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Abstract
We present a single time-period decentralized market clearing model based on the DC power
flow model. The electricity market we study consists of a set of Generation Companies
(GenCos) and a set of Distribution System Operators (DSOs). We model the DSOs as a single
node having deferrable loads. The Independent System Operator (ISO) determines the market
clearing generation and demand levels by coordinating with the market participants (GenCos
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the ISO. We exploit the problem structure to obtain a decomposition of the market-clearing
problem where the GenCos and DSOs are decoupled. We propose a novel semismooth Newton
algorithm to compute the competitive equilibrium. Numerical experiments demonstrate that
the algorithm can obtain several orders of magnitude speedup over a typical subgradient
algorithm.
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Abstract—We present a single time-period decentralized mar-
ket clearing model based on the DC power flow model. The
electricity market we study consists of a set of Generation
Companies (GenCos) and a set of Distribution System Operators
(DSOs). We model the DSOs as a single node having deferrable
loads. The Independent System Operator (ISO) determines the
market clearing generation and demand levels by coordinating
with the market participants (GenCos and DSOs). It is assumed
that each market participant shares limited information with the
ISO. We exploit the problem structure to obtain a decomposition
of the market-clearing problem where the GenCos and DSOs are
decoupled. We propose a novel semismooth Newton algorithm
to compute the competitive equilibrium. Numerical experiments
demonstrate that the algorithm can obtain several orders of
magnitude speedup over a typical subgradient algorithm.

I. INTRODUCTION

Electricity markets are commodity markets where: (i) sup-
pliers (electricity generators) and consumers (electricity cus-
tomers) are spread across a network and (ii) the flow of the
commodity (electricity) is dictated by physical laws [1]. Equi-
librium in an electricity market refers to a condition where a
market price is established through competition. The design of
appropriate market or pricing mechanisms is governed by the
theory of general equilibrium. For example, competition [2]
and active participation (e.g., demand response) [3] in these
markets are known to significantly enhance efficiency and
reduce prices. Given the importance of an efficient and reliable
grid infrastructure, the modeling and subsequent analysis of
electricity markets has seen extensive research. Using the DC
network flow model for power flow: Hobbs and Helman [4]
study market equilibrium via competitive equilibrium models;
Hobbs, Metzler and Pang [5] study oligopolistic price equilib-
rium using supply functions; Baldick [6] compares Cournot
and supply function equilibrium models of bid-based elec-
tricity markets; Weber and Overbye [7] study Nash equilibria
for electricity markets; and Wang et al. [8] study competitive
equilibria in dynamic electricity markets. The DC power flow
model is not valid when voltage or reactive power constraints
are considered. Motto et al [9] and Lavaei and Sojuodi [10]
investigate market equilibrium for AC power flow networks.

A. Our Focus

While research has focused largely on aspects of electricity
market design, there has been little work on algorithmic
and computational aspects. This is especially important in

the current context of grid infrastructure modernization and
increased penetration of distributed generation. ARPA-E en-
visions that the future grid infrastructure will be able to
incorporate diverse distributed generation sources with storage
and operation under a distributed architecture for control [11].
In that context, it is important to develop decentralized or
distributed algorithms that scale with network size and have
little overhead in communication. This serves as the motivation
and focus of this paper.

B. Our Contribution

We consider a pool-based electricity market consisting of:
generation companies (GenCo), load entities called Distribu-
tion System Operators (DSO) and an Independent System
Operator (ISO). We assume that: (a) the DC power flow model
is used by the ISO to model the power flow in the transmission
system, (b) the DSOs are modeled as a single node neglecting
the underlying distribution network, (c) the DSOs have the
ability to defer loads and (d) the GenCos and DSOs are price-
taking and unwilling to share their cost function to the ISO.
Maintaining privacy of the individual market agents motivates
the development of a decentralized framework whereby the
ISO only transmits price signals to the individual agents and
obtains price-sensitive optimal actions from them. Using such
obtained information, a subgradient algorithm [12] is typically
employed by the ISO to obtain convergence to equilibrium.
The convergence rate for subgradient algorithms is known to
be quite slow [12], leading to significant numbers of message
communications with the individual agents.

In this paper, we exploit the problem structure to obtain
decentralized optimization problems. In such a scheme, the
ISO transmits a price signal to the individual agents, who in
turn solve their individual optimization problems, the solutions
of which are communicated back to the ISO so they may
update the price. However, in contrast to previous approaches,
we impose that the agents also return the sensitivity of their
solution to changes in the price. We show this can be computed
analytically for the GenCos and DSOs. With this information,
we propose that the ISO solves its market clearing problem
by solving an implicit complementarity problem (ICP) as
introduced in Curtis and Raghunathan [13]. In this work, a
semismooth equation approach is proposed for accelerating a
dual decomposition algorithm for solving structured quadratic
programs. We demonstrate through numerical experiments that



our approach leads to orders of magnitude fewer function
evaluations as compared to a subgradient method.

C. Organization of the Paper

Models of the market agents and the notions of competitive
equilibrum are presented in §II. An implicit complementarity
formulation of the ISO’s market-clearing problem is presented
in §III. A semismooth formulation and algorithm are described
in §IV. Numerical results demonstrating the efficacy of the
method are presented in §V followed by conclusions in §VI.

II. COMPETITIVE EQUILIBRIUM

In this section, we describe the optimization problems
related to each of the market agents: generation companies
(GenCos), Distribution System Operators (DSOs), and the
Independent System Operator (ISO). Based on these, we
present the notion of competitive equilibrium and social wel-
fare maximization. In what follows, N denotes the set of buses
in the transmission network of the ISO while NG and ND

(withN = NG∪ND) respectively denote the nodes connected
to GenCos and DSOs. Further, L denotes the set of lines in
the transmission network.

A. Generation Company (GenCo)

The generation company located at node i ∈ NG chooses its
optimal power generation level P ∗i (λi) given the nodal price
λi from the ISO by solving the optimization problem

P ∗i (λi) = arg min
P

ci(P )− λiP (1a)

s.t. PGi ≤ P ≤ P
G

i , (1b)

where PGi and P
G

i are the mimimum and maximum generation
levels. We assume the following on the cost function of the
GenCo, which implies that (1) has a unique solution.

Assumption 1. The function ci is strictly convex.

B. Distribution System Operator (DSO)

The DSO located at node i ∈ ND chooses its optimal power
consumption level −P ∗i (λi) given the nodal price λi from the
ISO by solving the optimization problem

P ∗i (λi) = arg min
P
− λiP − ui(−P ) (2a)

s.t. PDi ≤ −P ≤ P
D

i , (2b)

where ui is the utility function of the DSO and PDi and P
D

i

are minimum and maximum power consumption levels. Note
that P ∗i (λi) is negative since it represents power consumption
as opposed to power generation. We assume the following on
the utility function of the DSO which ensures that (2) has a
unique solution.

Assumption 2. The function ui is strictly concave.

C. Independent System Operator (ISO)

The ISO is responsible for maintaining balance between
the GenCos and DSOs, and ensuring that the power flows in
the network are within certain limits. Given a vector of nodal
prices λ ∈ R|N |, the ISO chooses the optimum power injection
levels at the nodes by solving the optimization problem,

P ISO(λ) = arg min
P
λTP (3a)

s.t. 1TP = 0 (3b)

− P ≤ AP ≤ P (3c)

where P ∈ R|L| denotes the vector of power limits on the lines
in the network, 1 ∈ R|N | is a vector of all ones, and A is the
matrix of power distribution factors for the ISO’s transmission
network. The constraint (3b) imposes power balance between
the GenCos and DSOs. The DC power flow model appears
in (3c) through the power distribution factors [14].

D. Competitive Equilibrium

A pair (P̂ , λ̂) is said to achieve competitive (or Walrasian)
equilibrium for an electricity market if:

(a) P̂i = P ∗i (λ̂i) ∀ i ∈ NG,
(b) P̂i = P ∗i (λ̂i) ∀ i ∈ ND, and
(c) P̂ = P ISO(λ̂).

By the well-known first and second fundamental theorems
of welfare economics [15], we have the following.

• A competitive equilibrium is Pareto optimal.
• Every Pareto optimal allocation can be decentralized as

a competitive equilibrium.

By the second fundamental theorem of welfare economics [8],
[15], a competitive equilibrium can be characterized by max-
imizing social welfare given as

min
P

∑
i∈NG

ci(Pi)−
∑
i∈ND

ui(−Pi) (4a)

s.t. 1TP = 0 (4b)

− P ≤ AP ≤ P (4c)

PGi ≤ Pi ≤ P
G

i ∀ i ∈ NG (4d)

PDi ≤ −Pi ≤ P
D

i ∀ i ∈ ND. (4e)

III. DECENTRALIZED MARKET FORMULATION

We develop a decentralized market formulation based on
the ISO’s optimization problem (3). For ease of presentation,
we represent the power balance constraint in (3b) as the pair
of inequalities

1TP ≥ 0 and − 1TP ≥ 0. (3b’)

Introducing multipliers ξ and ξ for the power balance con-
straints in (3b’) and ζ and ζ ∈ R|L| for the line limit



constraints in (3c), the optimality conditions [16] for the ISO’s
problem are

λ = (ξ − ξ)1 +AT (ζ − ζ) (5a)

0 ≤ ξ ⊥ (1TP ) ≥ 0 (5b)

0 ≤ ξ ⊥ (−1TP ) ≥ 0 (5c)

0 ≤ ζ ⊥ (AP + P ) ≥ 0 (5d)

0 ≤ ζ ⊥ (−AP + P ) ≥ 0 (5e)

where for a pair of vectors {a, b} the expression 0 ≤ a ⊥
b ≥ 0 represents the conditions ai ≥ 0, bi ≥ 0, and
aibi = 0 for all i. The constraints in (5b)–(5e) are the
so-called complementarity constraints [16]. At a competitive
equilibrium the conditions in (5) must hold with P = P ∗(λ).
In other words, the ISO’s market-clearing problem can be
posed as the implicit complementarity problem (ICP)

0 ≤ ν ⊥ F (ν) ≥ 0, (6)

where ν =


ξ

ξ

ζ

ζ

 and F (ν) =


1TP ∗(λ)

−1TP ∗(λ)

AP ∗(λ) + P

−AP ∗(λ) + P

 (7)

while λ satisfies (5a). We call this an implicit complementarity
problem since P ∗(λ) is obtained by solving a set of opti-
mization problems. Observe that the evaluation of P ∗(λ) only
requires communication with the GenCos and DSOs through
communication of the price vector λ. Thus, the ICP (6) has
the desired property of decoupling by agents and allows the
agents to mainatain privacy of their optimization problem.

The following theorem formalizes the equivalence between
the ICP (6) and the competitive equilibrium.

Theorem 1. The following are equivalent:
(a) (P̂ , λ̂) is a competitive equilibrium;
(b) ν̂ solves (6) with λ̂ = (ξ̂ − ξ̂)1 +AT (ζ̂ − ζ̂).

Proof. First, we show that (a) implies (b). Suppose (a) holds.
From the definition of competitive equilibrium in §II-D, P̂ =
P ∗(λ̂). Since P̂ solves the ISO’s problem (3), we have that
there exists multipliers (ξ̂, ξ̂, ζ̂, ζ̂) satisfying the optimality
conditions in (5) with P = P ∗(λ̂). Thus, (b) holds. Now,
suppose (b) holds. By the preceding arguments we have that
first order stationarity conditions of the ISO’s problem (3)
holds. Since (3) is convex, a first order stationary point is
also a minimizer [16]. This completes the proof.

IV. SEMISMOOTH EQUATION APPROACH

We describe the semismooth equation approach of Curtis
and Raghunathan [13] for solving the ICP. We rewrite the
ICP (6) using the Fischer-Burmeister function [17]

ΦFB(ν) =

 φ(ν1, F1(ν))
...

φ(νm, Fm(ν))

 , (8)

where, given scalars a and b, function φ has the form

φ(a, b) =
√
a2 + b2 − a− b. (9)

Clearly, this latter function satisfies

φ(a, b) = 0⇐⇒ {a ≥ 0, b ≥ 0, and ab = 0}. (10)

At each iteration k of the semismooth Newton algo-
rithm [18] the step dνk is obtained as the solution of,

ΦFB(νk) +Hkdνk = 0, (11)

where Hk represents the first-order variation of the function
ΦFB at the point νk. We postpone the discussion on the
computation of the matrix Hk to §IV-D and instead focus on
the local convergence property and algorithmic details. The
step dνk obtained by solving (11) is called the Semismooth
Newton step.

A. Fast Local Convergence

Semismooth functions such as ΦFB are almost everywhere
differentiable except on a set of measure zero [18]. Fur-
ther, at points of non-differentiability, ΦFB is directionally
differentiable and can be approached through a sequence
of differentiable points. Consequently, for any sequence of
directions dν → 0 with associated Jacobians H ∈ ∂Φ(ν+dν)
and directional derivatives (ΦFB)′(ν; dν), we have that

‖Hdν − (ΦFB)′(ν; dν)‖ = o(‖dν‖). (12)

This Taylor-series-like property is sufficient to show that
iterations defined by (11) can converge locally superlinearly.

Theorem 2 ([18]). Suppose that F is continuously differ-
entiable and ν∗ satisfies ΦFB(ν∗) = 0 such that all H ∈
∂ΦFB(ν∗) are non-singular. Then, for any νk in a sufficiently
small neighborhood of ν∗, it follows that ‖νk+1 − ν∗‖ ≤
C‖νk − ν∗‖1+γ for some C > 0 and γ > 0.

In the present setting, F is not continuously differentiably,
only piecewise differentiable (PC1) since P ∗i (·) are PC1 [13].
The main result in [13] proves local superlinear convergence
for F ∈ PC1. Hence, the semismooth newton iteration [13]
converges fast locally, unlike a conventional subgradient ap-
proach. We provide numerical evidence for this in §V.

B. Algorithm

To promote global convergence, we employ a line-search
based on the merit function ΨFB(ν) := ‖ΦFB(ν)‖2. Observe
that the minimum of ΨFB(ν) is 0 corresponding to a solution
of the ICP (6). Thus, reduction of the merit function ΨFB(ν)
can be used to certify that the steps of the algorithm ultimately
decrease the distance to a solution of the ICP. Given a direction
dνk, the step length αk is determined as the largest αk ∈ (0, 1]
such that the sufficient decrease condition

ΨFB(νk +αkdνk) ≤ ΨFB(νk) + ηαk∇ΦFB(νk)T dνk (13)

holds where η ∈ (0, 1); e.g., one typically chooses η = 10−4.
The step-length αk may be obtained using a backtracking
line-search starting from value of 1 and multiplying by a



constant factor ρ ∈ (0, 1) until the suffcient decrease condition
holds (13). The complete steps of the algorithm are provided
in Algorithm 1. Steps 5 and 6 require the computation of the
sensitivity of the optimal solution to the variation in the price
signal ∂P

∗
i (λi)
∂λi

in addition to the optimal solution. We provide
the analytical formula for this in §IV-C. The computation of
the matrix Hk in Step 7 is described in §IV-D.

Algorithm 1: Semismooth Newton Algorithm (SSN)

1 Choose a convergence tolerance ε ∈ (0, 1) and an initial
guess ν0 = (ξ0, ξ

0
, ζ0, ζ

0
). Choose {η, ρ} ⊂ (0, 1).

2 Set k = 0.

3 repeat
4 Set λk according to (5a).
5 For i ∈ NG, set (P ∗i (λki ),

∂P∗i
∂λi

(λki )) from {(1),(14)}.
6 For i ∈ ND, set (P ∗i (λki ),

∂P∗i
∂λi

(λki )) from {(2),(15)}.
7 Compute Hk using (16) and dνk using (11).
8 Find the smallest integer n ≥ 0 such that (13) holds

for αk = ρn.
9 Set νk+1 = νk + αkdνk and k = k + 1

10 until ‖φFB(νk)‖∞ ≤ ε

C. Computing ∂P∗i
∂λi

(λi)

For the optimization problems (1) and (2) the price signal λi
is a parameter that occurs in the objective function. The theory
of parametric sensitivity analysis of nonlinear programs [19]
can be applied to obtain the sensitivity of the optimal solution
as described below. (For simplicity in what follows, we assume
strict complementarity of the GenCo and DSO problems. For
more general situations, see [13].) For the GenCos (i ∈ NG),

∂P ∗i
λi

(λki ) =

{
1

c′′i (P
∗
i (λk

i ))
if PGi < P ∗i (λki ) < P

G

i

0 otherwise
(14)

where c′′i (P ∗i (λki )) denotes the second derivative of the cost
function at the power generation level P ∗i (λki ). For the DSOs
(i ∈ ND),

∂P ∗i
λi

(λki ) =

{
−1

u′′i (−P∗i (λk
i ))

if PDi < −P ∗i (λki ) < P
D

i

0 otherwise
(15)

where u′′i (−P ∗i (λki )) denotes the second derivative of the util-
ity function at the power consumption level P ∗i (λki ). From (14)
and (15) we have that there exists sensitivity to price signal
only when the optimal solutions to (1) and (2) lie within
their respective bounds. Consequently, the function P ∗ is not
smooth; in fact, it is known to be semismooth [13].

D. Computing Hk

The matrix Hk is defined as

Hk = Dk
ν +Dk

F∇F (νk)T

= Dk
ν +Dk

FB
k
[
−1 1 −AT AT

] (16)

where Dk
ν and Dk

F are diagonal matrices. Introducing the set
βk = {j | νkj = 0 = Fj(ν

k)}, they can be obtained as

[Dk
ν ]jj =



(
νkj

‖(νkj , F kj )‖
− 1

)
∀ j /∈ βk(

zj
‖(zj , zT∇F kj )‖

− 1

)
∀ j ∈ βk

[Dk
F ]jj =



(
F kj

‖(νkj , F kj )‖
− 1

)
∀ j /∈ βk(

zT∇F kj
‖(zj , zT∇F kj )‖

− 1

)
∀ j ∈ βk

where ∇F kj denotes the gradient of the Fj(·) evaluated at
νk and z is chosen such that zj = 1 for j ∈ βk and 0
otherwise [20]. The matrix

Bk = diag
(
∂P ∗1
∂λ1

(λk1), . . . ,
∂P ∗|N|

∂λ|N |
(λk|N |)

)
is a diagonal matrix of the sensitivities of the optimum
response of the agents to their respective price signal λi.

V. NUMERICAL RESULTS

In this section, we demonstrate the numerical efficiency of
the semismooth Newton approach in Algorithm 1. We compare
the algorithm to a standard subgradient algorithm [12] for
computing the competitive equilibrium. The iteration of the
subgradient algorithm is

νk+1 = max

{
0,νk − 1

k + 1
F (νk)

}
. (17)

This replaces Steps 7-9 in Algorithm 1. The update step in (17)
only requires the optimal solution of the GenCos and DSOs,
i.e., the computation of sensitivity information in Steps 5
and 6 of Algorithm 1 is avoided. The iterations are quite
simple to implement and fit the decentralized framework very
well. The typical number of iterations required to obtain a
solution of tolerance ε is O( 1

ε2 ) [12]. Thus, a large number of
communication rounds are required between the ISO and the
GenCos and DSOs to achieve convergence.

In the following, we consider 6 different sizes of transmis-
sion networks corresponding to IEEE 9-bus, 14-bus, 30-bus,
39-bus, 57-bus and 118-bus networks. The cost function for
the GenCos is chosen as a strictly convex quadratic function,
ci(P ) = c1iP + c2iP

2 where c2i > 0. The values for
the coefficients c1i and c2i are obtained from the data files.
The utility function for the DSOs is chosen as a strictly
concave quadratic function, ui(−P ) = ui1(−P ) + u2iP

2

where u2i < 0. The coefficient values u1i and u2i are
generated randomly. The lower and upper bounds for demands
of the DSOs are respectively taken to be 0.8 and 1.2 times
the demand provided in the data file. Both algorithms were
implemented in MATLAB and run on a Windows desktop
with 3 GB RAM and a 3.0 GHz Intel Core 2 Quad processor.



Subgradient Semismooth
Case # # Iters Time (s) # Iters # Fcn. Time (s)
9-bus 100000 2.51 6 19 0.01
14-bus 100000 2.67 6 65 0.06
30-bus 100000 1.42 5 16 0.05
39-bus 43250 1.42 10 83 0.15
57-bus 100000 8.67 7 23 0.15
118-bus 100000 29.5 6 31 1.50

TABLE I
PERFORMANCE STATISTICS FOR THE ALGORITHMS ON DIFFERENT CASES.

# ITERS - NUMBER OF ITERATIONS, # FCN. - NUMBER OF FUNCTION
EVALUATIONS.

Fig. 1. Plot of error againt iteration index for the algorithms

Table I summarizes the performance statistics of the algo-
rithms. The reported numbers are the average of 10 different
runs. In each run, the cost functions, utility functions, and
demands were generated randomly. Both algorithms were set
to run until either the tolerance ε = 10−6 was reached or
the limit on the number of iterations, namely 100000, was
reached. From Table I, it is clear that the subgradient algorithm
hits the maximum iteration limit on most problems. The pro-
posed semismooth Newton Algorithm requires ≤10 iterations.
The number of function evaluations required by semismooth
Newton depends on the step size that is acceptable for the
merit function decrease condition (13). As a consequence, the
number of function evaluations is higher than the iteration
count. Still, the number of function evaluations is 4 orders
of magnitude smaller than for the subgradient method. The
update for the semismooth Newton Algorithm requires solving
a linear system (11) and is more expensive than that for the
subgradient algorithm (17). Nevertheless, the gain in reduction
of iterations using a Newton algorithm outweighs the increase
in computational time per iteration. Figure 1 plots the typical
progress of the error in satisfying ICP against the iteration
index. Further, the convergence rate is indeed superlinear as
predicted by Theorem 2 and is key to explaining the observed
acceleration in convergence over the subgradient method.

VI. CONCLUSIONS & EXTENSIONS

In this paper, we have presented a novel semismooth New-
ton Algorithm for the computation of competitive equilibrium
in electricity markets. The approach requires the GenCos and
DSOs to communicate not only their optimal response to the
price signal from the ISO but also the sensitivity of the optimal
solution to the price signal. We also present analytical ex-
pressions for computing these values. The proposed approach

is shown to be robust in converging to a tight tolerance of
10−6 and requires about 4 orders of magnitude fewer function
evaluations than the subgradient algorithm.

The current paper makes two assumptions on DSOs: lumped
model and no distributed generation. We will extend the
proposed approach to DSOs where the electrical network
of the DSO is also modeled and distributed generation is
included. We will also investigate the applicability of the
approach when the DSO’s power flow is modeled using AC
power flow equations. In this context, we will also explore
the convex SDP relaxation [10] which has shown to have zero
duality gap in a number of instances.
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