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Abstract

Existing object detection literature focuses on detecting a big object covering a large part
of an image. The problem of detecting a small object covering a small part of an image is
largely ignored. As a result, the state-of-the-art object detection algorithm renders unsatis-
factory performance as applied to detect small objects in images. In this paper, we dedicate
an effort to bridge the gap. We first compose a benchmark dataset tailored for the small
object detection problem to better evaluate the small object detection performance. We then
augment the state-of-the-art R-CNN algorithm with a context model and a small region pro-
posal generator to improve the small object detection performance. We conduct extensive
experimental validations for studying various design choices. Experiment results show that
the augmented R-CNN algorithm improves the mean average precision by 29.8% over the
original R-CNN algorithm on detecting small objects.
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Abstract. Existing object detection literature focuses on detecting a
big object covering a large part of an image. The problem of detecting
a small object covering a small part of an image is largely ignored. As
a result, the state-of-the-art object detection algorithm renders unsat-
isfactory performance as applied to detect small objects in images. In
this paper, we dedicate an effort to bridge the gap. We first compose
a benchmark dataset tailored for the small object detection problem to
better evaluate the small object detection performance. We then aug-
ment the state-of-the-art R-CNN algorithm with a context model and
a small region proposal generator to improve the small object detection
performance. We conduct extensive experimental validations for study-
ing various design choices. Experiment results show that the augmented
R-CNN algorithm improves the mean average precision by 29.8% over
the original R-CNN algorithm on detecting small objects.

1 Introduction

We have witnessed several breakthroughs in the field of visual object detection in
the past decade, demonstrated by the ever-increasing performance improvement
on the PASCAL VOC [1]. However, the object detection problem still remains
largely unsolved as none of the state-of-the-art object detectors is close to perfect.
Moreover, the performance on the PASCAL VOC can be misleading due to the
dataset bias as pointed out by Torralba and Efros [2]. It is expected that when
the application domain has a very different bias to the one in the PASCAL VOC,
the performance of the state-of-the-art detectors for the PASCAL VOC would
degrade significantly.

In this paper, we study the small object detection problem. By small objects,
we refer to objects with smaller physical sizes in the real world. We also limit
our interest to the small objects that each occupies a small part of an image.
This means that comparing to the PASCAL VOC where the majority of objects
are big in the real world and each occupies a large portion of an image, we are
considering an application domain with a selection bias toward small objects as
shown in Fig. 1.

It is true that one can always have a higher resolution image or take a closer
snapshot of a small object in order to detect it. But the low-resolution inputs
for small objects is deeply embedded in the nature of visual perception, and a
robust vision system should be able to deal with it. For example, the physical
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(a) Typical objects in PASCAL (b) Small objects in the real world

Fig. 1: Detecting small objects with low-resolution inputs.

size of a typical desk and monitor is many times bigger than a mouse. As a
human, when we see a desk with a monitor and a mouse, we recognize all of
them in one shot. We do not look particularly closer to the mouse to put a large
image at the center of our retina. It is desirable that a computer vision system
possesses a similar capability.

Moreover, detecting small objects is itself an intriguing problem due to sev-
eral unique challenges. First, there are much more possibilities for the locations
of small objects. The precision requirement for accurate localization is several
magnitudes higher than that for typical PASCAL VOC objects. Second, there
are much fewer pixels available for small objects, which means much weaker sig-
nal for the detector to utilize. Third, there are only limited prior knowledge and
experiences in this area since most of the prior works are tuned for the big object
detection problem. Practically, there is no benchmark dedicated to such a task?®.
In fact, we do not have much understanding on how difficult the small object
detection task is or how well existing object detectors work. In order to better
assess the performance of an algorithm for the small object detection problem,
we establish a small object detection benchmark.

The R-CNN algorithm [3,4], which extracts discriminative features using
deep convolutional neural network from region proposals, has been established
as the state-of-the-art approach for object detection as supported by the achieved
impressive performance on the PASCAL VOC benchmark. In this paper, we ex-
tend the R-CNN algorithm to deal with the small object detection problem.
Specifically, we propose a region proposal network tailored for capturing the
“objectness” for small objects in order to obtain a small set of proposals while
still keeping a high recall rate. We also propose a way to encode the context
information from the surrounding areas of an object proposal. We show that the
extended R-CNN algorithm achieves a mean Average Precision (mAP) of 23.5%
on the benchmark dataset, which significantly outperforms a mAP of 18.1%
achieved by the original R-CNN algorithm. We also present extensive experi-
mental evaluations on various design choices for understanding their impacts to
the small object detection performance.

3 Although standard datasets such as the Microsoft COCO contains several “small”
object categories, many of the instances of the objects in the “small” object cate-
gories occupy a large part of an image.
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1.1 Related Work

Earlier work on small object detection is mostly about detecting vehicles using
hand-crafted features and shallow classifiers in aerial images [5,6]. In this pa-
per, we cover a diverse set of small objects in the daily life and augment the
state-of-the-art R-CNN algorithm for detecting them. [7] analyzes the influences
of object characteristics on the performance of multiple detectors, with “object
size” among the characteristics being studied. The results reveal that the de-
tection accuracy drops as the object size becomes smaller, which provides some
initial insight into the small object detection problem.

The PASCAL VOC [1] is the most widely used benchmark dataset for general
object detection. It contains 20 object categories including “cow”, “vehicle”,
and “dog”. The object instances in the PASCAL VOC are usually large. Many
of them occupy a major portion of the image. Our focus is on small objects
where the object instance should only occupy a small portion of the image. In
this sense, directly using the PASCAL VOC dataset is inappropriate. Microsoft
COCO dataset [8] is proposed to advance the object detection techniques by
placing it in the context of scene understanding, and the dataset contains many
categories of small objects. To better represent the problem, we compose our
small object detection dataset by using a subset of images from both the COCO
dataset and the Scene UNderstanding database (SUN) [9], which also contains
a large amount of small objects in various scenes.

[3,4] propose the R-CNN algorithm, which combines convolutional neural
networks with bottom-up region proposals [10] for object detection. R-CNN sig-
nificantly outperforms conventional approaches on the PASCAL VOC dataset
and establishes the new state-of-the-art in object detection research. Recently,
some work improves the region proposal generation part of R-CNN and obtain
faster computation speed and more accurate detection performance. [11] gen-
erates region proposals using edge cues. [12] computes “objectness” of region
proposals based on a convolutional neural network. The MultiBox method [13]
directly predicts a set of class-agnostic bounding boxes along with a single ob-
jectness score for each box, the method is not translation-invariant. [14] propose
a translation-invariant Region Proposal Network (RPN) that shares convolu-
tional layers with the detection network and achieve faster computation speed
and better performance. The above algorithms are designed for detecting large
objects in the PASCAL VOC. We focus on the small object detection problem
and systematically study the applicability of the R-CNN style algorithms for
detecting small object in the image.

Generally, context is useful for improving the object detection performance
in natural scenes [15,16]. Based on R-CNN, [17] proposes a pipeline for action
recognition using more than one regions. [18] proposes a multi-region object
detection system that can steering the ConvNet to focus on different regions of
the object. [19] use both segmentation and context to improve object detection
accuracy. [20] studies the role of context in existing object detection approaches
and further proposed a model that exploits both the local and global context. In
this work, we also leverage the context information to get better performance.
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Many researches have been shown to improve the localization accuracy of
object detectors. [21] introduces a Bayesian optimization-based algorithm that
iteratively searches for better bounding boxes for object detection. [22] casts ob-
ject detection as an iterative classification problem and proposed AttentionNet
which achieves more accurate localization. [23] and [24] propose object detection
pipelines that completely eliminate region proposal generation stage by predict-
ing category scores and bounding box locations altogether from feature maps.
[25] shows the overall performance of object detection can also be improved by
using image renderings for data augmentation.

1.2 Contributions
This paper makes the following contributions:

1. We propose a dataset containing diverse small objects to facilitate the study
of the applicability of state-of-the-art deep learning-based object detectors
for detecting small objects in the image.

2. From systematic experiment design and performance comparison, we aug-
ment the R-CNN algorithm, which boosts the small object detection perfor-
mance by 29.8% on the benchmark dataset.

2 Small Object Dataset

We compose our dataset for the small object detection problem by using a subset
of images from both the Microsoft COCO and SUN datasets. We call the dataset
the “small object dataset”. We manually select ten small object categories where
the largest physical dimension of instances in the categories are smaller than 30
centimeters. The selected object categories are “mouse”, “telephone”, “switch”,
“outlet”, “clock”, “toilet paper”, “tissue box”, “faucet”, “plate”, and “jar”. A
small object is not necessarily small in the image. For instance, the “tissue box”
may occupy a large portion of an image. We use the ground truth bounding box
locations in the COCO and SUN datasets to prune out big object instances and
compose a dataset containing purely small objects with small bounding boxes.

The statistics of the small object dataset is shown in Table 1. It contains
about 8,393 object instances in 4,925 images. The “mouse” category has the
largest number of object instances: 2,137 instances in 1,739 images. The “tissue
box” category has the smallest number of instances: 103 instances in 100 images.
All the object instances in our dataset are small. Median of relative areas (the
ratio of the bounding box area over the image area) of all the object instances
in the same category is between 0.08% to 0.58%. This corresponds to 16 x 16 to
42 x 42 pixel? areas in a VGA image. As a comparison, median of relative areas
of object categories in the PASCAL VOC dataset is between 1.38% to 46.40%,
as shown in Table 2. Even the smallest object category is much larger than the
biggest object category in our dataset.

Our small object dataset is considered more challenging than the PASCAL
VOC in at least two ways: First, the appearance cue available for distinguishing a
small object from background clutters is much less due to the small size. Second,
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Table 1: Statistics of our small object dataset. Relative area (%) of each
instance is computed as the ratio of the bounding box area over the image area.

WE H B OmD A0

Category mouse | telephone | switch | outlet | clock | toiletpaper | tissue box | faucet | plate jar
Number of images 1739 345 425 916 746 157 100 1094 419 252
Number of instances | 2137 363 487 1210 814 175 103 1388 1005 711

Median relative area 0.35 0.38 0.08 0.08 0.25 0.40 0.58 0.43 0.37 0.29
Median top-10% area | 2.76 1.99 0.33 0.37 1.92 1.43 1.94 2.02 2.40 1.57

Table 2: Median relative area (%) of the object categories in the PASCAL VOC.

Category cat sofa | train | dog | table | mbike | horse | bus aero |bicycle
Median relative area| 46.40 | 33.87 | 32.33 | 30.96 | 23.73 | 23.69 | 23.15 | 23.04 | 22.83 | 14.38

Category person | bird | cow | chair | tv boat | sheep | plant | car | bottle
Median relative area| 8.14 8.03 | 6.68 | 6.09 | 5.96 3.82 3.34 | 2.92 2.79 1.38

the number of bounding box hypotheses for a small object in an image is much
larger than that for a big object in the PASCAL VOC.

During evaluation, the small object dataset is split into two subsets: one for
training and the other for testing. The number of object instances per category
in the training set is roughly two times the corresponding number in the testing
set. There are no common images between the two sets.

Performance metric: we use the standard performance metric for compar-
ing various object detection algorithms. An object bounding box hypothesis is
considered as a true detection if its overlap ratio with the ground truth bound-
ing box is greater than 0.5, where the overlapping ratio is measured using the
Intersection over Union (IoU) measure. The detection algorithm returns a con-
fidence score for each object bounding box hypothesis. We vary the threshold
and compute the precision recall curve for each object. We then use the average
precision of the curve to report the performance of the detector for an object
category. The performance of the detector for the entire dataset is measured
using the mean Average Precision (mAP) score.

3 R-CNN for Small Object Detection

The R-CNN algorithm [3] has been established as the de facto algorithm for
deep learning-based object detection. It significantly outperforms conventional
approaches in the PASCAL VOC by capitalizing the following two insights:
First, it uses object proposals rather than sliding windows. Before the R-CNN,
most object detectors such as DPM adopt a image pyramid plus sliding window
approach [26] to generate potential object locations and handle various scales.
In the R-CNN pipeline, a fixed number (e.g. 2000) of boxes are proposed per
image which most likely contain the target objects. The problem of various
scales is also handled automatically by the proposal generation. Fewer but better
proposals contribute a lot to the good performance of the R-CNN. Second, it
leverages ImageNet pre-trained deep neural network models, which is then fine-
tuned using the PASCAL VOC. The pre-training process is proven to be crucial
to the performance. Without the pre-training process, the R-CNN works poorly.
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Given the region proposals, training an R-CNN object detector generally
composing two major steps: supervised pre-training and domain-specific fine-
tuning. During supervised pre-training, ImageNet data are used to train the
entire network from scratch. In the domain-specific fine-tuning, the weights of
the network are initialized by the pre-trained model and trained by the domain-
specific data (for example, PASCAL VOC). Training images for the ConvNet
are region proposal patches being resized and warped to the required resolution
(e.g. 227 x 227). Both the positive and negative patches are sampled from the
region proposals according to certain overlap thresholds.

In the following sections, we investigate into various necessary changes for
successfully extending the R-CNN algorithm for small object detection. We fol-
low the same procedure to train our small object detection networks, but based
on the nature of the problem, in the domain-specific fine-tuning stage, we only
sample the negative patches from the region proposals. The positive patches are
generated by randomly deviating from the ground truth box. We also try to bal-
ance the positive patches of each category by sampling complementary number
of positive patches per category per instance.

The Fast R-CNN algorithm [4] simplifies the R-CNN pipeline by proposing
a ROIPooling layer that crops the proposals from the feature map instead of
the input image. Although the Fast R-CNN reduces the time cost and further
improves the performance on PASCAL VOC, the core idea of R-CNN is in-
tact. Adding the ROIPooling leads to the primary difference between the two
methods: in R-CNN; all the proposal boxes (even small ones) are resized to a
canonical size, this means that full feature map is generated for each proposal
box at the last pooling layer. However, in Fast R-CNN, a small proposal box gets
mapped to only a small map (sometimes 1*1*n) at the last pooling layer. Such
a small feature map may lack necessary information for the classification step,
adding unnecessary uncertainty into the study. Thus, we feel that the R-CNN is
more suitable than the Fast R-CNN algorithm in this case. Moreover, as we do
not have much knowledge about how the deep learning-based method works on
small objects, the original R-CNN pipeline provides a more convenient way to
better understand the problem. For example, it is more convenient to visualize
the neuron responses of the R-CNN than the Fast R-CNN. By working with
proposal patch input, analyzing the effects of up-sampling and context is also
easier. Thus in this paper, we choose to follow the original R-CNN pipeline.

Moreover, in our work, we do not implement bounding box regression. Al-
though bounding box regression is proven as an effective way to increase the
localization accuracy, it is not a major issue for small object detection. We be-
lieve the challenges come from the region proposal generation and classification,
while bounding box regression will be less useful on poor proposal and classifi-
cation results. So in this paper, we will only focus on generating better region
proposals and searching for stronger classifiers.

For all the experiments, our training pipeline consists of two stages: in the first
stage, the weights of the ConvNets are initialized with corresponding ImageNet
pre-trained models. We then fix the convolutional layers and only update fully
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connected layers for 8000 iterations with a learning rate of 0.0005. In the second
stage, all the layers are updated with a learning rate of 0.00005. We use stochastic
gradient descent with momentum of 0.9 for optimization, the batch size is 100.
The training is terminated after 80000 iterations.

3.1 Small Proposal Generation

Selective search and edge box are two popular choices for object proposal gen-
eration. They use mid-level image cues, such as segments and contours and are
object category-agnostic. While the selective search and edge box work well for
generating proposals for big objects in the PASCAL VOC. We empirically find
them rendering unsatisfactory results for generating small object proposals even
after an exhaustive search of the algorithm parameter space. With 2000 ob-
ject proposals per image, the typical recall rate is lower than 60%, leading to
poor performance for detecting small objects using R-CNN. Further investiga-
tion shows that both of the algorithms favor salient objects with closed contours
and distinctive colors. Since the nature of the small objects are non-prominent,
they are non-ideal for small object proposal generation.

The Region Proposal Network (RPN) [14] is the current state-of-the-art
method for proposal generation. It attaches nine anchor boxes - derived from
three different aspect ratios at three different scales - to each spatial dimen-
sion of the feature map from the conv5_8 layer of the VGG16 network [27] for
region proposal classification and bounding box regression. The three aspect ra-
tios used are 0.5 (landscape), 1 (square), and 2 (portrait), and the areas of the
square shape bounding boxes at the three scales are 1282, 2562, and 5122 pixel?,
respectively. The RPN achieves good performance for big object proposal gener-
ation. But we find that directly applying the RPN to the small object proposal
generation results in poor performance. Several modifications are necessary as
described below.

We first notice that the RPN anchor boxes are too large. Even the smallest
anchor box is much bigger than most instances in our small object dataset.
Based on the statistics of the small object size in the dataset, we choose 162,
402, and 1002 pixel? for the square shape anchor box sizes. For the aspect ratios,
we keep the original values used in the original paper. We further notice that the
stride length of the convj_3 feature map, which is 16 pixels, is too large. It is
larger than most of the “switch” and “outlet” objects in our dataset. The other
candidate feature maps for attaching the anchor boxes are conv2_2, conv3_-8 and
conv4_3. We empirically compare the performance and find that convj_3 renders
the best performance for small object proposal generation. The convj_3 feature
map has a theoretical receptive field of 92x92 pixel?, which appears to be more
appropriate than 196x196 pixel? from the conv5_3 feature map.

For benchmarking the performance of deep learning for small object detec-
tion, we also apply the Deformable Part Model (DPM) [28] detector to detect the
small object. The DPM detector was the state-of-the-art algorithm on the PAS-
CAL VOC dataset before the R-CNN algorithm. The DPM detector is based on
the Histogram of Oriented Gradient (HOG) features and latent support vector



8 Chenyi Chen, Ming-Yu Liu, Oncel Tuzel, Jianxiong Xiao

Table 3: Recall rate (%) of the region proposal generation methods.

Method mouse | tel. | switch | outlet | clock |t. paper| t. box | faucet | plate | jar | average
DPM, 300 prop. per category 70.9 58.0 70.5 80.9 79.1 86.6 76.2 69.3 58.0 | 63.4 71.3
RPN original, 300 prop. 85.0 63.4 78.7 73.1 66.0 76.1 50.0 76.0 58.6 | 31.8 65.9
RPN modified, 300 prop. 88.4 | 82.4 | 80.9 83.1 | 86.9 83.6 88.1 86.4 71.9 | 58.9 81.1
DPM, 500 prop. per category 73.2 61.8 74.3 82.2 82.5 86.6 78.6 73.9 62.2 | 72.9 74.8
RPN original, 500 prop. 85.7 64.9 79.2 74.7 68.4 77.6 57.1 78.0 61.4 | 38.2 68.5
RPN modified, 500 prop. 89.9 | 86.3 | 82.0 84.2 | 88.9 91.0 90.5 89.8 76.4 | 67.1 84.6
DPM, 1000 prop. per category| 76.5 67.2 78.7 84.2 86.9 89.6 81.0 79.7 68.3 | 81.7 | 79.4
RPN original, 1000 prop. 87.0 70.2 79.8 75.6 7.7 82.1 66.7 80.9 66.4 | 46.2 2.7
RPN modified, 1000 prop. 92.4 | 93.1 83.6 86.0 | 90.2 97.0 92.9 93.3 | 82.5 | 76.4 88.7
DPM, 2000 prop. per category| 80.2 | 72.5 | 82.0 | 86.2 | 89.9 | 925 | 83.3 | 833 | 73.0 | 87.8 | 832
RPN original, 2000 prop. 87.7 75.6 80.3 76.0 75.1 89.6 76.2 84.0 69.4 | 54.6 76.9
RPN modified, 2000 prop. 94.1 94.7 | 85.3 87.1 | 90.9 97.0 97.6 95.3 | 86.1 | 85.2 91.3

machine. To accommodate the small object size, we down-sample the root and
part template sizes of the DPM detector by half. The DPM is a category-specific
object detector. We train a DPM detector for each class.

Evaluation: in Table 3, we compare the recall rate of the proposal gener-
ation methods for the small object detection problem. Specifically, we compare
the recall performance of using the DPM detector, the original RPN, and the
proposed modification of RPN. We vary the number of proposals per image and
show the recall numbers. The DPM is category-specific. We use the top scored
bounding boxes from all the classes for computing the recall rate. The effective
number of bounding boxes are 10 times the number of the RPN. As discussed,
the modified RPN renders the best recall performance. For 2000 proposals, the
recall rate for the “tissue box” is about 97.6%. The recall rate for the “jar” is the
worst. It is 85.2% with 2000 proposals. However, this is still much better than
54.6% achieved by the original RPN method. From the table, we also find that
the original RPN algorithm renders worse performance than the DPM algorithm.
The proposed modification of the RPN algorithm considers the nature of small
object and largely improve the performance. Overall, the proposed modification
achieves an average recall rate of 91.3%, which is relatively 19% better than the
original RPN method.

3.2 Up-sampling

The first question encountered as extending the R-CNN algorithm to the small
object detection is whether to aggressively up-sample the image or not. Unlike
the objects in the PASCAL VOC, the bounding boxes of the small objects in
our dataset are very small. In Table 4, we show the median bounding box size
(square root of the box area) of the objects per category and the corresponding
up-sampling ratios required to match the input size (227 x 227 in this case) of
the deep convolutional neural networks. We find that, generally, 6 to 7 times
up-sampling is required, which will introduce a large amount of up-sampling
artifacts. One way to reduce the artifacts is to use low resolution small input
patches with a ConvNet deviated from the standard pre-trained models. For
example, we can exclude the pre-trained weights in the last few fully connected
layers and only use the convolution layers. However, using small patches as input
may create other disadvantages:
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Table 4: Up-sampling effects. Both networks are trained and tested with DPM
proposals, 500 per image per category.

mouse | tel. | switch | outlet | clock |t. paper| t. box | faucet | plate | jar | average
Partial AlexNet 29.8 3.1 5.3 18.0 19.6 15.5 1.9 6.7 5.4 2.0 10.7
Full AlexNet 42.9 7.7 9.4 22.7 | 28.2 | 26.7 15.7 18.6 54 | 3.4 18.1
Median size 324 54.0 25.5 25.8 38.5 73.1 90.0 50.8 39.2 | 294 45.9
Up-sampling ratio| 7.0 4.2 8.9 8.8 5.9 3.1 2.5 4.5 5.8 7.7 5.8

1. The receptive field over small patch is larger than the same receptive field
over large patch. This means given a small patch, the network can only
look at the object in a coarse scale, thus possibly loses useful information
regarding the parts of the object.

2. Small input patch produces lower dimensional feature vector, thus the size
of the vector may not be large enough to accommodate all the crucial infor-
mation.

3. Since all the fully connected layers need to be trained from scratch, we only
utilize the partial strength of the pre-trained models.

To answer this question. We design an experiment comparing the two solu-
tions using the following two networks:

1. Partial AlexNet [29]: Using convl to pool5 layers from the AlexNet. The
object proposals are re-scaled to 67x67. The pool5 layer produces a 1 x1x256
feature vector, which is used to get the final classification scores.

2. Full AlexNet: Using the entire AlexNet structure. The object proposals are
up-sampled to 227 x 227 and contains a large amount of artifacts.

The results are shown in 4. From the table, we found that although with the
up-sampling artifacts. The full AlexNet still renders much better performance.
So in our following experiments, we will only use the aggressively up-sampled
proposal patches as input.

3.3 Context

Context is an important cue for object detection. We expect that it will be
even more important for small object detection, since small objects are simple
in shape and usually only cover a small image region. The feature extracted
from the proposal region is less discriminative, so when only given the proposal
region, it can be very difficult to recognize, even for human beings.

We investigate into several methods for incorporating context information to
boost small object detection performance, and based on the R-CNN algorith-
m, we propose a simple method that works quite well. When given an object
proposal in an image, in addition to cropping the proposal region, we crop the
corresponding context region enclosing the proposal region, with the center co-
inciding with the center of the proposal region. The context region is set to be
several times larger than the proposal region. We then feed both regions into
a neural network. The neural network consists of three sub-networks where the
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Fig. 2: ContextNet: the neural network for integrating context informa-
tion. The two front-end sub-networks take proposal region patches and context
region patches as input respectively, the back-end sub-network takes in the con-
catenation of the two feature vectors and computes the final classification score.

Table 5: Results of ContextNet. All the networks are trained (2000 per image)
and tested (500 per image) with modified RPN proposals.

Method mouse | tel. | switch | outlet | clock |t. paper| t. box | faucet | plate | jar mAP
Baseline AlexNet 48.2 10.6 8.9 21.4 | 32.3 34.1 23.0 25.1 6.7 3.6 21.4
ContextNet (AlexNet, 3x)| 54.8 9.1 12.8 30.7 | 28.5 28.4 18.6 30.8 | 10.6 | 6.4 23.1
ContextNet (AlexNet, 7x)| 56.4 | 12.2 | 12.9 26.3 | 32.7 | 34.0 18.7 26.8 9.9 4.6 23.5

first one takes the proposal region as input, the second one takes the context
region as input, and the last one takes the concatenation of the outputs of the
others as input and computes the final classification score. We call this neural
network ContextNet, and the structure is shown in Fig. 2.

The two front-end sub-networks have identical structure. Each consists of a
few convolutional layers followed by one fully connected layer, which are derived
from the first six layers of the AlexNet (or the equivalent layers of VGG16). Input
image regions to the two sub-networks are resized to 227 x 227 (224 x 224 for
VGG16) patches. Each of the front-end sub-networks outputs a 4096 dimensional
feature vector. The back-end sub-network consists of two fully connected layers
and outputs the predicted object category label. During training, the front-end
sub-networks are initialized using the ImageNet pre-trained model. However, the
weights of the two sub-networks evolve separately - the weights are not shared.

Evaluation: we evaluate the performance of the AlexNet-based ContextNet
with two variants: the 3x and 7x models. The context region of the 3x model is
three times larger than the proposal region in both height and width dimension.
The 7x model is defined in a similar way and it uses a very larger context region.
We also include the AlexNet R-CNN model as the baseline.

The performance is shown in Table 5. We find that the neural network with
context integration achieves better performance than the baseline model. The
improvement with the 7x model is slightly better than that with the 3x model.
Overall, the relative mAP improvement over the baseline are 7.9% and 9.8%
for the 3x and 7x models, respectively. We also investigate a ConvNet-based co-
occurrence model, which leverages the detection of big objects to better localize
the small objects. The spatial relation between the big and small objects are
posed as learnable parameter integrated into an end-to-end training framework.
However, we find this method is only effective when attached to the Baseline
AlexNet, it does not make any improvement when attached to both ContextNets.
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Table 6: Results of DPM, AlexNet R-CNN, and VGG16 R-CNN. The
AlexNet in row 2 is trained and tested with DPM proposals, 500 per image per
category. The AlexNet in row 3 and the VGG16 in row 4 are trained (2000 per
image) and tested (500 per image) with modified RPN proposals.

Method mouse | tel. | switch | outlet | clock |t. paper| t. box | faucet | plate | jar mAP
DPM 18.9 0.3 1.9 23.0 9.1 18.3 2.0 5.7 2.4 0.4 8.2
DPM prop. + AlexNet| 42.9 7.7 9.4 22.7 28.2 26.7 15.7 18.6 5.4 3.4 18.1
RPN prop. + AlexNet | 48.2 10.6 8.9 21.4 32.3 34.1 23.0 25.1 6.7 3.6 21.4
RPN prop. + VGG16 56.8 | 16.4 | 14.2 31.1 31.9 29.4 23.4 31.3 9.3 4.2 24.8

Table 7: Results of ContextNet. Both networks are trained (2000 per image)
and tested (various) with modified RPN proposals.

Method | mouse | tel. | switch | outlet | clock |t. paper| t. box | faucet | plate | jar mAP
AlexNet, 7x, 300 prop. 56.9 124 13.6 28.0 324 35.6 17.9 27.2 9.8 5.1 23.9
AlexNet, 7x, 500 prop. 56.4 12.2 12.9 26.3 32.7 34.0 18.7 26.8 9.9 4.6 23.5
AlexNet, 7x, 1000 prop.| 55.4 11.2 114 25.7 29.5 37.6 18.5 25.7 9.1 4.2 22.8
AlexNet, 7x, 2000 prop.| 54.9 10.9 10.9 24.6 29.8 35.0 19.5 24.8 8.4 3.9 22.3
VGG16, 7x, 300 prop. 60.6 13.7 21.5 41.5 | 37.7 33.3 22.0 30.3 15.8 7.2 28.4
VGG16, 7x, 500 prop. 60.2 14.0 20.0 40.7 36.4 35.7 20.4 31.4 16.0 | 7.7 28.3
VGG16, 7x, 1000 prop. | 59.6 | 14.6 | 18.9 39.9 | 36.2 34.9 18.7 30.9 153 | 74 27.6
VGG16, 7x, 2000 prop. 58.4 13.7 18.1 38.2 33.6 33.0 18.5 30.1 14.0 7.1 26.5

3.4 Summary

In Table 6, we list the average precision of our R-CNN models on small object
dataset, we also list the DPM as a baseline. Not surprising at all, DPM is signifi-
cantly outperformed by all the deep learning-based models. And deeper network
(VGG16) has superior performance over shallow network (AlexNet).

To demonstrate the influence of region proposal quality on the final average
precision, we compare two AlexNet models: one using the DPM detection outputs
as proposals, and the other use the modified RPN proposals. From Table 3, we
know the modified RPN proposals have much higher recall rate than the DPM
proposals, and consequently, the AlexNet trained on modified RPN proposals
performs much better (Table 6).

Fewer proposals: in Table 7, we show the average precision of the Con-
textNet using 7x context region on different number of proposals per image. We
find it achieves higher average precision on a smaller number of proposals. Small
object detection is very vulnerable to false positives. Using a smaller number of
proposals eliminates a large amount of potential false positives and improves the
average precision. 300 proposals per image produces the best performance.

Stronger pre-trained model: we also experiment with replacing the AlexNet
with the VGG16 net to verify if the performance boost in the big object detec-
tion due to the stronger pre-trained model is also true for small object detection.
The results are shown in Table 7. From the table, we find that the stronger pre-
trained model leads to improved performance for all the proposal numbers.

In Fig. 3, we show the detection results of the ContextNet (AlexNet, 7x)
model on several images in the testing set. We use a fix threshold and show
the output bounding boxes after non-maximum suppression. Since the target
objects are too small for visualization, we put a zoom-in window to highlight
the output bounding boxes. From the figure, one can see that the small object
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Fig. 4: Comparison of methods on small objects and PASCAL. In both
(a) and (b), a marker represents the mAP of a detector on an object category.
Specifically, red represents Faster R-CNN on PASCAL objects, green represents
our ContextNet on our small objects, light and dark blue represent DPM on
PASCAL objects and our small objects, respectively.

detector works well on many categories. It can detect object instances with very
low resolution.

As one of the major purposes of this paper is to study the applicability of the
state-of-the-art object detection algorithms to the small object detection prob-
lem, by summarizing the findings, we now can answer this question. Our answer
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Fig.5: The proposal patches that have the largest excitation to the neurons in
fc6 of proposal sub-network. Please refer to the main text for further discussions.

is based on two observations: 1) before the R-CNN algorithm, the state-of-the-
art object detector on PASCAL VOC was DPM. Since our work is a preliminary
stage of small object detection, we think it is comparable to DPM on PASCAL.
Shown in Fig. 4a, the average precision of our best model, e.g. ContextNet (VG-
G186, 7x), on small object categories is distributed in the same range (indicated
by the black dashed lines) as that of DPM on PASCAL. Numerically, on the
small object dataset, our deep learning-based algorithm (mAP 28.3) has close
performance to the DPM on PASCAL (mAP 33.7). 2) on PASCAL VOC, the
R-~CNN style algorithm improves the mAP of DPM from 33.7 to 70.4. While on
the small object dataset, our best model improves the mAP of DPM from 8.2 to
28.3, which indicates the deep learning models are still very effective on small
objects. Thus, we think they are applicable to small object detection problem.

4 Visualization

We visualize the neurons in our ContextNet (AlexNet, 7x) model to better un-
derstand what the network learns as learning to detect small objects. We plot
the training patches that excite each neuron in the fc6 layer most for both the
proposal and context front-end sub-networks.

In Fig. 5, we display the top 20 image patches with the highest response
to several neurons in the proposal sub-network. We find that the patches are
dominated by mouse and round shape objects (e.g. row 1 to row 5). This par-
tially explains why the network performs better for the “mouse” and “clock”
categories. We also find the neurons in row 2 fire when seeing Apple mouses or
similar shapes, while those in row 9 response to oval pattern. In row 10, we can
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Fig. 6: The context patches that have the largest excitation to the neurons in fc6
of context sub-network. Please refer to the main text for further discussions

see outlet patches are mixed with speaker and clock patches. The neurons in row
11 and row 12 correspond to a monitor detector and a toilet detector. This is
surprising since our dataset does not contain these two object category labels.
The figure also suggest that there is not much high-level features to distinguish
small objects. Hence, the network relies on basic shape patterns to detect small
objects (e.g. row 6 to row 8).

In Fig. 6, we display the top 8 image patches with the highest response to
several neurons in the context sub-network. Since the 7x context region covers a
large image area, the context patches fire for the same neuron have more diverse
patterns. As expected, strong scene-specific patterns exist on many neurons.
The neuron in row 1 looks at computers, and the neuron in row 2 evolves for
bedroom scene. The neurons in row 3, 4, and 5 respond to tables, toilets and
sinks, respectively. The neuron in row 6 activates on kitchen scene. These neurons
provide context information to resolve the ambiguity in the proposal patches.

5 Conclusion

We extended the state-of-the-art R-CNN algorithm to deal with the small ob-
ject detection problem. We composed a small object dataset to facilitate the
study. Through detailed experimental validation and analysis, we found that,
with a carefully designed region proposal network and context modeling, the
deep learning-based object detection algorithm achieves similar performance im-
provement over the conventional approach for small object detection as it did
for big object detection.
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