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High gain observer for speed-sensorless motor
drives: algorithm and experiments

Yebin Wang, Lei Zhou, Scott A. Bortoff, Akira Satake, and Shinichi Furutani

Abstract—This paper considers the rotor speed and flux esti-
mation for induction motors, which is one of the key problems in
speed-sensorless motor drives. Existing approaches, e.g. adaptive,
Kalman filter-based, and sliding mode observer, have limitations
such as unnecessarily assuming the rotor speed as a constant
parameter, failure to ensure convergence of estimation error
dynamics, or conservative design. This paper proposes a non-
triangular observable form-based estimation algorithm. This
paper presents realizable observers to avoid transforming the
induction motor model into the form. Advantages of the new
estimation algorithm include guaranteed stability of estimation
error dynamics, constructive observer design, ease of tuning, and
improved speed estimation performance. Finally, experiments
are conducted to demonstrate the effectiveness of the proposed
estimation algorithm.

I. INTRODUCTION

Speed-sensorless motor drives have attracted much attention
not only because removing the rotor shaft encoder reduces
the system cost and improves reliability, but also because the
resultant control and estimation design is challenging [1]–
[3]. The rotor speed estimation from current sensors, instead
of the encoder, is commonly unsatisfactory. Speed-sensorless
motor drives suffer significant performance degradation, and
are limited to fields requiring low or medium performance.
Significant efforts have been devoted to lifting this bottleneck.

Adaptation idea, where the rotor speed is treated as an
unknown parameter to avoid dealing with nonlinear dynamics,
was initially exploited and remains appealing due to simplicity
[4]–[8]. Adaptation-based estimation suffers slow transience.
This motivates nonlinear estimator designs, e.g. , high gain [3],
[9], sliding mode [10], [11], and extended/unscented Kalman
filter [12]–[14], etc. Nonlinear observer design typically entails
the system in normal forms. For instance, high gain and sliding
mode observer designs assume an observable form in triangu-
lar structures [15], [16]. With stator current measurements, the
induction motor model does not admit the observable form.

This paper develops and verifies a new algorithm for speed-
sensorless motor drives. Main contributions are three-fold:
first, with uniformly observable assumption, we show that
the induction motor model admits a non-triangular observable
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form by a change of state coordinates, and perform high
gain observer design based on work [17]; second, we propose
several implementable observers without the closed-form ex-
pression of the inverse state transformation; finally, we validate
the proposed algorithm by experiments.

The rest of this paper is organized as follows. Problem
formulation is provided in Section II. Section III presents
speed-sensorless estimation algorithms. Experimental results
in Section IV verify that the proposed algorithm is meaningful
and effective in practice. This paper is concluded by Section V.

II. PROBLEM STATEMENT

The induction motor model, in a frame rotating at an angular
speed ω1, is given by

i̇ds = −γids + ω1iqs + β(αΦdr + pωΦqr) +
uds
σ

i̇qs = −ω1ids − γiqs + β(αΦqr − pωΦdr) +
uqs
σ

Φ̇dr = −αΦdr + (ω1 − pω)Φqr + αLmids

Φ̇qr = −αΦqr − (ω1 − pω)Φdr + αLmiqs

ω̇ = µ(Φdriqs − Φdriqs)−
Tl
J

y =
(
ids iqs

)>
,

(1)

where notation is defined in Table I. The frame with ω1 = 0
is typically called the stator or stationary frame. Throughout
this paper, we take ω1 = 0. Readers are referred to [18], [19]
for details on induction motor modeling.

Letting ζ be a dummy variable, for the rest of this paper, we
denote ζ̂ as the estimate of the variable, ζ∗ as the reference,
ζ̃ = ζ−ζ̂ as the estimation error, and eζ = ζ∗−ζ or eζ = ζ∗−ζ̂
as the tracking error. Given a C∞ vector field f : Rn → Rn,
and a C∞ function h : Rn → R, the function Lfh(ζ) =
∂h(ζ)
∂ζ f is the Lie derivative of h(ζ) along f . Repeated Lie

derivatives are defined as Lkfh(ζ) = Lf (Lk−1
f h(ζ)), k ≥ 1

with L0
fh(ζ) = h(ζ).

This paper deals with the state estimation of the following
speed-sensorless control problem.

Problem 1: Given the induction motor model (1), the rotor
speed reference trajectory ω∗, and the rotor flux amplitude
reference φ∗, determine controls usa and usb so that the
rotor speed ω and the rotor flux amplitude

√
Φ2
dr + Φ2

qr are
regulated to their references, respectively.

Work [20] shows the existence of operation regimes that
the model (1) is neither observable nor detectable. Lack of
local (uniform) observability poses fundamental limitation to



TABLE I
NOTATIONS

Notation Description
ids, iqs stator currents in d- and q-axis

Φdr,Φqr rotor fluxes in d- and q-axis
ω rotor angular speed

uds, uqs stator voltages in d- and q-axis
ω1 angular speed of a rotating frame
Φ∗

dr rotor flux amplitude reference
ω∗ rotor angular speed reference

i∗ds, i
∗
qs references of stator currents in d- and q-axis

Tl load torque
J inertia

Ls, Lm, Lr stator, mutual, and rotor inductances
Rs, Rr stator and rotor resistances

σ
LsLr−L2

m
Lr

α Rr/Lr

β Lm/(σLr)
γ Rs/σ + αβLm

µ 3Lm/(2JLr)

Problem 1. For simplicity, this paper assumes that operation
conditions suffice the uniform observability, and concentrates
on state estimator design.

III. SPEED-SENSORLESS ESTIMATOR DESIGN

Consider a locally uniformly observable multi-input and
multi-output (MIMO) system represented by

ζ̇ = f(ζ) + g(ζ)u

y = h(ζ),
(2)

where the state ζ ∈ Rn, the control input u ∈ Rm, the output
y ∈ Rp, f, g : Rn → Rn are C∞ vector fields, and h :
Rn → Rp is a vector of C∞ functions. System (2) is not
in structures which allow convergence-guaranteed nonlinear
observer designs, e.g. exact error linearization [21]–[24], block
triangular-based decentralized observer [25]–[27], high gain
observer [15], and sliding mode observer [10], [11], [28].

A. A Non-triangular Observable Form

Work in [17] assumes that system (2) is transformable to
the following non-triangular observable form by a change of
state coordinates x = φ(ζ)

ẋ = Ax+ ϕ(x, u)

y = Cx,
(3)

where the state x ∈ Rn, and for 1 ≤ k ≤ p, x =[
(x1)> . . . (xp)>

]>
, xk =

[
xk1 . . . xkλk

]> ∈ Rλk , and

A = diag{A1, · · · , Ap}, Ak =

[
0 Iλk−1

0 0

]
∈ Rλk×λk

C = diag{C1, . . . , Cp}, Ck =
[
1 0

]
∈ Rλk .

Literally, xk denotes the state of the kth subsystem associated
with the kth output yk, and λk, 1 ≤ k ≤ p are the dimensions
of all subsystems. We call λk for 1 ≤ k ≤ p as subsystem
indices and have

∑p
k=1 λk = n. Note that the vector field

ϕ(x, u) is described as ϕ =
[
(ϕ1)> . . . (ϕp)>

]>
, ϕk =

[
ϕk1 . . . ϕkλk

]> ∈ Rλk , 1 ≤ k ≤ p. Specifically, ϕki has
the following structure: for 1 ≤ i ≤ λk − 1,

ϕki = ϕki (x1, · · · , xk−1, xk1 , · · · , xki , xk+1
1 , · · · , xp1, u) (4)

and for i = λk, ϕki = ϕkλk(x1, · · · , xp, u).
Remark 3.1: The non-triangular observable form (3) is a

special case of the form defined in [17, Eqn. (1) ] by taking
pk = 1. In fact, taking pk = 1 for 1 ≤ k ≤ q in [17, Eqn. (1)
] gives q = p and λk = nk.

Remark 3.2: It is challenging to verify that system (2) is
transformable to (3). It is more difficult to solve x = φ(ζ)
and its inverse ζ = φ−1(x). Verifying the transformability and
solving the state transformation comprise another portfolio of
research topics which are not covered here.

B. Design Procedure for Case 1: ζ = φ−1(x) Solvable

Given system in the non-triangular observable form (3),
work [17] performs observer design to estimate x. Afterwards,
estimates of ζ, denoted by ζ̂, is reconstructed from x̂.

1) Observer design in x-coordinates: The observer for the
kth subsystem is

˙̂xk = Akx̂
k + ϕ̂k + θδk∆−1

k (θ)S−1
k C>k Ckx̃

k

ŷk = Ckx̂
k

(5)

where x̂k = (x̂k1 , · · · , x̂kλk)>, x̃k = xk − x̂k, θ > 0,

δk =

{
2p−k

(
Πp
i=k+1(λi − 3

2 )
)
, if 1 ≤ k ≤ p− 1

1, if k = p

∆k(θ) = diag{1, 1

θδk
, . . . ,

1

θδk(λk−1)
}

ϕ̂k = (ϕ̂k1 , . . . , ϕ̂
k
λk

)>

ϕ̂ki = ϕki (x̂1, . . . , x̂k−1, x̂k1 , . . . , x̂
k
i , x̂

k+1
1 , . . . , x̂p1, u)

and Sk is solved from

Sk +A>k Sk + SkAk = C>k Ck. (6)

It has been shown in [15] that the solution to (6) is symmetric
positive definite and satisfies S−1

k C>k = (C1
λk
, . . . , Cλkλk )>

with Ciλk = λk!/(i!(λk − i)!) for 1 ≤ i ≤ λk.
Given the observer (5), ζ̂ can be constructed by

˙̂
ζ = f(ζ̂) + g(ζ̂, u) +

∂ζ

∂x
Θ∆−1(θ)S−1C>(y − ŷ)

ŷ = h(ζ̂),
(7)

where Θ = diag{θδ1 , · · · , θδp},∆−1 =
diag{∆−1

1 (θ), · · · ,∆−1
p (θ)}, S−1 = diag{S−1

1 , . . . , S−1
p }.

Notice that (7) includes the term ∂ζ
∂x , which assumes the closed

form formula of the inverse transformation ζ = φ−1(x).

C. Design Procedure for Case 2: ζ = φ−1(x) Unsolvable

Without the closed form expression of ζ = φ−1(x), one can-
not obtain the system representation in (3). Without knowing
the expression of ϕ(x, u), observer (5) can be neither designed
nor implemented. This section shows that one can still perform
observer design in the non-triangular observable coordinates.



1) Observer design in x-coordinates: The design of ob-
server (5) necessitates the expression of ϕ(x, u) in order to
estimate the Lipschitz constant of ϕ(x, u) in x. Next, we show
how the Lipschitz constant of ϕ(x, u) in x can be estimated
on the basis of φ(ζ). Assume that ϕ(x, u) is globally Lipschitz
with respect to x uniformly in u, i.e.,

Assumption 3.3: Given system (3), ∀x1, x2 ∈ Rn,∃Lx > 0

|ϕ(x1, u)− ϕ(x2, u)| ≤ Lx|x1 − x2|. (8)

Note that Lx is unknown and to be estimated. From (8)
and considering that ϕ(x, u) is smooth about its arguments,
we have for all u ∈ Rm

|ϕ(x1, u)− ϕ(x2, u)| ≤ |∂ϕ(x, u)

∂x
|∞ × |x1 − x2|

= |∂ϕ(φ(ζ), u)

∂ζ

∂ζ

∂x
|∞ × |x1 − x2|

≤ |∂ϕ(φ(ζ), u)

∂ζ
|∞ × |

∂ζ

∂x
|∞ × |x1 − x2|

≤ κ1|
∂ζ

∂x
|∞ × |x1 − x2|, ∀x, ζ ∈ Rn,

where 0 < |∂ϕ(φ(ζ),u)
∂ζ |∞ ≤ κ1, and

ϕ(φ(ζ), u) =
∂φ(ζ)

∂ζ
(f(ζ) + g(ζ)u)−Aφ(ζ).

Since ∂ϕ(φ(ζ),u)
∂ζ is known, the upper bound of its infinity norm

κ1 can be established. To derive the upper bound of | ∂ζ∂x |∞,
we take into account the fact that for a non-singular matrix
M , its infinity norm (max absolute eigenvalue) equals to the
inverse of the min absolute eigenvalue of M−1, i.e.,

max |eig(M)| = |M |∞ =
1

min |eig(M−1)|
.

The above equation produces an upper bound of | ∂ζ∂x |∞ as
κ2 = 1/min |eig(∂x∂ζ )|. We therefore establish κ1κ2 as the
upper bound of the Lipschitz constant Lx.

2) Constructing estimates of ζ: With ϕ(x, u) unknown,
observer (5) cannot be realized. However, ϕ, if represented
as a function of (φ(ζ), u), is implementable. Consequently,
the following implementable x-observer can be reached

˙̂xk = Akx̂
k + ϕk(φ(ζ̂), u) + θδk∆−1

k (θ)S−1
k C>k Ckx̃

k

ŷk = Ckx̂
k,

(9)

where ϕk(φ(ζ̂), u) are the rows corresponding to the kth
subsystem in ϕ(φ(ζ̂), u) given by

ϕ(φ(ζ̂), u) =
∂φ(ζ̂)

∂ζ̂
(f(ζ̂) + g(ζ̂)u)−Aφ(ζ̂)

and ζ̂ is numerically solved from the following n nonlinear
algebraic equations

x̂ = φ(ζ̂). (10)

As a result, observer (9) is implemented as (10) and

˙̂x =
∂φ(ζ̂, u)

∂ζ̂
(f(ζ̂) + g(ζ̂)u) + Θ∆−1(θ)S−1C>Cx̃

ŷ = Cx̂.

(11)

Remark 3.4: Solving (10) may generally resort to iterative
algorithms for numerical solutions. If the state transformation
φ(ζ) is a global diffeomorphism, ζ̂ can be uniquely solved
from (10). Otherwise, φ(ζ) is non-convex, and that iterative
algorithms may converge to an incorrect estimate ζ̂.

Alternatively, considering the state transformation φ(ζ) is a
local diffeomorphism, and thus its Jacobian ∂x

∂ζ is non-singular.
One can therefore implement the observer (7) as follows

˙̂
ζ = f(ζ̂) + g(ζ̂, u)

+

(
∂x

∂ζ

)−1

Θ∆−1(θ)S−1C>(y − ŷ)

ŷ = h(ζ̂).

(12)

Note that (12) is different from (7) where the Jacobian of the
inverse state transformation, ∂ζ

∂x , is used.

D. Application to Speed-sensorless Estimation

We give a concise representation of system (1) as follows

ζ̇ = f(ζ) + g1uds + g2uqs,

where ζ = (ids, iqs,Φdr,Φqr, ω)>, g1 = (1/σ, 0, 0, 0, 0)>,
g2 = (0, 1/σ, 0, 0, 0)>, and f is appropriately defined. Then
system (1) is verified to be transformable to the non-triangular
observable form (3).

1) Verifying that system (1) admits the form (3): We
show that system (1) is transformable to the non-triangular
observable form by the following change of state coordinates,
for the kth subsystem

xk = φk(ζ) =




hk(ζ)
...

Lλk−1
f hk(ζ)


 , (13)

where λk is observability indices [22]. Observability assump-
tion ensures that x = φ(ζ) = ((φ1(ζ))>, . . . , (φp(ζ))>)>

defines new coordinates, i.e., φ(ζ) is a local diffeomorphism.
For system (1) with outputs h1 = ids and h2 = iqs,

observability indices can be taken as (3, 2) and (2, 3). For
illustrative purpose, we take (λ1, λ2) = (3, 2) and verify that
the change of state coordinates, given by

x = (h1, Lfh1, L
2
fh1, h2, Lfh2)>, (14)

transforms (1) into the non-triangular observable form (3).
Given (14), the system in x-coordinates is written as

ẋ = Ax+ ϕ(x, u)

y = Cx,

where A = diag{A1, A2} with A1 ∈ R3×3 and A2 ∈ R2×2,
C = diag{C1, C2} with C1 ∈ R3 and C2 ∈ R2, and

ϕ =
[
(ϕ1)> (ϕ2)>

]>

ϕ1 =
{
Lg1h1(φ−1(x))uds + Lg2h1(φ−1(x))uqs

} ∂

∂x1
1

+
{
Lg1Lfh1(φ−1(x))uds + Lg2Lfh1(φ−1(x))uqs

} ∂

∂x1
2



+
{
L3
fh1(φ−1(x)) + Lg1L

2
fh1(φ−1(x))uds

+Lg2L
2
fh1(φ−1(x))uqs

} ∂

∂x1
3

ϕ2 =
{
Lg1h2(φ−1(x))uds + Lg2h2(φ−1(x))uqs

} ∂

∂x2
1

+
{
L2
fh2(φ−1(x)) + Lg1Lfh2(φ−1(x))uds

+ Lg2Lfh2(φ−1(x))uqs
} ∂

∂x2
2

.

The rest is to verify that ϕ satisfies the triangular condition
(4), which can be readily performed, and thus omitted.

Remark 3.5: It is worth noting that the non-triangular
observable form is not unique. That is, when transforming
the original system (2), one has multiple design options:
observability indices as well as the ordering of subsystems.

2) Observer design in x-coordinates: Given the ob-
server (5) for the kth subsystem, an observer can be readily
designed for each subsystem. For the induction motor case,
we take λ1 = 3, λ2 = 2, p = 2, and have design parameters

θ > 0, δ1 = 1, δ2 = 1

∆1(θ) = diag{1, 1

θ
,

1

θ2
}, ∆1(θ) = diag{1, 1

θ
}

S−1
1 C>1 = (3, 3, 1)>, S−1

2 C>2 = (2, 1)>.

Substituting the aforementioned design parameters into the kth
subsystem, one can obtain observer in x-coordinates as follows

˙̂x1 = A1x̂
1 + ϕ̂1 +G1C1x̃

1

˙̂x2 = A2x̂
2 + ϕ̂2 +G2C2x̃

2

ŷ1 = C1x̂
1

ŷ2 = C2x̂
2,

(15)

where G1 = θδ1∆−1
1 (θ)S−1

1 C>1 =
[
3θ 3θ2 θ3

]>
, G2 =

θδ2∆−1
2 (θ)S−1

2 C>2 =
[
2θ θ2

]>
.

3) Constructing estimates of ζ: Two approaches can be
employed to estimate ζ on the basis of (15). In this section and
the following experiments, the estimated state ζ̂ is constructed
by implementing the observer in ζ-coordinates, i.e., (12).

E. Stability Analysis

Due to space limitation, we cite main results in [17] for
completeness and avoid too much discussions in this paper.
Interested readers are referred to this paper’s journal version.

Theorem 3.6: [17, Thm. 3.1] Given Assumption 3.3, ∀M >
0; ∃θ0 > 0;∀θ ≥ θ0;∃λθ > 0, µθ > 0 such that for 1 ≤ k ≤ p

|x(t)− x̂(t)| ≤ λθe−µθt|x(0)− x̂(0)|

for every admissible control u with |u|∞ ≤M . Moreover, λθ
is a polynomial in θ and limθ→∞ µθ = +∞.

Remark 3.7: Provided that φ(ζ) is a local diffeomorphism
over an open domain Bx containing a compact domain D and
∀x ∈ D, so does its inverse. The convergence of the zero
solution for x̃ also implies the convergence of ζ̃ because

|ζ − ζ̂| = |φ−1(x)− φ−1(x̂)|

dSPACE
DS1104

DC-AC
inverter

Induction
motor

Matlab
Simulink

VDC

y

Fig. 1. The testbed architecture.

≤ |∂φ
−1(ε)

∂ε
|∞λθe−µθt|x(0)− x̂(0)|,

where |∂φ
−1(ε)
∂ε |∞ is computed over all ε ∈ Bx.

IV. EXPERIMENTAL VALIDATION

A. The Testbed

The testbed comprises Matlab/Simulink R©, dSPACE R© ACE
Kit DS1104, a DC-AC inverter, and a Marathon R©three-phase
AC induction motor with no load mounted. The testbed is
illustrated by Fig. 2 where the black solid and the red dash
represent signals and power flows, respectively. Control algo-
rithm is compiled by Matlab/Simulink R©, and downloaded to
dSPACE DS1104 for realtime operation. The control algorithm
determines desired three-phase voltages, and duty cycles of the
six PWM channels; the PWM signals open/close IGBTs of the
DC-AC inverter which drive the induction motor.

The dSPACE executes data acquisition and realtime control
tasks. Data acquisition task collects the motor position x, and
three-phase stator currents ia, ib, ic. The DC-AC inverter is
controlled by dSPACE’s digital I/O port. During experiments,
the dSPACE operates at a sampling frequency of 4kHz, and the
PWM frequency is also 4kHz. The encoder has a resolution
of 2048 pulses per revolution. The Marathon R© motor has
parameter values: Rs = 11.05Ω, Rr = 6.11Ω, Ls = Lr =
0.3165H,Lm = 0.2939H,J = 1.2e− 3kgm2.

B. The Tracking Controller & State Estimator

The tracking controller implements an Indirect Field Ori-
ented Control (IFOC) given by Fig. 2. Four Proportional and
Integral (PI) controllers are used to regulate speed, rotor flux
amplitude, and stator currents in d- and q-axis, respectively.
With notation defined in Fig. 2, the tracking controller imple-
ments the following control law

i∗ds = KP
Φ eΦ +KI

Φ

∫ t

0

eΦdt

i∗qs = KP
ω eω +KI

ω

∫ t

0

eωdt

u∗ds = KP
idseids +KI

ids

∫ t

0

eidsdt+ udsff

u∗qs = KP
iqseiqs +KI

iqs

∫ t

0

eiqsdt+ uqsff ,

(16)

where udsff = −σω1iqs and uqsff = σ(ω1ids+βω̂Φ̂dr). All
constants in (16) are obtained by trial and error to achieve
satisfactory speed tracking performance. The state estimator



consists of an open-loop flux observer to estimate rotor flux
amplitude, and a low pass filter to remove the encoder noise.
The Clarke/Park transformation and its inverse use the field
angle θ̂ computed according to the following formula

˙̂
θ = ω̂ +

αLmi
∗
qs

Φ∗
, θ̂(0) = 0.

C. Experimental Results

Two algorithms are tested in experiments: baseline and
the proposed algorithms. The algorithm in [29] is chosen
as baseline, where the proportion and integration gains in
the speed adaptation law are tuned by trial and error to
balance two objectives: the harmonics reduction during steady
state and the fast estimation during transient. The proposed
algorithm has only one tuning parameter which is taken as
θ = 20. Due to the fact that the coordinates (13) is locally
defined and not uniformly in u, the inverse jacobian matrix in
(12) might be singular or ill-conditioned. During experiments,
we approximate the inverse jacobian matrix to avoid non-
singularity, which consequently incurs non-zero steady state of
the speed estimation error. Readers are referred to the journal
version for details on approximation and compensation of non-
zero steady state error.

To make fair comparison, the tracking controller uses the
measured speed as feedback signal for speed control, i.e., both
the baseline and proposed state estimation algorithms run in
open-loop. With a focus on the bandwidth of speed estimation,
we conduct tests where the reference speed includes step
changes, and examine how fast two estimation algorithms
converge.

Figs. 3, 5 show trajectories of reference speed ω∗, mea-
sured speed ω, estimated speed ω̂, where the solid blue–the
reference speed; the solid black–measured speed; the solid
green–estimated speed from baseline approach; the solid red–
estimated speed from the proposed algorithm; and the dash
black–speed tracking error. Figs. 4, 6 show speed estimation
error trajectories, where the solid green–estimated error from
baseline approach; the solid red–estimated error from the pro-
posed algorithm; and the dash red–zoomed in estimated error
from the proposed algorithm. In Fig. 3, the reference speed
jumps from 30rad/sec to 40rad/sec at around t = 1.27sec,
and from 40rad/sec to 30rad/sec at around t = 2.9sec. One
can see that the estimated speed of the proposed algorithm
converges to the neighborhood of the measured speed much
faster that the baseline does. Fig. 4 shows the speed estimation
error trajectories. The upper plot of Fig. 4 shows that the
proposed algorithm can effectively reject variations of the
speed reference, and the resultant speed estimation error is
consistently less than 2rad/sec. From the zoomed in plot
(dash red line) in Fig. 4, one can see that the proposed
algorithm has a transient less than 0.02sec. Several test cases
are conducted in a similar manner as above, and the results
are shown in Figs. 5-6. Clearly, conclusions from these three
cases coincide with that drawn from the first case.
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V. CONCLUSION AND FUTURE WORK

This paper proposed and verified a new estimation algorithm
for speed-sensorless induction motor drives. The proposed
algorithm is based on first transforming the induction motor
model into a non-triangular observable form by a change of
state coordinates, and then performed a high gain observer
design in the new coordinates. Applying the transformation-
based observer design results in exponentially stable estima-
tion error dynamics. We further provided several observers
which can be implemented without solving the inverse state
transformation. Experiments demonstrated the effectiveness
and advantages of the proposed estimation algorithm: fast
speed estimation and ease of tuning. Future work includes
experimental validation of speed-sensorless motor drive with
the proposed algorithm in the feedback loop.
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