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Abstract— This article provides an overview of the cubic phase
function (CPF) as a tool proposed for both parametric and
nonparametric estimation of the frequency modulated (FM)
and in particular polynomial phase signals (PPS). This simple
tool motivated small revolution in this field with numerous
extensions and applications. We are describing the CPF and
compare some of its extensions for both one-dimensional and two-
dimensional signals. The comparisons are performed in terms
of accuracy (measured with signal-to-noise (SNR) threshold and
mean-squared error (MSE)) and computational complexity. Also,
we review the CPF and related transforms applications.
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I. INTRODUCTION

Engineers in many fields often encounter non-stationary

signals including biological, speech and music signals, radio

signals in wireless communications and radars, and dispersive

seismic signals [1]- [57]. The conventional Fourier transform

(FT), a popular tool to bridge between time and frequency, is

considered to be inadequate to analyze such real-life signals

[1], [2], [4]. In contrast, joint time-frequency (TF) analysis

is an efficient way to reveal frequency contents of signals

evolving over time, alternatively known as the instantaneous

frequency (IF).

One particularly interesting model of non-stationary signals

is the polynomial phase signal (PPS) model. The last 25
years have witnessed tremendous developments in the area of

PPS parameter estimation, driven by applications originated in

radars, sonars, biomedicine, machine engine testing, etc. [58]-

[95]. The maximum likelihood (ML) estimator has limited

application due to a required multi-dimensional search over the

parameter space. Early developments for the PPS parameter

estimation are based on high-order ambiguity function (HAF)

and its product form (PHAF) [91], [96]. The HAF-based

estimation procedure consists of phase order decrementing

by the process known as the phase differentiation (PD) until

obtained signal is a sinusoid (the PPS of the first order).
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Then, the highest-order phase parameter is estimated using

the fast algorithm, i.e., by an one-dimensional (1-D) search

over the parameter space. This strategy is efficient but with

numerous shortcomings. Firstly, in each stage of the procedure,

the PD (performed by the auto-correlation function) reduces

signal length and increases the number of noise-related terms

in the resulted signal. These effects increase the signal-to-

noise-ratio (SNR) threshold and estimation mean squared

error (MSE). The auto-correlation also introduces cross-terms

when multicomponent signals are considered. Finally, after

estimation of the highest-order phase parameter, the same

procedure is performed on the dechirped signal. Dechirping

procedure causes error propagation from higher- to lower-

order phase parameters. Some negative effects of the HAF, in

particular cross-terms, are mitigated using the PHAF obtained

as the multiplication of several HAFs calculated with different

lag sets sharing the same product. The alternative technique

is the integrated generalized ambiguity function (IGAF) [97].

It is accurate but, unfortunately, with heavy computations.

Specifically this technique requires integrations over multi-

dimensional lag space. Large number of integrals (or sums),

i.e., calculation complexity, limits application of the IGAF to

lower-order PPSs. Nevertheless, the IGAF is known to enhance

the signal term and suppress the oscillating cross-terms and

noise from the (coherent) lag integrations. In addition, two

highest-order parameters are estimated at once meaning that

the effect of error propagation is also reduced.

Aside from the IF, instantaneous frequency rate (IFR) or

chirp-rate (CR) provides additional insights into the signal’s

frequency changing rate [1], [2], [98]–[100] and has received

significant attention after O’Shea’s seminal paper of [88].

At first, O’Shea proposed the original cubic phase function

(CPF) for the parameter estimation of a third-order PPS, i.e.,

a cubic phase (CP) signal [88], [89]. The CPF-based procedure

requires only one PD resulting in significantly better perfor-

mances with respect to the (P)HAF-based alternatives for the

CP signal. Later, numerous researchers strive for its extensions

to higher-order PPSs [69], [70], [101]- [104]. Besides, the

CPF maps a signal to a 2-D joint time-chirp (frequency)

rate domain. The time-CR domain and representations are

still not well understood compared to the TF domain and

representations. Meanwhile, there exist considerable interests

in generalization of this transform to a 2-D PPS [67].

The aim of this paper is to show how this, at the first glance,

simple modification of the CPF can motivate significant devel-

opments in the field of the PPS estimation and in more general

nonstationary signal analysis. These developments resulted in

significant improvement in the PPS estimation performance
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with respect to the state-of-the-art techniques. This overview

article is devoted to the CPF since this transform and related

approaches still reverberate in the community working with

both theoretical and practical developments in the PPS es-

timation and with general nonstationary phase signals. The

remaining of this paper is organized as follows. Theoretical

background on the CPF is given in Section II with basic

performance analysis of this technique both in parametric

and nonparametric estimation. Various extensions of the CPF

are presented and compared in Section III. 2-D PPSs are

considered in Section IV, while Section V brings literature

overview of some practical applications where the CPF is used

or where CP signals appear.

II. THEORETICAL OVERVIEW

A. Signal model

Consider a frequency modulated (FM) signal

x(t) = A exp(jφ(t)), (1)

where A is the amplitude, and φ(t) is the signal phase. The

first derivative of φ(t) is defined as the IF, ω(t) = φ′(t), while

its the second derivative is commonly referred to as the CR

(or IFR) Ω(t) = φ′′(t). Assume that the observed signal x(t)
is corrupted by the complex zero-mean white Gaussian noise

ν(t) with variance σ2

y(t) = x(t) + ν(t). (2)

The discrete version of signal (2) is obtained by sampling y(t)
with a sampling interval Δt: y(n) = y(nΔt) = x(nΔt) +
ν(nΔt), with N denoting the number of discrete samples.

One of the most commonly considered parametric models of

the FM signals is the PPS:

x(n) = A exp(jφ(n)) = A exp

(
j

P∑
i=0

ain
i

)
, (3)

where ai is the ith polynomial phase coefficient and P is the

PPS order.

For nonparametric estimators, i.e., no parametric form of

φ(t) is assumed, the goal is to estimate the IF (ω(n)) or

the CR (Ω(n)) from noisy observations y(n) for all n, while

parametric estimators obtain signal parameters {A; ai, i =
0, ..., P} by relying on some parametric form of φ(n), for

instance, the polynomial phase form in (3). Parameters ai,
i = 0, ..., P are called phase parameters and aP is known as

the highest-order phase parameter.

Two performance measures of parametric estimators are

the accuracy and computational complexity. The computa-

tional complexity is the number of algorithmic operations

represented in the big-O notation O() [106]. The estimation

accuracy is measured with two metrics: the MSE and SNR

threshold. Specifically, the MSE can be numerically computed

as

MSE{â}=
1

Ntrial

Ntrial∑
k=1

(a− âk)
2, (4)

where âk is parameter estimate in the kth trial while Ntrial

is the number of Monte-Carlo runs. The SNR threshold is

an SNR value below which the numerical performance is

significantly deviated from the expected theoretically derived

performance [107]. Albeit of other definitions of the SNR

threshold of the estimation procedure we will perform simple

visual inspection based on the MSE rapid departure from the

Cramer-Rao lower bound (CRLB).

B. The maximum likelihood estimator

The ML estimation procedure can be described as (we

assume P is known)

(â1, ..., âP ) = arg max
(b1,...,bP )

ML(b1, b2, ..., bP ) (5)

ML(b1, b2, ..., bP ) =

∣∣∣∣∣
∑
n

y(n) exp

(
−j

P∑
i=1

bin
i

)∣∣∣∣∣
2

.(6)

Then, the amplitude A and initial phase a0 can be estimated

as

Â =
1

N

∑
n

|yd(n)| (7)

â0 =
1

N

∑
n

�yd(n), (8)

using the dechirped signal yd(n) = y(n) exp
(
−j

∑P
i=1 âin

)
.

The ML estimation needs to perform a P -dimensional

search O(NP ) over the P -dimensional parameter space

(b1, b2, ..., bP ). For P > 3, the direct search is computationally

prohibitive.

To avoid the multi-dimensional search, suboptimal tech-

niques are proposed with reduction of the search space. This

reduced search space is formed by successively decrementing

the polynomial order in the signal phase by the PD process as

described in Section II-D.

C. Cramér-Rao lower bound

The best achievable performance bound of all unbiased

parametric PPS estimators is the CRLB. It is derived in [108],

[109], and for general PPS it exhibits:

CRLB{âi} =
σ2

2A2

(
D−1

P+1H
−1
P+1D

−1
P+1

)
i,i

(9)

where the (k, l)th element of (P +1)× (P +1) matrix HP+1

is
∑

n n
k+l while the matrix DP+1 is a diagonal matrix with

elements (Δt)i, i ∈ [0, P ]. Here, the exponent −1 denotes

the matrix inverse while index i, i corresponds to the (i, i)
element of the resulting matrix. In general, the CRLB for phase

parameters ai can be simplified as

CRLB{âi} = αiP
σ2

A2N2P+1(Δt)2P
, (10)

where αiP is a constant scalar dependent on i and P .
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D. HAF/PHAF estimator

Instead of the P -dimensional search of the ML estimation,

an alternative solution is to successively reduce the PPS

order, ideally to a single-tone sinusoid, and estimate the phase

information from the reduced-order PPS. The phase order can

be reduced using the PD recursively defined as:

PD1[n, τ1] =ryy(n, τ1) = y(n+ τ1)y
∗(n− τ1), (11)

PDQ[n; τ1, ..., τQ] = PDQ−1[n+ τQ; τ1, ..., τQ−1] (12)

× {
PDQ−1[n− τQ; τ1, ..., τQ−1]

}∗
, Q > 1

where τi, i = 1, 2, ..., Q are lag parameters and Q is the PD

order. In each stage, the PD operator reduces the PPS order

by one. Therefore, the resulting PDP−1[n; τ1, τ2, ..., τP−1] is a

complex sinusoidal with frequency proportional to the highest-

order phase parameter, ω = 2P−1P !aPΠ
P−1
i=1 τi. For example

if the third-order PPS is considered P = 3, i.e., the CP signal

x(n) = Aej
∑3

i=0 ain
i

= Aeja3n
3+ja2n

2+jan1+ja0 , (13)

the first PD:

PD1[n, τ1] = rxx(n, τ1)

= |A|2ej6a3τ1n
2+j4a2τ1n+j(2a3τ

3
1+j2a1τ1) (14)

represents the second-order PPS with parameters b2 = 6a3τ1,

b1 = 4a2τ1 and b0 = 2a3τ
3
1 + j2a1τ1. The next PD equals to

PD2[n; τ1, τ1] = |A|4 exp(j24a3τ1τ2n+ j8a2τ1τ2). (15)

For a noise-free signal PD2[n; τ1, τ1] is a complex sinusoidal

with the amplitude |A|4, frequency 24a3τ1τ2, and initial phase

8a2τ1τ2.

The parameter aP can be estimated by the high-order

ambiguity function (HAF) using the following procedure:

HAF[ω;τ1, ..., τP−1] =
∑
n

PDP−1[n, τ1, ..., τP−1]e
−jωn,

(16)

âP =
1

2P−1P !ΠP−1
i=1 τi

argmax
ω

|HAF(ω;τ1, ..., τP−1])|2 .
(17)

The effective number of samples in the HAF or

PDP−1[n, τ1, ..., τP−1] is less than the number of raw

samples N . Once aP is estimated, the lower-order phase

coefficients can be estimated from the dechirped signal

ỹ(n) = y(n) exp
(−jâPn

P
)

using the similar procedure.

The described technique has several issues. Firstly, the auto-

correlation operation in (11) and (12) shortens the signal and

amplifies the noise. The second issue is the error propagation

from estimated the highest-order parameters toward lower-

order ones since ỹ(n) consists of some uncompensated part

related to error ΔaP = aP − âP . Since the HAF is obtained

using the FT, frequency of PDP−1[n, τ1, ..., τP−1] should

satisfy the sampling theorem, i.e., |2P−1P !ΠP−1
i=1 τiaP | < π.

Otherwise, the identifiability problem appears. More details on

this issue can be found in [110], [111]. Finally, cross-terms

occur for the multicomponent PPSs: y(n) =
∑M

j=1 xj(n) +
ν(n) where xj(n), j = 1, ...,M, are PPSs. The first auto-

correlation (11) (first-order PD) would have M(M−1)/2−M

cross-terms with number rapidly increasing for next phase

differentiation required for high-order PPSs.

One of potential strategies for solving the last problem is

evaluation of the PDs with various lag sets:

PDP−1[n, τ
(l)
1 , ..., τ

(l)
P−1], l = 1, ..., L. (18)

Then, the HAF is evaluated for each lag set:

HAF[ω; τ
(l)
1 , ..., τ

(l)
P−1] =

∑
n

PDP−1[n, τ
(l)
1 , ..., τ

(l)
P−1]e

−jωFln,

(19)

where l = 1, ..., L and Fl = ΠP−1
i=1 τ

(l)
i /ΠP−1

i=1 τ
(1)
i is the

frequency scaling factor. The PHAF is obtained as the product

of L HAFs

PHAF(ω) =
∏L

l=1
HAF[ω; τ

(l)
1 , ..., τ

(l)
P−1] (20)

and the highest-order parameter is estimated by using:

âP =
1

2P−1P !ΠP−1
i=1 τ

(l)
i

argmax
ω

|PHAF(ω)|. (21)

The selection of lag sets in the HAF and PHAF has been

addressed in [94] and [96]. It has been shown that the lowest

MSE in the HAF is achieved for τ opt = τ1 = τ2 = . . . =
τP−1 = N/(2P ). In the case of the PHAF only one of lag

sets can be selected in such manner. The other lag sets have to

differ at least slightly from these values. A common practice is

to keep the product of lag coefficients ΠP−1
i=1 τ

(l)
i as a constant

in order to avoid interpolation.

If the lag sets are selected properly, the cross-terms caused

by multiple signal components will be dislocated in various

HAFs, HAF[ω; τ
(l)
1 , ..., τ

(l)
P−1], while all auto-terms will be

concentrated at the same frequency. Therefore, the cross-terms

are significantly attenuated by the product operation due to

the misalignment at the frequency, while the auto-terms are

coherently multiplied at the same frequency. The PHAF is

well suited for multicomponent signal case but it has room for

improvements related to the noise influence. Details related to

multicomponent signal handling are available in Section III-H.

There are still remaining issues on the PHAF. For example,

for the high-order PPS where several auto-correlations are

required, the number of interference terms in the HAFs for

the multicomponent signal can be large and it is impossible

for distinguishing useful components from such a mixture.

Performance in noise of the PHAF is slightly better than of the

HAF. For a long time these two approaches were state-of-the-

art in this field and it was assumed that they have reached the

best achievable results with reasonable calculation complexity.

However, the CPF introduced in [88] has shown that there is

huge potential room for improvement of the PPS estimators.

To conclude, the main advantage of the (P)HAF ap-

proach remains calculation complexity that is of the order

O(PN log2 N).

E. Time-frequency representations

The TF representations are tools mapping the time-domain

signal to the 2-D TF domain [4], [58], [59]. They are designed

to be concentrated around the IF [1], [2], [112]. For example,
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the Wigner distribution (WD) in the windowed (pseudo)

discrete-time form is given as:

WD(t, ω) =
∑
n

w(n)y(t+ n)y∗(t− n) exp(−j2ωn)

=
∑
n

w(n)ryy(t, n) exp(−j2ωn), (22)

where w(n) is the window function. For the linear FM

signal, x(t) = A exp(jat2/2 + jbt + jc), the WD is ideally

concentrated on the IF, ω(t) = at+ b,

WD(t, ω) = 2πW (ω − at− b), (23)

where W (ω) is the FT of the window function. The IF can

be estimated from peaks of the WD as [1]- [3], [36], [112],

[113]:

ω̂(t) = argmax
ω

WD(t, ω). (24)

For other nonlinear modulations, the WD is not concentrated

on the IF, but close to the IF. Note that the phase of the local

auto-correlation ryy(t, n) using the modified Taylor’s series

expansion can be written as [114], [115], [116]:

Φ(t, n) = φ(t+ n)− φ(t− n)

≈ 2φ′(t)n+ φ′′′(t)
n3

3
+ φ(5)(t)

n5

60
+ · · · (25)

where φ(a)(t) denotes the ath derivative of the signal phase.

If higher-order phase terms are equal to 0, i.e., φ(a)(t) = 0
for a > 2, the WD is concentrated on the IF. As a result, a

well-known central phase difference approximation follows:

φ′(t) ≈ φ(t+ n)− φ(t− n)

2n
. (26)

Therefore, we can now establish a simple link between the

difference formula and the TF representation. The positive

term in the denominator corresponds to the signal with the

same argument (φ(t+n) → y(t+n)), while the negative term

corresponds to the conjugate term (−φ(t− n) → y∗(t− n)).
Argument of the complex exponential is quantity of interest

(in this case the IF ω) multiplied with the denominator of (26)

(exp(−j2ωn)).

F. Cubic phase function

Estimation of the higher-order phase terms is also impor-

tant [62], [92], [96], [97], [117], and in general, it requires

higher-order non-linearity estimators that cause degradation of

estimation performance with respect to additive noise.

To estimate the second-order phase derivative, i.e. the CR,

consider the following finite difference equation

φ′′(t) ≈ φ(t+ n)− 2φ(t) + φ(t− n)

n2
. (27)

Signal z(t;n) = y(t + n)y∗2(t)y(t − n) has the phase term

that corresponds to φ′′(t). It can be noticed that term caused

by y∗2(t) does not depend on n neither does the magnitude

of the local auto-correlation function. Therefore, the second-

order phase derivative (CR) can be estimated by using the

auto-correlation function ryy(t, n) = y(t+n)y(t−n) as [88]:

C(t,Ω) =
∑
n

w(n)y(t+ n)y(t− n) exp(−jΩn2)(28)

=
∑
n

w(n)ryy(t, n) exp(−jΩn2), (29)

where C(t,Ω) is referred as the CPF, and Ω denotes the CR

index. Estimation of the CR then can be performed as:

Ω̂(t) = argmax
Ω

|C(t,Ω)|. (30)

In this way, the second-order phase derivative is estimated

using the same order of nonlinearity as the first derivative,

i.e., IF, in the WD. However, unlike the WD, the CPF is not

real-valued as the WD. Many other properties from the TF

representations are different in the generic time-CR domain

(some of them are listed at the end of this section) making

challenging application of numerous well developed tricks

from the TF analysis to this domain.

In the rest of this section we are going to present findings

related to the CPF application to the PPS estimation problems

of CP signals. Then, we will discuss its application to the

CR estimation in the nonparametric framework and finally the

challenges for implementation of the TF framework to the

CPF.

G. CPF as CP signal estimator

Originally, the CPF is proposed for parametric estimation

of the CP signal (P = 3). The CPF applied on the third-order

PPS equals

C(t,Ω) = A2ej2
∑3

p=0 a0t
p ∑

n

w(n)ej(2(a2+3a3t)−Ω)n2

. (31)

As it can be seen, (31) is concentrated on the CR of the CP

signal, Ω(t) = φ′′(t) = 2(a2 + 3a3t). The two the highest-

order parameters, a2 and a3, are estimated from the CPF

calculated in two instants, t = 0 and t = t1:

Ω̂(t) = argmax
Ω(t)

|C(t,Ω)|2 ,

â2 =
1

2
Ω̂(0),

â3 =
1

6t1
[Ω̂(t1)− Ω̂(0)]. (32)

The other parameters can be estimated after dechirping signal

(3), where P = 3, with exp(−jâ2n
2 − jâ3n

3):

yd(t) = y(t) exp(−jâ2n
2 − jâ3n

3)

Y (ω) = FT{yd(t)}
â1 = argmax

ω
|Y (ω)|

â0 = �Y (a1), Â ∝ |Y (a1)|. (33)
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The CPF is only unbiased for the CP signal with MSEs of

signal parameters given in the following [89], [108], [109]:

MSE{â3} =

(
1.455 +

1.32

SNR

)[
1400

SNR ·N7

]

=

(
1.455 +

1.32

SNR

)
CRLB{â3}, (34)

MSE{â2} =

(
1 +

1

2SNR

)[
90

SNR ·N5

]

=

(
1 +

1

2SNR

)
CRLB{â2}, (35)

MSE{â1} =

(
1.385 +

1.1

SNR

)[
37.5

SNR ·N3

]

=

(
1.385 +

1.1

SNR

)
CRLB{â1}, (36)

MSE{â0} =

(
1 +

0.278

SNR

)[
1.125

SNR ·N
]

=

(
1 +

0.278

SNR

)
CRLB{â0}, (37)

MSE{Â} =

[
σ2

2N

]
= CRLB{Â}. (38)

Compared with the HAF, the CPF has significantly better

performance. Note also that the MSE is minimized for t1 ≈
0.11N samples. Accuracy in estimation of a3 is above the

CRLB for 1.6dB, while for estimation of a2 it almost reaches

to the CRLB for high SNR.

The computational complexity of this technique is approx-

imately O(2N2) (here 2 is used to emphasize that the CPF

should be evaluated in 2 time instants). Note that it cannot

be evaluated using FFT algorithms [118], [119], but some

attempts to decrease calculation complexity of this and related

transforms will be reviewed in Section III-C.

H. Non-parametric CR estimator

The CPF can be used as non-parametric CR estimator as

given in (30). When it is applied to FM signals different from

the CP signal, this estimator is biased with bias proportional

to uncompensated even higher-order phase terms in the auto-

correlation ryy(t, n) = y(t + n)y(t − n). The bias is, under

assumptions of the small sampling interval Δt → 0 and rel-

atively large number of available samples within the window

N � 1, derived in [82], [120] and it equals to

E{ΔΩ̂(t)} ≈ 2A4φ(4)(t)N6(Δt)6[F6F0 − F2F4], (39)

where Fi is parameter depending only on the selected window

function in (28), Fk =
∫ 1/2

−1/2
w(t)tkdt. It can be seen that the

bias depends on even-order phase derivatives (here approx-

imated with the fourth-order derivative), while it increases

with the window width (it can be seen that this increase

is significant). The variance caused by the noise in the CR

estimation is derived in [88]

E{[ΔΩ̂(t)]2} =
360

π2N5SNR

(
1 +

1

2SNR

)
≈ 360

π2N5SNR
.

(40)

From these asymptotic expressions it can be easily concluded

that the variance is decreasing in fast manner with window

length. From these consideration it follows that there is an

optimal window width producing the minimal MSE equal to:

MSE
{
ΔΩ̂(t)

}
= E{[ΔΩ̂(t)]2}+ E2{ΔΩ̂(t)}, (41)

giving trade-off between the bias and variance. Currently the

algorithm able to determine a trade-off between bias and

variance is available only for high SNRs (SNR≥ 10dB) [120]-

[124].

Example 1. For an illustrative example, we consider a

sinusoidal FM signal x(t) = exp(j12 sin(2πt)) within interval

t ∈ [−1, 1] with sampling time Δt = 1/256. Figure 1(a)

depicts the absolute value of the CPF with a small window

size of 5 samples h = 5Δt, while the CPF with a large

window size of 256 samples is depicted in Figure 1(b). The

CR estimate shown in Figure 1(c) from the narrow-window

CPF (dashed line) is perfectly located at the true CR value

(solid line) even if the CPF is rather spread in this case.

The CR estimate from the wide-window CPF (thick line) is

influenced by the bias. The second row represents the same

CPFs and the CR estimates as in previous example except the

noise variance of σ2 = 0.5. It can be seen that, in Fig. 1 (d),

the time-CR representation of the sinusoidal FM signal is not

recognizable for the small window size of 5 samples while

the CPF with the large window size of 256 samples still gives

accurate results. For this noise amount we have checked the

MSE in the estimation and it is shown in Figure 1(g) that

the MSE is high for narrow windows due to emphatic noise

influence, then gradually decreases toward optimal value and

then increases due to bias influence.

I. Differences between CPF and TF representations

The structure of the CPF is similar to that of the TF

representations, for example the WD. However, there are

numerous issues that are well known and addressed in the

TF signal analysis but not quite clear in the time-CR domain.

First and probably the most important issue is related to the

multicomponent signals. For the TF analysis this issue is well

known and addressed with well studied geometry of auto- and

cross-terms in the TF and the ambiguity domains [125].

It seems that only some projection and decomposition

strategies can be applied to the considered problem but some

TF concepts are not directly applicable to the time-CR domain

[126]–[129]. A simple peeling strategy is applicable for signals

of rather different magnitude. There are no many alteratives

in the field to such technique. One of potential sources of

difficulty is in the fact that the CPF is not real-valued and that

it is fact oscillatory and spread in the time-CR plane.

The second issue is that in the TF analysis there are huge

number of available generalization of the WD and related

techniques. Many of these techniques are grouped in important

classes such as Cohen class of distribution, but also higher-

order TF representation, reassigned distributions, adaptive

optimal kernel distribution, locally adaptive directional TF

representations, etc., [58], [59], [95], [125]- [143]. However,

until now there is no any available systematic class of the
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Fig. 1. CR estimation for sinusoidal FM signal: (a) CPF, nonnoisy signal, narrow window; (b) CPF, nonnoisy signal, wide window; (c) comparison of the
CR estimates for nonnoisy signal (solid line - true value, dashed line - estimate with narrow window, thick line - estimate with wide window); (d) CPF, noisy
signal, narrow window; (e) CPF, noisy signal, wide window; (f) comparison of the CR estimates for noisy signal (solid line - true value, dashed line - estimate
with narrow window, thick line - estimate with wide window); (g) MSE in CR estimation for noisy signal as function of the window width.

time-CR domain transforms with a notable approach available

in [144].

The third issue is connection with the popular fractional

Fourier transform (FrFT) [145]- [150]. At the first glance it is

similar to the CPF with quadratic phase term in the integral

or sum. The FrFT is a linear transform but there is no any

established relationship between the CPF and the FrFT like

in the TF analysis between the short-time Fourier transform

(STFT) and high-order TF representations [151], [152].

Also, there is no progresses in development for improving

concentration in the time-CR domain which parallels the

reassigned distribution for the TF analysis [136]- [141].

From the above observations it is not difficult to conclude

that a direct generalization and usage of numerous tips and

tricks developed in the TF analysis is not straightforward for

the time-CR plane so challenges remain to be addressed.

III. EXTENSIONS OF THE CPF

The CPF is initially proposed for monocomponent CP

signals, corrupted by Gaussian noise motivated by problems in

the passive radar surveillance and echolocation. This limitation

motivated researchers to actively look for the CPF modification

that is able to address some of the following issues: higher-

order PPS, multicomponent signals, non-Gaussian noise, etc.

In the following subsections we summarize developments

along these lines.

In Section III-A extensions of the CPF with higher-order

nonlinearity are presented, while Section III-B describes the

hybrid (P)HAF-CPF approach. Section III-C summarizes non-

uniform sampling techniques related to the CPF. Projection

based techniques are described in Section III-D, while multidi-

mensional transforms are presented in Section III-E. The CPF

modification that is robust to the impulse noise is reviewed

in Section III-F, while technique for efficient refinement of

the CR estimates are given in Section III-G. Problem of

time-CR representation of multicomponent signals is presented

in Section III-H while the CPF application in the case of

downsampled data is discussed in Section III-I. The Viterbi

algorithm (VA) for the IF and CR estimation in high-noise

environment is presented in Section III-J. Section is concluded

with numerical examples and performance evaluation of con-

sidered techniques.

A. High-order (nonlinearity) transforms

The term high-order is often used in the nonstationary signal

analysis in an ambiguous manner. There are several tools

claiming that they are high- (or higher) order, while showing

quite different developments. Therefore, in this subsection,

with nonlinear transform we assume the high-order transform

as the one involves the product of more than two time-shifted

signal terms (more than one auto-correlation) in the sum or

integral.

Nonlinear transforms have been already used in the TF

analysis. The generalized higher-order TF representation can

be written as [132], [133]

TF(t, ω) =
∑
n

w(n)

[∏I

i=1
rdi
yy(t, cin)

]
exp(−j2ωn),

(42)

where {ci, di|i ∈ [1, I]} are selected in such a way that

TF(t, ω) is concentrated on the IF with eliminated high-

order phase derivatives (see eq.(25)). In the WD case (22),

ryy(t, cin) = y(t + cin)y
∗(t − cin). By using the Taylor

series expansion of the phase function, it can be shown that

the TF representation is concentrated on the IF if the following

condition is satisfied ∑I

i=1
rici = 1. (43)

In addition, the high-order odd phase derivatives of the product
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TABLE I

SOME REPRESENTATIVES FROM THE HIGH-ORDER CPF CLASS.

2R ri ci
2 1 1

4 2
√
2/2

6 (1,1,-1) (1.2646,1.3544,1.5600)
6 (1,1,-1) (1.0875,1.9333,1.9800)
8 (1,1,-1,-1) (1.4759,2.9432,2.9800,0.9800)

in (42) are equal to zero when∑I

i=1
ric

2p+1
i = 0, p = 1, 2, ..., R. (44)

For a given R, we have up to 2R + 1 phase coefficients

eliminated from the product of auto-correlations. Transforms

from this group form a popular class of the higher-order

TF representations known as the polynomial Wigner-Ville

distributions (PWVD) [132], [133]. The popular form of the

PWVD is

PWVD(t, ω) =
∑
n

r2yy(t, 0.675n)r
∗
yy(t, 0.85n)e

−j2ωn. (45)

It is concentrated on the IF for the PPS of the fifth order.

Evaluation of PWVD(t, ω) requires interpolation of the signal

samples (see more details in Section III-C where the general

non-uniform sampling and signal interpolation strategies have

been considered).

The same principle has been utilized to extend the CPF for

the high-order PPS to concentrate on the CR while cancelling

other even-order phase derivatives [153], [154]:

H(t,Ω) =
∑
n

[∏I

i=1
r(ri)yy (t, cin)

]
exp(−jΩn2). (46)

Comparing relations (42) with (46), two differences are no-

ticeable. Firstly, the auto-correlation in this case is defined as

in the CPF (28), (29), ryy(t, cin) = y(t + cin)y(t − cin),
while power ri in brackets in exponent means potential usage

of complex conjugates, i.e., q(ri) = qri for ri > 0, and q(ri) =
(q∗)|ri| for ri < 0. Secondly, parameters {ci, ri|i ∈ [1, I]} are

chosen according to different conditions∑I

i=1
rici = 1 (47)∑I

i=1
ric

2p
i = 0, p = 1, 2, ..., R. (48)

The first condition of (47) is to guarantee the concentration on

the CR of the signal, while the second condition of (48) is to

cancel the higher-order even phase derivatives. The selection

of R eliminates up to 2R phase-orders from the result of

auto-correlations. Note that for selected R, more than one

solution may exist. Table I summarizes notable representatives

of transforms from this class.

It should be noted that this design brings some undesired

effects. Firstly, if the considered signal has the phase order

higher than assumed, higher-order phase derivatives may be

amplified. These uncompensated derivatives are commonly

amplified in high-order representations [133]. The second

problem is that high-order nonlinearity causes significant in-

crease of the noise influence (substantial increase of both the

MSE and SNR threshold). In addition, for multicomponent

signals, each auto-correlation produces additional cross-terms

and it becomes difficult to recognize signal components from

the mixture.

When parametric estimation is concerned this transform

is calculated at (P − 1) different time-instants. Then, phase

parameters are obtained by interpolating the transform position

maxima using the least-squares interpolation. Some details on

this strategy can be found in [154].

An alternative high-order technique is the Farquharson-

O’Shea-Ledwich approach from [70]. It designs the kernel

suitable to the considered PPS order multiplied with the

complex exponential of the appropriate form. These high-order

transforms can be described as:

HP(t,Ω) =
∑
n

∏I

i=1
r(ri)yy (t, nci/cmax)e

−j Ωp!np

c
p
max , (49)

where cmax is the maximum lag cmax = max{ci}. Detailed

analysis of the high-order phase function is performed in [70]

including the optimal selection of the lag parameters. These

high-order representations and estimators inevitable increase

the MSE and SNR threshold. As shown in [70] and [154], the

SNR threshold for the PPS signal with the order of P = 4
and P = 5 is found to be 5dB. This approach is extended to

signals with hybrid sinusoidal (nonpolynomial) modulation in

[155].

Calculation complexity of this technique is of order O(kN2)
where k is the number of instants required for evaluation

of the high-order transforms. There is additional complexity

related to more auto-correlations but its complexity is lower

than O(IN).

B. (P)HAF-CPF

The hybrid HAF-CPF approach is proposed as an alternative

to handle the problem of parameter estimation of high-order

PPSs [101], [102]. This technique calculates the PD as in the

HAF estimator until the CP signal is obtained. Furthermore,

parameters of the obtained signal are estimated by the CPF.

This procedure reduces estimators nonlinearity improving the

estimation performance with respect to the HAF. Detailed de-

scription of the HAF-CPF approach is given in the following.

The PD procedure (11)-(12) is performed (P − 3) times

until the CP signal is obtained

PDP−3[n, τ1, ..., τP−3] =A2P−3

ejc3aPn3+jc2aP−1n
2

× ej(c
′
1aP−2+c′′1 aP )n+j(c′0aP−3+c′′0 aP−1)

+ νx(n), (50)

where ci, i = 2, 3, c′i, c
′′
i , i = 0, 1, are constants dependent

only on P and selected set of lags {τi,i ∈ [1, P −3]}. Two the

highest-order phase coefficient of signal (50), aP and aP−1,
are estimated by the CPF

Cy(t,Ω) =
∑
k

PDP−3[t+ n, τ1, ..., τP−3]

× PDP−3[t− n, τ1, ..., τP−3]e
−jΩn2

, (51)
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evaluated in two instants:

âP =
Ω̂(t1)− Ω̂(0)

6t1c3
, (52)

âP−1 =
Ω̂(0)

2c2
, (53)

where Ω̂(t) = argmaxΩ |Cy(t,Ω)|. The lower-order coef-

ficients can be estimated from dechirped signal ỹ(n) =
y(n) exp(−jâPn

P − jâP−1n
P−1). The selection of lag pa-

rameters and t1 is discussed in [101] with optimal values

τ opt = τ1 = τ2 = . . . = τP−3 ≈ �(−0.006P + 0.107)N	 ,
and topt

1 ≈ ⌈
(0.0254 + 1.4474e−0.7305P )N

⌉
. Details related

to realization and alternatives are given in [101]. Reduction of

number of auto-correlations with respect to the HAF brings

significant benefits in terms of both MSE and SNR threshold.

The SNR threshold is reduced with respect to the HAF for

about 9.5dB [101].
Following the same reasons as in development of the PHAF,

the parameters of multicomponent signals can be estimated

from the product of several hybrid HAF-CPFs calculated with

different lag sets

PCy(t,Ω) =
∏L

l=1

∣∣∣Cl
y(t,Ω)

∣∣∣ , (54)

Cl
y(t,Ω) =

∑
n

PDP−3[t+ n, τ
(l)
1 , ..., τ

(l)
P−3] (55)

× PDP−3[t− n, τ
(l)
1 , ..., τ

(l)
P−3]e

−jΩFln
2

,

where Fl = ΠP−3
i=1 τ

(l)
i /τ

(1)
i is the scaling operator and L is

the number of different sets of lags. The resulting function

is referred to as the product HAF-CPF (PHAF-CPF). Due

to different lags in (55), the cross-terms appear at different

locations for different l, while the auto-terms are distributed

along the same location. Therefore, the product (54) attenuates

the cross-terms and enhances the auto-terms. Furthermore, the

two highest-order phase parameters of each component can

be estimated by locating M peaks of the PHAF-CPF at two

time instants. In the same manner as the PHAF in addition

to elimination of cross-terms attenuates noise influence with

respect to the HAF the PHAF-CPF attenuates both interference

components and noise influence with respect to the HAF-CPF.

C. Nonuniform sampling techniques
One obvious issue of the CPF is its calculation complexity.

Namely, the CPF cannot be evaluated by the FFT algorithms

since its definition does not include complex exponential with

linear phase term but instead it has exponential with quadratic

phase term exp(−jΩn2). There are some strategies for fast

evaluation of the polynomial FT [156], [157], [158], [159].

However, they have numerous limitations preventing their

simple application to the wideband PPS signals.
The potential strategy to address this issue is to nonuniform

sample the continuos signal (referred to as the NU-CPF here)

[104]:

C′(t,Ω) = 2

nmax∑
m=0

y(t+
√
cn)y(t−√

cn)e−jΩn

= 2

nmax∑
m=0

ryy(t,
√
cn)e−jΩn, (56)

where nmax is maximal possible value of the time-lag n. For

example if t is in the middle of the available interval and

we have N/2 samples from both sides (N + 1 in total) then√
cnmax < N/2, i.e., nmax ≤ N2/4c. For some particular

instant t, nmax ≤ (N/2− |t|)2/c. It is recommended that the

constant c is selected so that all signal samples from the basic

interval are included, i.e., c = N/2.

It is easy to see the benefit of the non-uniform sampling

since there is linear complex exponential in sum giving pos-

sibility to evaluate this transform using the FFT. However,

the remaining question is availability of nonuniformly spaced

samples. It is rare to have nonuniformly sampled signals

and it is more difficult to have nonlinear sampling in this

form. Therefore, we have to interpolate available (usually

uniformly sampled) data. Papers [6], [104] proposed to use

the interpolation strategy based on the FT of signal zero-

padded in the time domain by factor 4 or 8. After interpolation

using zero-padding, obtained grid has FN samples where F
is upsampling factor (F = 4 or F = 8 are recommended)

(see Section III-I). If considered sample nj is not on this

denser grid and two closest neighbors are ni and ni+1, nj ∈
(ni, ni+1) then signal can be interpolated as

ỹ(nj) = ŷ(ni)F [nj − ni] + ŷ(ni+1)F [ni+1 − nj ]. (57)

In several papers this simple and effective technique shows

negligible accuracy reduction with respect to the standard CPF

form [6], [88], [104], [105].

For high-order PPS there are several potential tools where

the nonuniform sampling can be utilized. One is to employ

the hybrid HAF-CPF technique for reducing to the CP signal

and then to evaluate nonuniformly sampled form of the CPF.

For details refer to [104].

In [6], it has been shown that the combination of the

auto-correlations and nonuniform sampling can significantly

improve estimation results for higher-order PPS. A prominent

representative of this class of estimator can be described as:

G(t,Ω) = 2

nmax∑
m=0

r∗yy(t,
√
cn)ryy(t,

√
cn+ τ)e−j4Ωτcn, (58)

where the scaling factor c is selected as previously described.

For the fifth-order PPS (P = 5), G(t,Ω) is concentrated

along the line Ω = a5t + a4. Therefore, estimation of two

highest-order parameters can be performed as in the CPF,

by evaluating G(t,Ω) at t = 0 and t = t1 and performing

the least-square interpolation as in the case of the CPF (31),

(32). In this way, estimation of two highest-order parameters,

a5 and a4, is performed. The lower-order parameters can be

estimated after the signal dechirping considering the obtained

signal y3(n) = y(n) exp(−jâ5n
5 − jâ4n

4). More elaborated

procedure based on the non-uniform sampling is proposed in

[6] for a seventh-order PPS.

D. Projection based techniques

When multicomponent signals are considered, the CPF is

influenced by cross-terms that usually mask auto-terms making

parameter estimation difficult. The cross-terms influence can

be significantly reduced by projecting the CPF for various
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Fig. 2. Sum of three CP signals: (a) CPF; (b) Radon transform of the CPF,
white rectangles represents peeks corresponding to the signal components.

time instants t. Obtained CPF is then summed and oscillatory

effect in the CPF auto-terms (it is important disadvantage

with respect to the TF representation where only cross-terms

oscillate) are partially compensated in addition to eliminating

the cross-terms.

A particularly simple estimator of the second-order PPSs

is proposed in [160] and is referred to as the integrated CPF,

where C(t,Ω) is calculated for various instants t and obtained

values are summed

C(Ω) =
∑

t
|C(t,Ω)|2. (59)

This estimator has shown to concentrate on the CR of com-

ponents with results comparable with the Radon WD and

related projection techniques in the TF plane [126], [127],

[128]. Similar projections can be used for the CR estimation

refinement for the case of CP signals [160]- [167].

Example 2. Considered the sum of three CP signals

x(t) = ej12πt
3−j24πt + ej96πt

3+j24πt + e−j96πt3−j24πt, (60)

where t ∈ [−1, 1] with sampling time t ∈ 1/256. The CPF of

(60) is depicted at Figure 2(a) where oscillatory nature of auto-

terms can be observed. The Radon transform calculated for

this image is given in Figure 2(b). Three peeks corresponding

to positions of signal components are denoted with white

rectangles.

E. High-order (multidimensional) CPF

For the parameter estimation, higher-order phase terms are

compensated by increasing the kernel order (see Section III-

A). It inevitably leads to deterioration of the algorithm perfor-

mance since it is well known that the high-order kernels cause

more noise influence and increase both the SNR threshold and

MSE. Alternative approach is to keep kernel like in the CPF

but to perform search over multidimensional parameters space

(emphasized in the title of this subsection) [103]

HC(t; Ω2, ...,ΩP ) =
∑
n

y(t+ n)y(t− n)e−j
∑�P/2�

p=1 Ω2pn
2p

,

(61)

where � is operator rounding to smaller integer. This approach

is referred to as the high-order CPF (HO-CPF) and it is

ideally concentrated on even-order phase derivatives of the

signal phase, Ω2p = φ(2p)(t) for p ≤ P/2. By evaluating

HC(t; Ω2, ...,ΩP ) at two instants, t = 0 and t = t1, all phase

parameters ap, p ≤ P are obtained.

The high-order WD (HO-WD) is a similar tool that is used

in the TF and it is defined as [166]

HW(t;ω1, ..., ωP ) =
∑
n

y(t+n)y∗(t−n)e−j2
∑�P/2�

p=1 ωpn
2p−1

.

(62)

In the case of noise free signals, the HO-WD is concentrated

on odd-order phase derivatives ωp = φ(2p−1)(t), 2p− 1 ≤ P .

Again, the P th order PPS coefficients can be estimated from

the HO-WD evaluated at two instants. However, when the

HO-CPF or HO-WD are evaluated at two instants, signal pa-

rameters estimation requires elaborate expression and obtained

results are sometimes significantly above the CRLB.

A useful observation is that the HO-CPF can be used for

estimation of even-order phase derivatives while the HO-WD

can be used for estimation of odd-order derivatives [103],

[105]. It has been shown that it is possible to calculate

HC(0; Ω2, ...,ΩP ) and H /W (0;ω1, ..., ωP ) both in origin for

t = 0 and that position of the maxima of these transforms

corresponds to the parameters of the PPSs. Evaluation in the

origin means that the signal length in corresponding transforms

is not reduced. In addition, signal parameters are in both

cases directly available without need for elaborate expressions.

Therefore we can estimate coefficients as:

(â2, â4, ..., âQ) = arg max
(Ω2,...,ΩQ)

|HC(0; Ω2, ...,ΩQ)| (63)

(â1, â3, ..., âR) = arg max
(ω1,...,ωR)

HW(0;ω1, ..., ωR), (64)

where (Q,R) are given as

(Q,R) =

{
(P, P − 1), P even

(P − 1, P ), P odd.
.

For PPS of the order higher than P ≥ 5 search over parameters

space higher than 2 is required , i.e., complexity of these

transforms is O(N �P/2�) where �	 is operator rounding to

larger integer. Instead of the direct search optimization is com-

monly performed using the genetic algorithm (GA) or some

other metaheuristic strategy [79]. This strategy has higher

complexity than the CPF and (P)HAF-CPF but accuracy is

better and the SNR threshold lower than in these counterparts.

Simulations are given in Section III-K.

F. Robust CPF

The CPF is designed for the Gaussian noise environment

but it is sensitive to the impulse noise influence. Accurate CR

estimation and signal representation in the time-CR domain is

of a high importance for signals corrupted by impulsive noise.

Assuming that w(n) = 1/(N + 1) for n ∈ [−N/2, N/2]
and w(n) = 0 elsewhere, the CPF given by (29) can be written

in an alternative form:

C(t,Ω) = mean{|ryy(t, n)e−jΩn2 |}, n ∈ [−N/2, N/2] (65)

As it can be seen from (65), in calculation of the av-

erage value, all samples of modulated auto-correlation

ryy(t, n) exp(−jΩn2) are taken with equal weights. There-

fore, those corrupted with impulse noise will significantly

disturb the result of averaging and at the same time lower

the accuracy of the CPF [63], [167], [168], [169]. Therefore,
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the robust CPF is proposed in [167] by introducing the L-filter

form of the CR estimator:

CL(t,Ω) =
∑N/2

l=−N/2
al[r(l)(t,Ω) + ji(l)(t,Ω)] (66)

where r(l)(t,Ω) ∈ R(t,Ω) and i(l)(t,Ω) ∈ I(t,Ω). Sets

R(t,Ω) and I(t,Ω) are formed as:

R(t,Ω) ={Re{ryy(t, n)e−jΩn2}|n ∈ [−N/2, N/2]}, (67)

I(t,Ω) ={Im{ryy(t, n)e−jΩn2}|n ∈ [−N/2, N/2]}, (68)

Elements r(l)(t,Ω) and i(l)(t,Ω) from the corresponding sets

are sorted into a non-decreasing order:

r(l)(t,Ω) ≤ r(l+1)(t,Ω), i(l)(t,Ω) ≤ i(l+1)(t,Ω). (69)

Weights of the L-filter are selected as:
∑N/2

l=−N/2 al = 1
(energy condition) and al = a−l (unbiasedness condition).

Commonly the α−trimmed CPF is used [63], [167], with

al = 1/(2Na + 1) for l ∈ [−aN, aN ] and al = 0 elsewhere

in (66). For a = 1/2 the standard CPF (65) is obtained,

while for a ∈ [0, 1/2), we obtain the robust form where

some percentage of the samples with the highest magnitudes

are removed. However, obtained technique suffers from a low

breakdown point which inspired research efforts in order to

improve its robustness against impulse noise.

The impulse noise influence can be further reduced by signal

filtering using the robust DFT. The robust DFT with high

breakdown point can be calculated as [63], [68], [168]

Ŷ (ω) = Ŷ1(ω) + Ŷ2(ω) + j[Ŷ3(ω) + Ŷ4(ω)], (70)

Ŷi(ω) =
∑N/2

l=−N/2
aly(i,l)(ω) (71)

where r(i,l)(ω) are sorted elements from the sets:

y(i,l)(ω) ∈ Ri(ω) = {yi(n, ω)}, i = 1, 2, 3, 4, (72)

with y1(n, ω) = r(n) cos(ωn), y2(n, ω) = i(n) sin(ωn),
y3(n, ω) = −r(n) sin(ωn), and y4(n, ω) = i(n) cos(ωn),
where r(n) = Re{y(n)} and i(n) = Im{y(n)}. Then, the

standard CPF (65) is calculated for the signal obtained using

standard inverse FT, ŷ(n) =IFT{Ŷ (ω)}.

Example 3. In this example a mono-component CP signal

is considered

x(t) = exp(j96πt3 + j24πt), (73)

within interval t ∈ [−1, 1] with sampling time Δt = 1/256.

The standard and robust CPF of this signal are depicted in

Figures 3(a) and (b) and from both plots these time-CR domain

representations of the CP signal can be recognized. However,

when the considered signal is corrupted by the impulse noise

then the standard CPF fails to reveal reliable information on

the signal (Figure 3(c)) while signal component still can be

easily recognized from the robust CPF (Figure 3(d)).

G. Refinement of the CPF estimators

Precise estimation of PPS parameters by direct evaluation

of the CPF (or related estimators) requires calculation of

estimator’s function over dense grid of CR values. Therefore,

in order to reduce the computational complexity, a parameter

Fig. 3. Time-CR representations of the cubic phase signal: (a) the standard
CPF of noise-free signal; (b) the robust CPF of noise-free signal; (c) the
standard CPF of signal corrupted by impulsive noise; (d) the robust CPF of
signal corrupted by impulsive noise.

refinement strategies are used. All of them have common

initial stage in which the CPF is evaluated over coarse grid of

the CR values and initial coarse estimate Ωc is obtained.

The coarse estimate Ωc can be refined using dichotomous

(binary) search [170], [171]. The algorithm starts with the

selection of the width of considered search interval ΔΩ
that equals the coarse grid resolution. Then, the CPF (or

some similar related transform) is evaluated at two points

C±1 =C(n,Ωc±ΔΩ/2) and Ωm = Ωc. Further, the following

steps are repeated several times:

Step 1. Reduce the width of search interval

ΔΩ ← ΔΩ/2. (74)

Step 2. Evaluate C±1 =C(n,Ωm±ΔΩ/2) and update Ωm:

Ωm ←
{

Ωm +ΔΩ |C1| > |C−1|
Ωm −ΔΩ |C−1| > |C1| . (75)

After Q iterations, final estimate is obtained as Ω̂(n) = Ωm.
Note that, in the case of the CPF and related transforms with

non-linear complex exponential terms efficient strategies, such

as Aboutanois-Mulgrew technique cannot be used [172], [173].

However, in the case of nonuniform sampled data with linear

term in the phase exponential, this strategy can be conducted.

For more details refer to [170], [171], [174].

H. CPF and multicomponent signals

Parameter estimation of multicomponent PPSs,

y(t) =
∑
i

xi(t) + ν(t), (76)

are usually performed on two ways:

1) When signal components xi(n) differ in magnitudes,

the strongest one can be estimated first and peeled

from the mixture. Then the similar approach is used

for the estimation of the next component. To be more

precise, in the following we are giving more details.
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The first step of the algorithm is to estimate param-

eters of the strongest component âi,q , i ∈ [1, P ]
(second index q corresponds to signal component),

where q = 1, using any described estimator proposed

for monocomponent signal. In the second step, sig-

nal y(t) is dechirped using parameters of the esti-

mated component yd(t) = y(t) exp
(
−j

∑P
i=0 âi,qt

i
)

and the FT of the resulted signal Y (ω) =FT{yd(t)}
is calculated. In the third step, Y (ω) is filtered with

high-frequency filter by removing frequencies around

Y (0) to obtained Yfil(ω). In the fourth step, the in-

verse FT is performed and signal is modulated to be

prepared for the next iteration (search for new com-

ponent) y′(t) =IFT{Yfil(ω)} exp
(
j
∑P

i=0 âi,qt
i
)

. The

next component is estimated from y′(t) and procedure

is performed for each signal component. This kind of

procedure is common for all previously introduced CPF

related transforms.

2) When signal components have similar magnitudes, the

product-based transforms are currently best available

solutions (see the PHAF-CPF, Section III-B). While

evaluating these transforms, the lags sets should be

selected in such a way that auto-terms are located on

the same position while the cross-terms are located on

different places. Therefore, the followed multiplication

amplifies auto-terms and in the same time suppresses

cross-terms.

An alternative to these two approaches is to perform pro-

jection of the CPF or related transform along CR in order to

attenuate effect of cross-terms as discussed in Section III-D.

Finally, when the goal is nonparametric estimation of mul-

ticomponent signals and obtaining accurate TF or time-CR

representations of signal components, signal decomposition

can be applied. For example, in [175], signal decomposition

combining TF representations and time-CR domain analysis

has been considered. Signal components decomposition and

evaluation of the CPF for each signal component separately is

performed using the STFT, defined as

STFT(t, ω) =
∑

n
y(t+ n)w∗(n)e−jωn. (77)

The STFT is a linear transform and cross-terms between

components can appear only when they are very close to each

other (within window width in the frequency domain) [176].

The inverse STFT can be written as:

y(t+ n) =
1

2πw∗(n)

∫ ∞

−∞
STFT(t, ω)ejωndω. (78)

For a sake of simplicity, we assume that the window function

within the interval of interest is equal to 1. Substituting (78)

in the CPF, we obtain (ignoring multiplicative constants):

C(t,Ω) =

∫
ω

∫
θ

STFT(t, ω + θ)STFT(t, ω − θ)ΠΩ(2θ)dωdθ,

(79)

where ΠΩ() is the FT of the linear FM signal exp(−jΩt2):

ΠΩ(θ) =
∑

t
exp(−jΩt2) exp(−jθt). (80)

The implementation of the CPF (79) in the time-CR domain

is a counterpart of the TF transform called the S-method [151],

[176]. Assume now that a significant energy of any signal com-

ponent exists only within the frequency region [ωbi(t), ωei(t)],
and that signal components are non-overlapping in the TF

plane, i.e., [ωbi(t), ωei(t)] ∩ [ωbj(t), ωej(t)] = ∅ for i �= j.

Then, the CPF for the ith signal component can be written as:

Ci(t,Ω) =

∫∫
ωbi(t)≤ω±θ≤ωei(t)

STFT(t, ω+θ)STFT(t, ω−θ)ΠΩ(2θ)dωdθ.

(81)

In this way, evaluation of the CPF for the ith component

Ci(t,Ω) is separated from evaluation of the CPF for other

components. Determination of region of the signal components

is non-trivial and it heavily depends on the considered signal

type. The Otsu algorithm [177] is used in [175] for adaptive

signal components region determination. For closer signal

component in the TF plane instead of the STFT some high-

resolution TF representation for component separation can be

used [178].

I. CPF and undersampled data

One of the most attractive developments in the signal

processing is investigation how techniques can be adopted for

undersampled signals [179]- [182]. These considerations meet

conditions of the so-called compressed sensing framework

[183]- [186]. The PPS parameter estimation is not closely

related to the Nyquist sampling rate. Namely, the PPS sig-

nal is determined by number of parameters that could be

significantly smaller than number of samples required by the

sampling theorem. Detailed study of the identifiability for the

PPS parameters is considered in [48], [110], [111]. Meanwhile,

several different approaches are developed for handling PPS

estimation of undersampled data with respect to the sampling

theorem requirement [18], [28].

In the case of the CPF-related transform, it has been shown

that, when signal is sampled symmetrically around the origin

(middle of the interval), i.e. that for each sample y(t + τi)
exists symmetric counterpart y(t− τi), there is no significant

changes in the CPF realization since the CPF can be calculated

as

C̃(t,Ω) =

NI∑
i=1

ryy(t, τi)e
−jΩτ2

i = 2

NI/2∑
i=1

ryy(t, τi)e
−jΩτ2

i .

(82)

The loss of accuracy that is proportional to reduction in

number of samples with respect to the number required by

the Nyquist rate is expected.

However, in the case when symmetric signal samples t± τi
are not available, some sort of data interpolation is required.

In [179], the following interpolation procedure has been pro-

posed. Firstly, the DFT is approximated from the available

samples using the numerical integration technique as

Y (p) ≈ 1

T

K−1∑
k=1

y(tk)e
−j2πptk(tk−tk−1), p ∈ [−N/2, N/2−1].

(83)
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Taking the inverse DFT of zero-padded Y (p) with the factor

F (commonly F = 2, 4 or 8), uniformly sampled version of

y(t) is obtained as

ŷ(t) =
1

FN

∑
p
Yz(p)e

j2πp n
FN , t ∈ [−FN/2, FN/2),

(84)

where Yz(p) is zero-padded Y (p). Now, the aim is to calculate

missing samples y(tk) required for evaluation of the CPF

from ŷ(t). For this purpose, interpolation formula (84) can

be used as in the case of nonuniformly sampled signal.

This strategy can also be used in case of the HO-CPF and

HO-WD evaluations (42), (49). The alternative interpolation

approaches with direct interpolation of the auto-correlation

function ryy(t, τi) [187] or matching pursuit strategies [188]

can also be employed from instead of interpolation in the time

domain.

J. Viterbi algorithm and CPF

When the number of samples is large, the CR can vary in

the considered interval. Then, it is inevitable to calculate the

CPF for windowed data and to track CR for signal duration.

In a high noise environment, a common situation is that

the CPF follows the CR in some part of the interval and

in other part of the interval produces wrong CR estimates.

Therefore, development of the algorithm that is able to follow

CR removing instants giving inaccurate estimates is rather

important. One such algorithm is developed in [189]. It is

inspired by the VA proposed for the IF estimation in the TF

analysis [190]- [193].

The CR estimator can be written as a solution to the

following optimization problem

Ω̂(t) = argmin
Ω(n)

[
n2−1∑
n=n1

g(Ω(t),Ω(t+ 1)) +

n2∑
n=n1

f(|C(t,Ω(t))|)
]
,

(85)

where function f(·) is formed by sorting the CPF values for

the considered instant. The maximal value is penalized with

0, the second largest is penalized with 1, the third one with

value 2, etc. This clearly reflects the idea that even in the high

noise environment the CR is on one of the highest values of

the CPF. The second function is set as g(x, y) = ρ(|x− y| −
Δ) for |x − y| > Δ, and g(x, y) = 0 elsewhere, where ρ
is weight of the penalization function, while Δ is threshold

above which CR variations between consecutive instants are

penalized. Details on the VA implementation can be found in

[192].

Obtained CR estimate can be back-projected through the

TF representations in order to get precise IF estimate. For FM

signal with a cubic modulation, the CPF is concentrated on the

CR. However, the TF representations are not concentrated on

the IF due to inner interferences and bias [125] for non-linear

FM function. In addition, it can be expected that for high-

order polynomial FM functions the inner interferences and

bias will be smaller in the case of the CPF than for the TF

representations. Then, the CR estimate obtained from the VA is

used in the IF estimation. In the first step of the algorithm, the

VA is performed (85). Then the cumulative sum of obtained
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Fig. 4. MSE of the two highest-order phase estimates obtained by the CPF,
NU-CPF, HAF, and PHAF-based estimation procedures: (a) MSE of a3; (b)
MSE of a2.

estimates:

μ̂(t) = Δt
∑t

k=t1
Ω̂(k) (86)

can be used to estimate the IF with accuracy up to an additive

constant. This constant can be determined as

μ̂ =argmaxμ J(μ), (87)

J(μ) =
∑n2

n=n1

TF(t, μ̂(t) + μ). (88)

The function J(μ) is greater for lines μ̂(t)+μ that are closer to

the true IF. Then, the IF estimate can be calculated as ω̂(t) =
μ̂(t)+ μ̂. The accuracy of the IF estimation is improved since

the influence of the high-order phase terms is reduced with

respect to the VA applied to the TF representations.

K. Examples and comparisons

Example 4. We consider the CPF, NU-CPF, HAF, and

PHAF, for the third-order PPS

x(n) = exp

(
j

3∑
i=0

ain
i

)
,

where Δt = 1, n ∈ [−256, 256] and ai is the ith element

of the vector G = {0.9, π/7, 2.15 · 10−4, 6.42 · 10−4}. The

SNR is varied from −10dB to 15dB at a stepsize of 1dB.

The CPF, NU-CPF, HAF and PHAF are calculated following

instructions from and [96], [102], [104]. The MSEs of two

the highest-order phase estimates (â3 and â2) are shown in

Figure 4. From Figure 4, the CPF and NU-CPF have the SNR

thresholds at −3dB, while the SNR thresholds of the HAF

and PHAF are at 2dB and 0dB, respectively. For estimating

parameter a3, the NU-CPF has lowest MSE that is on the

CRLB above the SNR threshold, while the CPF and PHAF

have similar MSE for SNR>0dB. For parameter a2, MSEs of

all methods approach the CRLB.

Example 5. Performance of the HAF, PHAF, HAF-CPF,

PHAF-CPF, and combined HO-WD and HO-CPF (HOWD-

CPF) estimator, are evaluated on the sixth-order PPS with

the following parameters, n ∈ [−128, 128], a0 = 0, a1 =
−3(Δt), a2 = 11(Δt)2, a3 = 7(Δt)3, a4 = −5(Δt)4,
a5 = 21(Δt)5, and a6 = −15(Δt)6, Δt = 0.0078. The

PHAF and PHAF-CPF are calculated using four lag sets which

elements are chosen following instructions from [96], [102].

Evaluation of the HOWD-CPF requires two 3-D searches

that are optimized using the GA with setup given in [19].

The MSEs of a6 and a5 estimates are plotted in Figure 5.
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Fig. 5. MSE of the two highest-order phase estimates obtained by the HAF,
HAF-CPF, PHAF, PHAF–CPF, and HOWD-CPF-based estimation procedures:
(a) MSE of a6; (b) MSE of a5.

The SNR thresholds of the HAF, PHAF, HAF-CPF, PHAF-

CPF, and HOWD-CPF, are at 24dB, 16dB, 14dB, 10dB, and

0dB, respectively. The HOWD-CPF approaches the CRLB for

both parameters, while the MSEs of HAF, PHAF, HAF-CPF,

and PHAF-CPF, are more than 10 dB (parameter a6)/8 dB

(parameter a5), 8 dB (parameter a6)/6 dB (parameter a5), 7
dB (parameter a6)/5 dB (parameter a5), and 6 dB (parameter

a6)/4 dB (parameter a5) above the CRLB, respectively.

IV. TWO-DIMENSIONAL PPS

The application of the CPF to 2-D and multidimensional

signals is not quite straightforward due to issues related to

search dimensions and calculation complexity. In addition, in

many practical applications, the 2-D PPS has fast variations

only along single direction while in the other direction signal

changes are relatively slow meaning that parameters can be

estimated along single line (1-D signal) and summed or inter-

polated along the other. Here, we consider cases when signal

phase is fast changing in both directions so it is important

to consider estimation of parameters from 2-D signal and not

from 1-D signal lines. Only two estimators (2-D CPF and 2-D

(P)HAF-CPF) are considered, while similar generalization can

be performed for all other estimators described in Section III.

A. 2-D CPF

Consider the following 2-D CP model:

y(n,m) = x(n,m) + ν(n,m), (89)

(n,m) ∈ [−N/2, N/2)× [−M/2,M/2),

where

x(n,m) = Aejφ(n,m) = Aej
∑3

p=0

∑3−p
q=0 ap,qn

pmq

, (90)

and N × M is size of the signal, ν(n,m) is a white com-

plex Gaussian noise with zero-mean and variance σ2, i.e.,

E{ν(n,m)} = 0 and E{ν(n,m)ν∗(n1,m1)} = σ2δ(n −
n1,m−m1). φ(n,m) is a polynomial phase with total order

up to 3, and ap,q is the (p+q)-layer parameter. The 2-D model

in (90) is called the 2-D triangular form (see [72], [74], [76],

[77]). The signal support region is N ×M .

By introducing the auto-correlation of the following form

ryy(n,m; τn, τm) = y(n+ τn,m+ τm)y(n− τn,m− τm),
(91)

the 2-D CPF is defined as

C(n,m;Ψ) =
∑
τn

∑
τm

ryy(n,m; τn, τm)e−jψnτ
2
n−jψmτ2

m

× e−j2ψnmτnτm (92)

where Ψ = (ψn, ψnm, ψm). For noise-free signal, the 2-D

CPF is concentrated on the position of the partial deriva-

tives of the signal phase ψn = ∂2φ(n,m)/∂n2, ψnn =
∂2φ(n,m)/∂n∂m, and ψm = ∂2φ(n,m)/∂m2. These phase

derivatives are related to the phase parameters as:⎡
⎢⎣

∂2φ(n,m)
∂n2

∂2φ(n,m)
∂n∂m

∂2φ(n,m)
∂m2

⎤
⎥⎦ =

⎡
⎣ 2a2,0 + 2a2,1m+ 6a3,0n

a1,1 + 2a2,1n+ 2a1,2m
2a0,2 + 2a1,2n+ 6a0,3m

⎤
⎦ . (93)

Partial second-order derivatives can be estimated by calcu-

lating C(n,m;Ψ) at three instants (n1,m1), (n2,m2), and

(n3,m3), by performing three 3-D searches:

Ω̂(ni,mi) =[Ω̂n(ni,mi), Ω̂nm(ni,mi), Ω̂m(ni,mi)]

= argmax
Ψ

|C(ni,mi;Ψ)|, i = 1, 2, 3. (94)

Then, seven phase parameters including the four third-layer

ones and the three second-layer ones {âp+q|p + q = 3 ∨
p+ q = 2} are estimated as:⎡

⎣ â2,0
â3,0
â2,1

⎤
⎦ =

⎡
⎣ 2 6n1 2m1

2 6n2 2m2

2 6n3 2m3

⎤
⎦
−1 ⎡
⎣ Ω̂n(n1,m1)

Ω̂n(n2,m2)

Ω̂n(n3,m3)

⎤
⎦ ,

⎡
⎣ â0,2

â0,3
â1,2

⎤
⎦ =

⎡
⎣ 2 6m1 2n1

2 6m2 2n2

2 6m3 2n3

⎤
⎦
−1 ⎡
⎣ Ω̂m(n1,m1)

Ω̂m(n2,m2)

Ω̂m(n3,m3)

⎤
⎦ ,

⎡
⎣ â1,1

â2,1
â1,2

⎤
⎦ =

⎡
⎣ 1 2n1 2m1

1 2n2 2m2

1 2n3 2m3

⎤
⎦
−1 ⎡
⎣ Ω̂nm(n1,m1)

Ω̂nm(n2,m2)

Ω̂nm(n3,m3)

⎤
⎦ .

(95)

The lower-layer phase parameters and the amplitude can be

estimated in a straightforward manner as in [93]. Note that the

dechirping technique is used again to estimate the zero-layer

phase parameter a0,0, the first-layer phase parameters a0,1 and

a1,0, and the amplitude. Therefore, these estimates undergo

the error-propagation effects from the third-layer and second-

layer parameter estimation. Nevertheless, the second-layer

parameter estimation is free of the error-propagation effects,

while the 2-D HAF [72], [76], [77], approach introduces the

error propagation to the second-layer parameter estimates.

Since the 2-D CPF results in a 3-D function of [ψn, ψnm,
ψm] for a fixed instant pair (n,m), a 3-D search is required

to locate the maxima in the 2-D CPF (94). Instead of the 3-

D search, the GA or other meta-heuristic techniques can be

employed. For details on the implementation of the GA refer

to [67].

The 2-D CPF is an unbiased estimator, i.e., E{âi,j} = ai,j
for the second and third-layer coefficients i + j ≥ 2. For the

second-layer phase parameters, the estimator is asymptotically

efficient, i.e., the variance of parameter estimate for high SNR

approaches to the CRLB, while for the third-order layers its
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MSE is slightly above the CRLB (less than 1.7dB above for

all coefficients):

E{(δa2,0)2} =

(
1 +

1

2SNR

)[
90

SNR N5M

]

=

(
1 +

1

2SNR

)
CRLB{a2,0}, (96)

E{(δa0,2)2} =

(
1 +

1

2SNR

)[
90

SNR M5N

]

=

(
1 +

1

2SNR

)
CRLB{a0,2}, (97)

E{(δa1,1)2} =

(
1 +

1

2SNR

)[
72

SNR M3N3

]

=

(
1 +

1

2SNR

)
CRLB{a1,1}, (98)

E
{
(δa3,0)

2
}
=

(
1.4543 +

1.3175

SNR

)[
1400

SNR N7M

]

=

(
1.4543 +

1.3175

SNR

)
CRLB{a3,0}, (99)

E
{
(δa0,3)

2
}
=

(
1.4543 +

1.3175

SNR

)[
1400

SNR NM7

]

=

(
1.4543 +

1.3175

SNR

)
CRLB{a0,3}, (100)

E{(δa2,1)2} =

(
4

3
+

2

SNR

)[
1080

SNR N5M3

]

=

(
4

3
+

2

SNR

)
CRLB{a2,1}, (101)

E{(δa1,2)2} =

(
4

3
+

2

SNR

)[
1080

SNR N3M5

]

=

(
4

3
+

2

SNR

)
CRLB{a1,2}. (102)

For high SNR, the term with 1/SNR2 may be negligible.

B. 2-D HAF-CPF

Similar to the 1-D signals, the 2-D CPF is limited to the

third-order 2-D-PPSs. Therefore, combination with the 2-D

HAF (frequently called Francos-Friedlander (FF) approach) is

desirable in order to reduce the signal to 2-D CP that can be

further processed by the 2-D CPF. This technique is studied

in [101] and compared with relevant counterparts showing

significant improvement in the accuracy (both MSE is reduced

and SNR threshold) [67], [194]- [196].

Results obtained with the 2-D (P)HAF-CPF are better than

2-D (P)HAF counterparts since number of PDs is reduced with

respect to the latter case. However, it could require search over

3-D space that could be demanding and meta-heuristic search

techniques for complexity reduction.

C. Numerical examples

Example 6. Performance of the 2-D CPF-based approach

is compared with the FF-based technique on the third-order

2-D PPS with parameters: A = 1, a0,0 = 1, a1,0 = 4.5 ·
10−1, a0,1 = 6.2 · 10−2, a2,0 = −1.5 · 10−3, a1,1 = −3 ·
10−3, a0,2 = −2.2 · 10−3, a3,0 = 2.7 · 10−5, a2,1 = 4 ·
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Fig. 6. MSEs of the highest-layer phase parameters obtained by the 2-D CPF
and FF for the third-order 2-D PPS: (a) MSEs of parameter a1,2; (b) MSEs
of parameter a0,3; (c) MSEs of parameter a3,0 and (d) MSEs of parameter
a2,1.

10−5, a1,2 = 3.73 · 10 − 5, a0,3 = −1.35 · 10−5 and N =
M = 100. The considered SNR range is SNR∈ [−12, 20]dB.

Search optimization in the 2-D CPF is performed using the

GA with setup proposed in [101], while parameters in the FF

algorithm are chosen following instructions from [76]. MSEs

of the highest layer phase parameters are shown in Figure

6 and are obtained using Monte Carlo simulations with 200
trials. As it can be seen from Figure 6, the SNR threshold of

the 2-D CPF is at −8dB, while the FF-based approach has the

SNR threshold at −2dB. The FF-based approach for SNR>-

2dB has from 3 dB to 5 dB lower MSE with respect to the

2-D CPF. Larger MSE of the 2D CPF is influenced by the GA

used for the search optimization.

Example 7. In this example, performances for both the 2-D

HAF-CPF and FF-based approaches are evaluated. Considered

signal is the fourth-order 2-D PPS with following parameters:

A = 1, a0,0 = 1, a1,0 = 4.5 · 10−1, a0,1 = 8.2 · 10−2,

a2,0 = −1.5 · 10−3, a1,1 = 6 · 10−3, a0,2 = −2.2 · 10−3,

a3,0 = 1.7 · 10−5, a2,1 = 4 · 10−5, a1,2 = 3.73 · 10−5,

a0,3 = −1.35 · 10−5, a0,4 = 4.5 · 10−6, a4,0 = −2.3 · 10−6,

a1,3 = 1.23 · 10−6, a3,1 = 3.2 · 10−6, a2,2 = 6.2 · 10−6

and N = M = 100. Again, the GA setup from [101] is used

for the search optimization in the 2-D HAF-CPF. Experiments

are performed using Monte Carlo simulations with 200 trials.

MSEs of four characteristic phase parameters of the highest-

layer are shown of Figure 7. Similar results as for the third-

order 2-D PPS are obtained here. The 2-D HAF-CPF has

for 4dB lower SNR threshold than the FF-based approach.

However, due to error influenced by the stochastic search

strategies, it has from 3dB to 5dB larger MSE. Note that the

accuracy of the 2-D HAF-CPF can be improved up to the

CRLB using parameter refinement strategy proposed in [270].

V. APPLICATIONS

In the following, we provide a brief literature overview with

applications of the CPF and its variants. The most important

application appears to be radar signal processing given in
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Fig. 7. MSEs of the highest-layer phase parameters obtained by the 2-D
HAF-CPF and FF for the fourth-order 2-D PPS: (a) MSEs of parameter a2,2;
(b) MSEs of parameter a1,3; (c) MSEs of parameter a4,0, and (d) MSEs of
parameter a3,1.

Section V-A, while application to joint estimation of the

signal parameters and direction (angle)-of-arrival (DOA) to

sensor array systems is presented in Section V-B. Section V-C

summarizes other fields where the PPS appears to be a valid

signal model.

A. CPF in radar signal processing

As already stated, the most important application of the CPF

and related techniques with huge number of papers is in the

radar signal processing. The reason is in the fact that the radar

returns can be modeled as multicomponent PPSs at the output

of the matched filter. Some details on the principles of the

radar systems can be found in [197]- [200] with modeling of

radar returns in [201].

The SAR and ISAR images are in general 2-D FT of

received returns. In the case when returns are 2-D sinusoidals

obtained images are ideal, i.e., sharp. However, due to radar

or target motion and other effects obtained signal could be

distorted to form of sum of 2-D PPSs. In order to get

sharper image it is required to demodulate received signals

in order to compensate polynomial modulation. The CPF is

excellent tool for such applications since often received signal

can be modeled as a sum of 2-D CP signals [98], [99].

Sometimes polynomial modulation of all targets or scatterers

is the same and PPS parameters can be estimated at once.

However, in the case when modulation of received signals is

different alternative strategies are employed like, for example,

considering each received signal separately, or estimation of

signal parameters for each line of radar image, or estimation

of parameters of the strongest signal followed by consecutive

estimation weaker signals [65], [66]. When signal parameters

are estimated, signal is dechirped in order to obtain sharp radar

images. In some applications, sharp radar image is not goal of

the processing but important information related to targets or

their parts can be extracted from the received PPS parameters

[237].

The CPF and related transforms are applied to almost

all kinds of the radar systems including synthetic aperture

radar systems (SAR), inverse synthetic aperture radar systems

(ISAR), and over-the-horizon radar systems (OTHR) where

the CPF and related tools are applied or where CP signals

appear. Some of these papers are summarized bellow.

It seems that over the half of the paper where the PPS

estimation is considered in the field of modern radar systems

is in the ISAR where due to target motion or extreme target

maneuvering the radar returns contain one or more PPS

components possibly with high-order phase terms [65], [161],

[202]- [218]. Fast maneuvering targets are addressed in [219]-

[225] while issues associated with slowly moving targets are

addressed in [226]. Numerous emerging research papers are

concentrated to the shipborne ISAR systems and challenging

problem of vessels monitoring with similar tools or models

have been considered in [227]- [232]

SAR systems [61], [233], are also attracting recently atten-

tion of the research community [66], [98], [99], [175], [234]-

[236].

Micro-Doppler effect caused by rotating and vibrating parts

of the targets is addressed in [162], [237], while the Doppler

shift is considered in [238], [239].

The OTHR systems [240] produce rather challenging sig-

natures with multiple close components in the TF plane in

addition to other undesired effects such as clutter and fast

amplitude variations. Problem of clutter is addressed in [241],

while passive acoustics radars are presented in [95]. Radar

systems able to precisely monitor multiaircraft formation are

considered in [242]. Modulation pulse compression radars are

analyzed in [239].

B. CPF in DOA estimation

One of important fields where the PPSs appear are sensor

array networks. In this case, in addition to the signal parameter

estimation it is important to estimate parameters related to

geometry of the network and source position and/or motion.

Consider the simplest geometry of the sensor array called the

uniform linear array (ULA). In order to improve the estimation

of the PPS parameters it is important to utilize as much

information related to signals from all sensors.

Assume a constant amplitude PPS x(t) impinging on an

ULA with M omnidirectional sensors. The output can be

written as [243]

y(t) = a(θ,t)x(t) + v(t), |t| ≤(N − 1)/2, (103)

where a(θ, t) is the M×1 array steering vector, v(n) the M×1
vector of i.i.d. complex Gaussian zero-mean noise samples,

and N the number of samples. The P th order PPS x(t) is

defined as

x(t) = Aejφ(t) = Aej
∑P

k=0 akt
k

, (104)

where A is the amplitude, φ(t) the phase with coefficients

ak, k = 0, . . . ,K. The steering vector a(θ, t) can be modelled
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as in [78]

a(θ,t) = [1,ejω(t)ψ, · · · , ejω(t)(M−1)ψ]
T
,

ω(t) =
dφ(t)

dt
=
∑K−1

k=0
(k + 1)ak+1t

k,

ψ = d
sin(θ)

c
, (105)

where ω(t) is the IF of the PPS, θ is the DOA, d is the

inter-sensor spacing, and c the propagation speed. The goal

is the joint estimation of the vector V = [θ, a1, . . . , aK ] from

observations y(t).
Note that this signal model is simplification under assump-

tion that the term ω(t)(M − 1)ψ is relatively small [78].

However, in the case when it is not satisfied then more general

and difficult model can arise where received signal on the lth
sensor can be modeled as

yl(t) = Aejφ(t−lψ) = Aej
∑P

k=0 ak(t−lψ)k . (106)

In both cases the fact that the CPF and related techniques give

possibility to estimate parameters with smaller number of PDs

is important. More details on joint PPS and DOA estimation

can be found in [8], [9], [78], [243]- [246].

C. Other applications

The CPF-based PPS parameter estimator can also be applied

to the underwater acoustics [247]. However, processing of

the underwater acoustic narrowband signals may be more

challenging than the radar signal processing.

The PPS signals appear in optics and more recently in

holographic interferometry [248]- [251], and coherent laser

remote sensing [252]. Another interesting area is power net-

works where the PPS appears in transient process [253], [254].

The PPSs appear in diverse contexts in the electronic

warfare [255], [256], including jammer excision [257]. A lot of

attention has also been paid to research related to the medical

[2], [100], [258]- [260], and biological signals [261]. Finally,

it is worthy mentioning recent advances in communications

[262], and statistical mechanics [107].

VI. CONCLUSION

This paper has reviewed recent progresses in the PPS param-

eter estimation and in related fields motivated and inspired by

the CPF. In less than 15 years, the CPF has attracted significant

attention and numerous upgrades that improve significantly

standard PD-based techniques in the PPS estimation. One of

the aim of this paper is to demonstrate that such a simple

modification has ability to advance a research field and to

clear the major obstacles of the state-of-the-art methods.

It should be admitted that in addition to the CPF there

are some other parallel developments in the field of the PPS

estimation. For example, O’Shea has proposed refinement

strategy [263] that is able to reduce MSE in the PPS estimation

to the CRLB for the SNR above the SNR threshold. There are

quite important developments related to the phase unwrapping

estimators [28]. Next, important development is the quasi ML

approach that is reducing search space in the PPS estimation

with accuracy close to the ML estimators [26]. It seems that

all these developments were possible only when O’Shea with

the CPF had shown that there is still significant room for

improvements in the PPS estimation.

We have mentioned several issues that are currently not well

understood and where in particular theoretical development

can shed new lights to the CPF. One of such issues is

systematic handling the multicomponent signals and geometry

of auto- and cross-terms [125]. The second issue is potential

for generalization of the CPF like the WD in the TF analysis

is generalized to the Cohen class of distribution [151], [176].

Also, it is important to investigate if it is possible to establish

relationship between CPF and the FrFT in similar manner as

the STFT is generalized to the high-order TF representations

[145], [148], [151]. Another issue is to investigate if sharp-

ening techniques can be applied to the CPF in the time-CR

domain like reassignment approach in the TF analysis [136]-

[141]. Similarly, investigation of the synchrosqueezing [264],

[265], S-transform, and other time-scale methods to the CR

estimation problem could be of importance [266]- [269]. These

issues do not limit potential theoretical developments in the

area of joint time-CR domain representations. Improvement

achieved with the CPF and related approaches will surely bring

more advanced applications.
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“Instantaneous frequency in time-frequency analysis: Enhanced con-
cepts and performance of estimation algorithms,” Digital Signal Pro-
cessing, Vol. 35, pp. 1-13, Dec. 2014.

[113] M. Jabloun, F. Leonard, M. Vieira, N. Martin, “A new flexible approach
to estimate the IA and IF of nonstationary signals of long-time
duration,” IEEE Transactions on Signal Processing, Vol. 55, No. 7,
pp. 3633-3644, 2007.
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[187] B. Jokanović, M. Amin, and T. Dogaru, “Time-frequency signal
representations using interpolations in joint-variable domains,” IEEE
Geoscience and Remote Sensing Letters, Vol. 12, No. 1, pp. 204-208,
Jan. 2015.

[188] S. Ghofrani, M. G. Amin, Y. D. Zhang, “High-resolution direction
finding of non-stationary signals using matching pursuit,” Signal Pro-
cessing, Vol. 93, No. 12, pp. 3466-3478, Dec. 2013.
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[194] M. Simeunović, I. Djurović, “Parameter estimation of multicomponent
2D polynomial-phase signals using the 2D PHAF-based approach,”
IEEE Transactions on Signal Processing, Vol. 64, No. 3, pp. 771-782,
Feb. 2016.

[195] S. Barbarossa, P. Di Lorenzo, P. Vecchiarelli, “Parameter estimation of
2-D multi-component polynomial phase signals: An application to SAR
imaging of moving targets,” IEEE Transactions on Signal Processing,
Vol. 62, No. 17, pp. 4375-4389, Sep. 2014.
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[257] S. Djukanović, M. Daković, T. Thayaparan, LJ. Stanković, “Method for
nonstationary jammer suppression in noise radar systems,” IET Signal
Processing, Vol. 4, No. 3, pp. 305-313, June 2010.

[258] J. M. O’Toole, B. G. Zapirain, I. M. Saiz, A. B. A. Chen, I. Y.
Santamarı́a, “Estimating the time-varying periodicity of epileptiform
discharges in the electroencephalogram,” in Proc. of ISSPA, pp. 1229-
1234, 2012.

[259] E. Vayrynen, K. Noponen, A. Vipin, T. X. Yuan, H. Al-Nashash,
J. Kortelainen, A. All, “Automatic parametrization of somatosensory
evoked potentials with chirp modeling,” IEEE Trans. Neural. Syst.
Rehabil. Eng., in print.

[260] B. Boashash, N. Ali Khan, T. Ben-Jabeur, “Time-frequency features
for pattern recognition using high-resolution TFDs: A tutorial review,”
Digital Signal Processing, Vol. 40, pp. 1-30, May 2015.

[261] J. DiCecco, J. E. Gaudette, J. A. Simmons, “Multi-component sep-
aration and analysis of bat echolocation calls,” The Journal of the
Acoustical Society of America, Vol. 133, No. 1, pp. 538-546, 2013.

[262] G. Shao, P. She, X, Ren, “Nonstationary interference suppression in
DSSS system using time-frequency distribution and polynomial phase
signal model,” in Proc. of WiCom, pp. 1-4, 2009.

[263] P. O’Shea, “On refining polynomial phase signal parameter estimates,”
IEEE Tran. Aer. El. Syst., Vol. 46, No. 3, pp. 978-987, July 2010.

[264] I. Daubachies, J. Lu, H. Wu, “Synchrosqueezed wavelet transform: An
empirical mode decomposition-like tool,” Applied and Computational
Harmonic Analysis, Vol. 30, No. 2, pp. 243-261, 2011.



22

[265] T. Oberlin, S. Meigen, P. Perrier, “Second-order synchrosqueezing
transform of invertible reassignment: towards ideal time-frequency
presentation,” IEEE Transactions on Signal Processing, Vol. 63, No.
3, pp. 1335-1344, 2015.

[266] R. G. Stockwell, L. Mansinha, “The localization of the complex
spectrum: S-transform,” IEEE Transactions on Signal Processing, Vol.
44, No. 4, pp. 998-1001, April 1996.

[267] G. Livanos, N. Ranganathan, J. Jiang, “Hearth sound analysis using
the S-transform,” in Proc. of. Comp. in Card., pp. 587-590, 2000.

[268] R. G. Stockwell, “A basis for efficient representation of the S-
transform,” Dig. Sig. Proc., Vol. 17, No. 1, pp. 371-393, Jan. 2007.
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