊥ ∩ T

)
. In other words, we need to bound above

the quantity
∥∥∥M (

f̂ − f
)∥∥∥, removing from the consideration

the PS⊥∩T f part of the original signal f and ignoring
the non-unique part PS⊥∩T f̂ of the reconstructed signal f̂ .
If the uniqueness condition holds, we have

(
S⊥ ∩ T

)⊥
= H

and M
(
f̂ − f

)
= f̂ − f .

The unique normal solution f̂n of problem (7) simply drops
the PS⊥∩T f part of the original signal f , Thus, the term
‖PS⊥∩T f‖ appears in the upper bound for ‖f̂n − f‖, but not
for

∥∥∥M (
f̂ − f

)∥∥∥.
The PS⊥∩T ⊥f part of the original signal f is visible neither

in the sample Sf , nor to the guiding orthoprojector T, thus
the term ‖PS⊥∩T ⊥f‖ is expected in any error bound.

The following theorem gives reconstruction error bounds.

Theorem 7. Let cos θmax > 0. In the notation of Theorem 6,
let us consider the normal solution x̂n to (6), giving the normal
reconstruction f̂n = x̂n + Sf as well as any reconstruction
f̂ , obtained by solving (7). Let M be the orthoprojector onto
S + T ⊥ and P0 be defined as in Theorem 6. Then,∥∥∥M (

f̂ − f
)∥∥∥2 = ‖PS⊥∩T ⊥f‖2 +

∥∥x̂n − S⊥P0f
∥∥2

and∥∥∥f̂n − f
∥∥∥2 = ‖PS⊥∩T f‖

2
+‖PS⊥∩T ⊥f‖2+

∥∥x̂n − S⊥P0f
∥∥2 ,

and the following bounds hold∥∥x̂n − S⊥P0f
∥∥ ≤ ‖S⊥T⊥P0f‖/ cos2 θmax, (19)

and ∥∥x̂n − S⊥P0f
∥∥ ≤ ‖T⊥P0f‖/ cos θmax. (20)

The error bounds of Theorem 7 based on (20), extend to
the most general case the one (which is ‖T⊥f‖/cos θmax)
obtained with the consistent reconstruction method presented
in [6], [12], dropping all unnecessary assumptions on the sam-
pling and guiding subspaces made in [6], [12]. The error
bounds of Theorem 7 based on (19) are new. We finally note
that neither of the bounds (19) and (20) can be derived from
the other one.

VII. CONCLUSION

Our efficient reconstruction algorithms allow reconstructing
signals with desired properties given by a guiding subspace.
The proposed methodology is very general and is expected to
be effective for a wide range of applications, in video and audio
processing, data mining, and real time security and artificial
intelligence systems.
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