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new end-to-end trainable Gaussian conditional random field network. The proposed Gaussian
CRF network is composed of three sub-networks: (i) a CNN-based unary network for gener-
ating unary potentials, (ii) a CNN-based pairwise network for generating pairwise potentials,
and (iii) a GMF network for performing Gaussian CRF inference. When trained end-to-end
in a discriminative fashion, and evaluated on the challenging PASCALVOC 2012 segmen-
tation dataset, the proposed Gaussian CRF network outperforms various recent semantic
segmentation approaches that combine CNNs with discrete CRF models.
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Abstract

In contrast to the existing approaches that use discrete
Conditional Random Field (CRF) models, we propose to
use a Gaussian CRF model for the task of semantic segmen-
tation. We propose a novel deep network, which we refer to
as Gaussian Mean Field (GMF) network, whose layers per-
form mean field inference over a Gaussian CRF. The pro-
posed GMF network has the desired property that each of
its layers produces an output that is closer to the maximum
a posteriori solution of the Gaussian CRF compared to its
input. By combining the proposed GMF network with deep
Convolutional Neural Networks (CNNs), we propose a new
end-to-end trainable Gaussian conditional random field
network. The proposed Gaussian CRF network is composed
of three sub-networks: (i) a CNN-based unary network for
generating unary potentials, (ii) a CNN-based pairwise net-
work for generating pairwise potentials, and (iii) a GMF
network for performing Gaussian CRF inference. When
trained end-to-end in a discriminative fashion, and eval-
uated on the challenging PASCALVOC 2012 segmentation
dataset, the proposed Gaussian CRF network outperforms
various recent semantic segmentation approaches that com-
bine CNNs with discrete CRF models.

1. Introduction
Semantic segmentation, which aims to predict a category

label for every pixel in the image, is an important task
for scene understanding. Though it has received signifi-
cant attention from the vision community over the past
few years, it still remains a challenging problem due to
large variations in the visual appearance of the semantic
classes and complex interactions between various classes in
the visual world. Recently, convolutional neural networks
have been shown to work very well for this challenging
task [35, 13, 18, 30, 31, 35]. Their success can be attributed
to several factors such as their ability to represent complex
input-output relationships, feed-forward nature of their in-
ference, availability of large training datasets and fast com-
puting hardware like GPUs, etc.

However, Convolutional Neural Networks (CNNs) may
not be optimal for structured prediction tasks such as se-
mantic segmentation as they do not model the interactions
between output variables directly. Acknowledging this, var-
ious semantic segmentation approaches have been proposed
in the recent past that use Conditional Random Field (CRF)
models [26] on top of CNNs [3, 7, 13, 33, 37, 45, 55], and
all these approaches have shown significant improvement
in the segmentation results by using CRFs. By combining
CNNs and CRFs, these approaches get the best of both
worlds: the ability of CNNs to model complex input-output
relationships and the ability of CRFs to directly model the
interactions between output variables. While some of these
approaches use CRF as a separate post-processing step
[3, 7, 13, 33, 37], some other approaches train the CNNs
along with the CRFs in an end-to-end fashion [45, 55].

All of the above approaches use discrete graphical mod-
els, and hence end up using graph-cuts or mean field-based
approximate inference procedures. Though these inference
procedures do not have global optimum guarantees, they
have been successfully used for the semantic segmenta-
tion task in conjunction with CNNs. In contrast to dis-
crete graphical models, Gaussian graphical models [41, 50]
are simpler models, and have inference procedures that
are guaranteed to converge to the global optimal solution.
Gaussian graphical models have been used in the past for
various applications such as image denoising [22, 50], depth
estimation [29, 42], deblurring [43, 56], edge detection [54],
texture classification [5], etc.

While a discrete CRF is a natural fit for labeling tasks
such as semantic segmentation, one needs to use inference
techniques that do not have optimality guarantees. While
exact inference is tractable in the case of a Gaussian CRF,
it is not clear if this model is a good fit for discrete label-
ing tasks. This leads us to the following question: Should
we use a better model with approximate inference or an ap-
proximate model with better inference?

To answer this question, in this work, we use a Gaussian
CRF (GCRF) model for the task of semantic segmentation.
To use a GCRF model for this discrete labeling task, we first
replace each discrete variable with a vector of K mutually



Figure 1: Proposed GCRF network: The GMF network performs GCRF inference using the outputs of unary and pairwise networks. The
output of GMF network is upsampled to full image resolution using bilinear interpolation. Note that the parameters of this GCRF network
are the unary network parameters θCNN

u and the pairwise network parameters {θCNN
p , {fm},C � 0}.

exclusive binary variables, where K is the number of pos-
sible values the discrete variable can take, and then model
all the variables jointly as a multivariate Gaussian by re-
laxing the mutual exclusivity and binary constraints. After
the GCRF inference, the discrete label assignment is done
based on which of the K corresponding variables has the
maximum value.

Though the Maximum a Posteriori (MAP) solution can
be obtained in closed form in the case of GCRFs, it involves
solving a linear system with number of variables equal to
the number of nodes in the graph times the dimensionality
of node variables (which is equal to the number of spatial
locations times the number of classes in the case of seman-
tic segmentation). Solving such a large linear system could
be computationally prohibitive, especially for dense graphs
where each node is connected to several other nodes. Hence,
in this work, instead of exactly solving a large linear system,
we unroll a fixed number of Gaussian Mean Field (GMF)
inference steps as layers of a deep network, which we refer
to as GMF network. Note that the GMF inference is differ-
ent from the mean field inference used in [24] for discrete
CRFs with Gaussian edge potentials.

While GMF updates are guaranteed to give the MAP so-
lution upon convergence, parallel updates are guaranteed
to converge only under certain constraints such as diago-
nal dominance of the precision matrix of the joint Gaus-
sian [53]. If the nodes are updated serially, then the GMF
inference is equivalent to an alternating minimization ap-
proach in which each subproblem is solved optimally, and
hence it will converge (as finding the MAP solution for a
GCRF is a convex problem with a smooth cost function).
But, using serial updates would be very slow when the num-
ber of variables is large. To avoid both these issues, in this
work, we use a bipartite graph structure that allows us to
update half of the nodes in parallel in each step without
loosing the convergence guarantee even when the diagonal
dominance constraint is not satisfied. Using this bipartite
structure, we ensure that each layer of our GMF network
produces an output that is closer to the MAP solution com-

pared to its input.
By combining the proposed GMF network with CNNs,

we propose a new end-to-end trainable deep network, which
we refer to as Gaussian CRF network, for the task of se-
mantic segmentation. The proposed GCRF network consists
of a CNN-based unary network for generating the unary
potentials, a CNN-based pairwise network for generating
the pairwise potentials and a GMF network for perform-
ing the GCRF inference. Figure 1 gives an overview of
the entire network. When trained discriminatively using
the ImageNet and PASCALVOC data (ImageNet used for
pretraining the CNNs), the proposed GCRF network gave
a mean intersection-over-union (IOU) score of 73.2 on the
challenging PASCALVOC 2012 test set [12], outperform-
ing various recent approaches that combined CNNs with
discrete CRFs. Also, when compared to just using the unary
network, we improve the mean IOU by 6.2 points.

Contributions:

• Gaussian CRF for semantic segmentation: In contrast
to the existing approaches that use discrete CRF models,
we propose to use a GCRF model for the task of semantic
segmentation. Compared to discrete CRFs, GCRFs are
simpler models that can be solved optimally.

• GMF network: We propose a novel deep network by
unfolding a fixed number of Gaussian mean field itera-
tions. Using a bipartite graph structure, we ensure that
each layer in our GMF network produces an output that
is closer to the optimal solution compared to its input.

• Gaussian CRF network: We propose a new end-to-end
trainable deep network that combines the GCRF model
with CNNs for the task of semantic segmentation.

• Results: We show that the proposed GCRF network
outperforms various existing discrete CRF-based ap-
proaches on the challenging PASCALVOC 2012 test set
(when trained with ImageNet and PASCALVOC data).



2. Related Work

Semantic segmentation using CNNs: In the recent past,
numerous semantic segmentation approaches have been
proposed based on CNNs. In [14, 17], each region proposal
was classified into one of the semantic classes by using
CNN features. Instead of applying CNN to each region in-
dependently as in [14, 17], [9] applied the convolutional
layers only once to the entire image, and generated region
features by using pooling after the final convolutional layer.

Different from the above approaches, [13] trained a CNN
to directly extract features at each pixel. To capture the in-
formation present at multiple scales, CNN was applied to
the input image multiple times at different resolutions, and
the features from all the resolutions were concatenated to
get the final pixel features. This multiscale feature was then
classified using a two-layer neural network. Finally, post-
processing steps like CRF and segmentation tree were used
to further improve the results. Building on top of these CNN
features, [46, 47] introduced a recursive context propagation
network that enriched the CNN features by adding image
level contextual information. Instead of using a CNN multi-
ple times, [7, 18, 31] proposed to use the features extracted
by the intermediate layers of a deep CNN to capture the
multi-scale information. Recently, [32] trained a deconvo-
lution network for the task of semantic segmentation. This
network was applied separately to each region proposal, and
all the results were aggregated to get the final predictions.

Most of the CNN-based methods mentioned above use
superpixels or region proposals, and hence the errors in the
initial proposals will remain no matter how good the CNN
features are. Different from these methods, [30] directly
produced dense segmentation maps by upsampling the pre-
dictions produced by a CNN using a trainable deconvolu-
tion layer. To obtain finer details in the upsampled output,
they combined the final layer predictions with predictions
from lower layers.

Combining CNNs and CRFs for semantic segmentation:
Though CNNs have been shown to work very well for the
task of semantic segmentation, they may not be optimal
as they do not model the interactions between the output
variables directly, which is important for semantic segmen-
tation. To overcome this issue, various recent approaches
[3, 7, 13, 33, 37] have used discrete CRF [26] models on
top of CNNs. While [13] defined a CRF on superpixels and
used graph-cuts based inference, [3, 7, 33, 37] defined a
CRF directly on image pixels and used the efficient mean
field inference proposed in [24]. Instead of using CRF as a
post-processing step, [55] trained a CNN along with a CRF
in an end-to-end fashion by converting the mean field in-
ference procedure of [24] into a recurrent neural network.
Similar joint training strategy was also used in [45].

In all these approaches, the CRF edge potentials were

designed using hand-chosen features like image gradients,
pixel color values, spatial locations, etc. and the potential
function parameters were manually tuned. Contrary to this,
recently, [28] has learned both unary and pairwise potentials
using CNNs. While all these approaches learn CNN-based
potentials and use message passing algorithms to perform
CRF inference, [27] has recently proposed to use CNNs to
directly learn the messages in message passing inference.

The idea of jointly training a CNN and graphical model
has also been used for other applications such as sequence
labeling [10, 34], text recognition [21], human pose esti-
mation [52], predicting words from images [6], handwritten
word recognition [4]. Recently, various CNN-based seman-
tic segmentation approaches have also been proposed for
the semi and weakly supervised settings [8, 20, 33, 36].

Unrolling inference as a deep network: The proposed
approach is also related to a class of algorithms that learn
model parameters discriminatively by back-propagating the
gradient through a fixed number of inference steps. In [2],
the fields of experts [40] model was discriminatively trained
for image denoising by unrolling a fixed number of gra-
dient descent inference steps. In [6, 11, 25, 49] discrete
graphical models were trained by back-propagating through
either the mean field or the belief propagation inference
iterations. In [39], message passing inference machines
were trained by considering the belief propagation-based
inference of a discrete graphical model as a sequence of
predictors. In [15], a feed-forward sparse code predictor
was trained by unrolling a coordinate descent-based sparse
coding inference algorithm. In [19], a new kind of non-
negative deep network was introduced by deep unfolding of
non-negative factorization model. Different from these ap-
proaches, in this work, we unroll the mean filed inference of
a GCRF model as a deep network, and train our CNN-based
potential functions along with the GCRF inference network
in an end-to-end fashion.

Gaussian conditional random fields: GCRFs [50] are
popular models for structured inference tasks like denois-
ing [22, 43, 44, 50, 56], deblurring [43, 44, 56], depth es-
timation [29, 42], etc., as they model continuous quantities
and can be efficiently solved using linear algebra routines.

Gaussian CRF was also used for discrete labeling tasks
earlier in [51], where a Logistic Random Field (LRF) was
proposed by combining a quadratic model with logistic
function. While the LRF used a logistic function on top of
a GCRF to model the output, we directly model the output
using a GCRF. Unlike [51], which used hand-chosen fea-
tures like image gradients, color values, etc. to model the
potentials, we use CNN-based potential functions.

Recently, [29] trained a CNN along with a GCRF model
for image-based depth prediction. The GCRF model of [29]
was defined on superpixels and had edges only between ad-



jacent superpixels. As the resulting graph was sparse with
few nodes, [29] performed exact GCRF inference by solv-
ing a linear system. In contrast, we define our GCRF model
directly on top of the dense CNN output and connect each
node to several neighbors. Since the number of variables in
our GCRF model is very large, exactly solving a linear sys-
tem would be computationally expensive. Hence, we unfold
a fixed number of GMF inference steps into a deep network.
Also, while [29] used hand-designed features like color his-
togram, local binary patterns, etc. for designing their pair-
wise potentials, we use CNN-based pairwise potentials.

The idea of combining the GCRF model with neural net-
works (one or two layers) has also been explored previously
for applications such as document retrieval [38] and facial
landmark detection [1]. However, the way we model our
potential functions and perform inference is different from
these works.

Notations: We use bold face small letters to denote vectors
and bold face capital letters to denote matrices. We use A>

and A−1 to denote the transpose and inverse of a matrix A.
We use ‖b‖22 to denote the squared `2 norm of a vector b.
A � 0 means A is symmetric and positive semidefinite.

3. Gaussian Conditional Random Field Model
In semantic segmentation, we are interested in assigning

each pixel in an image X to one of the K possible classes.
As mentioned earlier, we use K variables (one for each
class) to model the output at each pixel, and the final label
assignment is done based on which of theseK variables has
the maximum value. Let yi = [yi1, . . . , yiK ] be the vector
of K output variables associated with the ith pixel, and y
be the vector of all output variables. In this work, we model
the conditional probability density P (y|X) as a Gaussian
distribution given by

P (y|X) ∝ exp

{
−1

2
E(y|X)

}
, where

E (y|X) =
∑
i

‖yi − ri(X; θu)‖22

+
∑
ij

(yi − yj)
>
Wij (X; θp) (yi − yj) .

(1)

The first term in the above energy function E is the unary
term and the second term is the pairwise term 1. Here, both
ri and Wij � 0 are functions of the input image X with θu
and θp being the respective function parameters. Note that
when Wij � 0 for all pairs of pixels, the unary and pair-
wise terms can be combined together into a single positive
semidefinite quadratic form.

1Note that we have only one term for each pair of pixels, i.e., we do
not have separate Wij and Wji for the pair (i, j). We just have one W
for (i, j) which can be interpreted as both Wij and Wji based on the
context.

The optimal y that minimizes the energy function E can
be obtained in closed form since the minimization of E is
an unconstrained quadratic program. However, this closed
form solution involves solving a linear system with number
of variables equal to the number of pixels times the number
of classes. Since solving such a large linear system could
be computationally prohibitive, in this work, we use the it-
erative mean field inference approach.

3.1. Gaussian mean field inference

The standard mean field approach approximates the joint
distribution P (y|X) using a simpler distribution Q(y|X)
which can be written as a product of independent marginals,
i.e, Q(y|X) =

∏
iQi(yi|X). 2 This approximate distribu-

tion is obtained by minimizing the KL-divergence between
the distributions P andQ. In the case of Gaussian, the mean
field approximation Q and the original distribution P have
the same mean [53]. Hence, finding the MAP solution y is
equivalent to finding the mean µ of the distribution Q.

For the Gaussian distribution in (1), the mean field up-
dates for computing the mean µ are given by

µi ←
(
I +

∑
j

Wij

)−1(
ri +

∑
j

Wijµj

)
. (2)

Here, µi is the mean of marginal Qi. Please refer to the
supplementary material for detailed derivations. It is easy
to see that if we use the standard alternating minimization
approach (in which we update one pixel at a time) to find
the optimal y that minimizes the energy function in (1), we
would end up with the same update equation. Since the
energy function is a convex quadratic in the case of GCRF
and update (2) solves each subproblem optimally, i.e., finds
the optimal yi (or µi) when all the other yj (or µj) are
fixed, performing serial updates is guaranteed to give us the
MAP solution. However, it would be very slow since we are
dealing with a large number of variables.

While using parallel updates seems to be a reasonable
alternative, convergence of parallel updates is guaranteed
only under certain constraints like diagonal dominance of
the precision matrix of the distribution P [53]. Imposing
such constraints could restrict the model capacity in prac-
tice. For example, in our GCRF model (1), we can satisfy
the diagonal dominance constraint by making all Wij diag-
onal. However, this can be very restrictive, as making the
non-diagonal entries of Wij zero will remove the direct
inter-class interactions between pixels i and j, i.e., there
will not be any interaction term in the energy function be-
tween the variables yip and yjq for p 6= q.

2Note that instead of using marginals of scalar variables yik , we are
using marginals of vector variables yi.



Figure 2: Each pixel in our CRF is connected to every other pixel
along both rows and columns within a spatial neighborhood. Here,
all the pixels that are connected to the center black pixel are shown
in red. If the black pixel is on odd column, all the pixels connected
to it will be on even columns and vice versa.

3.2. Bipartite graph structure for parallel updates

While we want to avoid the diagonal dominance con-
straint, we also want to update as many variables as possible
in parallel. To address this problem, we use a bipartite graph
structure, which allows us to update half of the variables in
parallel in each step, and still guarantees convergence with-
out the diagonal dominance constraint.

Note that our graphical model has a node for each pixel,
and each node represents a vector of K variables. In order
to update the ith node using (2), we need to keep all the
other nodes connected to the ith node (i.e., all the nodes
with non-zero Wij) fixed. If we partition the image into
odd and even columns (or odd and even rows) and avoid
edges within the partitions, then we can optimally update all
the odd columns (or rows) in parallel using (2) while keep-
ing the even columns (or rows) fixed and vice versa. This is
again nothing but an alternating minimization approach in
which each subproblem (corresponding to half of the nodes
in the graph) is optimally solved, and hence is guaranteed to
converge to the global optimum (since we are dealing with
a convex problem).

Generally when using graphical models, each pixel is
connected to all the pixels within a spatial neighborhood.
In this work, instead of using all the neighbors, we con-
nect each pixel to every other neighbor along both rows and
columns. Figure 2 illustrates this for a 7 × 7 spatial neigh-
borhood. It is easy to see that with this connectivity, we can
partition the image into even and odd columns (or even and
odd rows) without any edges within the partitions.

4. Gaussian CRF network
The proposed GCRF network consists of three compo-

nents: Unary network, Pairwise network and GMF network.
While the unary and pairwise networks generate the ri and
Wij that are respectively used in the unary and pairwise
terms of the energy function (1), the GMF network per-
forms Gaussian mean field inference using the outputs of
unary and pairwise networks. Figure 1 gives an overview of
the proposed GCRF network.

Unary network: To generate the ri used in the unary
term of the energy function (1), we use the DeepLab-MSc-
LargeFov network of [7] (along with the softmax layer),

which is a modified version of the popular VGG-16 net-
work [48]. Modifications compared to VGG-16 include
converting the fully-connected layers into convolutional
layers, skipping downsampling after the last two pooling
layers, modifying the convolutional layers after the fourth
pooling layer, and using multi-scale features similar to [18].
Please refer to [7] for further details. For brevity, we will
refer to this DeepLab-MSc-LargeFov network as DeepLab
CNN in the rest of the paper. We will denote the parameters
of this unary DeepLab network using θCNN

u .

Pairwise network: Our pairwise network generates the
matrices Wij that are used in the pairwise term of the en-
ergy function (1). In this work, we compute each Wij as

Wij = sijC, C � 0, (3)

where sij ∈ [0, 1] is a measure of similarity between pixels
i and j, and the learned matrix C encodes the class compat-
ibility information. We compute the similarity measure sij
using

sij = e−(zi−zj)
>F(zi−zj), (4)

where zi is the feature vector extracted at ith pixel using a
DeepLab CNN (with parameters θCNN

p ), and the learned
matrix F � 0 defines a Mahalanobis distance function.
Note that the exponent of sij can be written as

(zi − zj)
>F(zi − zj) =

M∑
m=1

(f>mzi − f>mzj)
2, (5)

where F =
∑M

m=1 fmf>m. Hence, we implement the Ma-
halanobis distance computation as convolutions (of zi with
filters fm) followed by an Euclidean distance computation.

The overall pairwise network consists of a DeepLab
CNN that generates the pixel features zi, a similarity layer
that computes sij for every pair of connected pixels us-
ing (4) and (5), and a matrix generation layer that computes
the matrices Wij using (3). Note that here {fm} are the
parameters of the similarity layer and C � 0 are the param-
eters of the matrix generation layer.

GMF network: The proposed GMF network performs a
fixed number of Gaussian mean field updates using the out-
puts of unary and pairwise networks. The input to the net-
work is initialized using the unary output, µ1 = r = {ri}.
The network consists of several sequential GMF layers,
where each GMF layer has two sub-layers (an even update
layer followed by an odd update layer, See Figure 3):
• Even update layer: This sublayer takes the output of

previous layer as input, and updates the even column
nodes using (2) while keeping odd column nodes fixed.

• Odd update layer: This sublayer takes the output of
even update layer as input, and updates the odd column
nodes using (2) while keeping even column nodes fixed.



Figure 3: GMF Network. µt
e and µt

o are even and odd column nodes respectively where t indexes the layers, µt = {µt
e, µ

t
o}. Network is

initialized with unary network output µ1 = r.

As explained in the previous section, because of the bi-
partite graph structure, the update performed by each of the
above sublayers is an optimal update. Hence, each layer of
our GMF network is guaranteed to generate an output that
is closer to the MAP solution compared to its input (unless
the input itself is the MAP solution, in which case the output
will be equal to the input).

Combining the unary, pairwise and GMF networks, we
get the proposed GCRF network, which can be trained in an
end-to-end fashion. The parameters of the network are the
unary network parameters θu = θCNN

u , and the pairwise
network parameters θp = {θCNN

p , {fm},C � 0}. Note
that since we use a fixed number of layers in our GMF net-
work, the final output is not guaranteed to be the MAP so-
lution of our GCRF model. However, since we train the en-
tire network discriminatively in an end-to-end fashion, the
unary and pairwise networks would learn to generate appro-
priate ri and Wij such that the output after a fixed number
of mean field updates would be close to the desired output.

Note that the DeepLab network has three downsampling
layers, and hence the size of its output is 1/8 times the input
image size. We apply our GCRF model to this low resolu-
tion output and upsample the GMF network output to the
input image resolution by using bilinear interpolation.

Discrete label assignment: Note that the final output at
each pixel is a K-dimensional vector where K is the num-
ber of classes. Let y∗i = [y∗i1, . . . , y

∗
iK ] be the final output at

ith pixel. Then the predicted class label of ith pixel is given
by argmaxk y

∗
ik.

Training loss function: For training the network, we use
the following loss function at each pixel

L (y∗i , li) = −min
(
0, y∗ili −maxk 6=li y

∗
ik − T

)
, (6)

where li is the true class label. This loss function basically
encourages the output associated with the true class to be
greater than the output associated with all the other classes
by a margin T .

Training: We train the proposed GCRF network discrim-
inatively by minimizing the above loss function. We use
standard backpropagation to compute the gradient of the
network parameters. Due to space constraints, we present

the derivative formulas in the supplementary material. Note
that we have a constrained optimization problem here due to
the symmetry and positive semidefiniteness constraints on
the parameter C. We convert this constrained problem into
an unconstrained one by parametrizing C as C = RR>,
where R is a lower triangular matrix, and use stochastic
gradient descent for optimization.

5. Experiments:
We evaluate the proposed GCRF network using the

challenging PASCALVOC 2012 segmentation dataset [12],
which consists of 20 object classes and one background
class. The original dataset consists of 1464, 1449 and 1456
training, validation and test images, respectively. Similar
to [7, 55], we augment the training set with the additional
annotations provided by [16], resulting in a total of 10,582
training images. For quantitative evaluation, we use the
standard mean intersection-over-union measure (averaged
across the 21 classes).

Parameters: In our GCRF model, each node was con-
nected to every other node along both rows and columns
(Figure 2) within a 23 × 23 spatial neighborhood. Note
that since our GCRF model is applied to the CNN output
whose resolution is 1/8 times the input resolution, the effec-
tive neighborhood size in the input image is 184× 184. For
our experiments, we used a five layer GMF network, which
performs five full-image updates in the forward pass. Dur-
ing training, we used a value of 0.5 for the margin T used
in our loss function. The number of filters M used in the
similarity layer was set to be equal to the number of classes.

5.1. Training

We used the open source Caffe framework [23] for train-
ing and testing our network. We initialized both of our
DeepLab CNNs with the trained model provided by the
authors of [7]. Note that this model was finetuned us-
ing only the PASCALVOC segmentation data starting from
ImageNet-trained VGG-16 model. For training, we used
stochastic gradient descent with a weight decay of 5×10−3

and momentum of 0.9.

Pretraining: Before training the full GCRF network, we
pre-trained the similarity layer and CNN of the pairwise
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MSRA-CFM [9] 87.7 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN-8s [30] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Hypercolumns [18] 89.3 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4 62.6

DeepLab CNN [7] 91.6 78.7 51.5 75.8 59.5 61.9 82.5 76.6 79.4 26.9 67.7 54.7 74.3 70.0 79.8 77.3 52.6 75.2 46.6 66.9 57.3 67.0

ZoomOut [31] 91.1 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

Deep message passing [27] 93.9 90.1 38.6 77.8 61.3 74.3 89.0 83.4 83.3 36.2 80.2 56.4 81.2 81.4 83.1 82.9 59.2 83.4 54.3 80.6 70.8 73.4

Approaches that use CNNs and discrete CRFs
Deep structure models [28] 93.6 86.7 36.9 82.3 63.0 74.2 89.8 84.1 84.1 32.8 65.4 52.1 79.7 72.1 77.6 81.7 55.6 77.4 37.4 81.4 68.4 70.3

DeconvNet + CRF [32] 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

object clique potentials [37] 92.8 80.0 53.8 80.8 62.5 64.7 87.0 78.5 83.0 29.0 82.0 60.3 76.3 78.4 83.0 79.8 57.0 80.0 53.1 70.1 63.1 71.2

DeepLab CNN-CRF [7] 93.3 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [55] 94.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet + FCN + CRF [32] 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

Proposed GCRF network 93.4 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

Table 1: Comparison with state-of-the-art on PASCALVOC 2012 test set (when trained using ImageNet and PASCALVOC data).

network such that the output sij of the similarity layer is
high for a pair of pixels that have same class label and low
for a pair of pixels that have different class labels. For pre-
training, we used the following loss function for each pair
of connected pixels:

Lij = −1[li = lj ]sij + 1[li 6= lj ] min(0, sij − h), (7)

where li and lj are respectively the class labels of pixel i and
j, and h is a threshold parameter. This loss function encour-
ages sij to be high for similar pairs and below a threshold
h for dissimilar pairs. The value of h was chosen as e−10.
For training, we used a mini-batch of 15 images and a start-
ing learning rate of 10−3 for the similarity layer parameters
{fm} and 10−4 for the CNN parameters θCNN

p . After train-
ing for 8000 iterations, we multiplied the learning rate of
the similarity layer parameters by 0.1 and trained for addi-
tional 5000 iterations.

Finetuning: After the pre-training stage, we finetuned the
entire GCRF network using a mini-batch of 5 images and
a starting learning rate of 10−2 for all parameters except
θCNN
u , for which we used a small learning rate of 10−6. 3

After training for 6000 iterations, we multiplied the learning
rate by 0.01 and trained for additional 25000 iterations.

5.2. Results

Table 1 compares the proposed GCRF network with
state-of-the-art semantic segmentation approaches on the
challenging PASCALVOC 2012 test set. We can infer the
following from these results:

• The proposed GCRF network performs significantly
(6.2 points) better than the DeepLab CNN, which was
used for initializing our unary network. This shows that

3Since the Unary DeepLab CNN was trained by [7] using PAS-
CALVOC segmentation data, it was already close to a good local minima.
Hence, we finetuned it with a small learning rate.

GCRFs can be successfully used to model output inter-
actions in discrete labeling problems even though they
are continuous models.

• The proposed approach outperforms several recent ap-
proaches that use discrete CRF models with CNNs. This
shows that, despite being a continuous model, GCRF
can be a strong competitor to discrete CRFs in discrete
labeling tasks.

• Our result is on par with the state-of-the-art (lower by
just 0.2 points) when trained using only ImageNet and
PASCALVOC data.

Figure 4 provides a visual comparison of the proposed
approach with DeepLab CNN (which is same as our unary
network) and DeepLab CNN + discrete CRF. As we can
see, the proposed GCRF model is able to correct the er-
rors made by the unary network, and also produces more
accurate segmentation maps compared to the discrete CRF-
based DeepLab approach.

Computation time: The proposed GCRF network takes
around 0.6 seconds to segment a 505 × 505 image on an
NVIDIA TITAN GPU.

6. Conclusions
In this work, we proposed to use a GCRF model for the

discrete labeling task of semantic segmentation. We pro-
posed a novel deep network, which we refer to as GMF
network, by unfolding a fixed number of Gaussian mean
field inference steps. By combining this GMF network with
CNNs, we proposed an end-to-end trainable GCRF net-
work. When trained discriminatively, the proposed GCRF
network outperformed various recent discrete CRF-based
semantic segmentation approaches on the challenging PAS-
CALVOC 2012 segmentation dataset. Our results suggest
that, despite being a continuous model, GCRF can be suc-
cessfully used for discrete labeling tasks.



Input Ground truth DeepLab CNN DeepLab CNN-CRF Proposed

Figure 4: Comparison of the proposed approach with DeepLab CNN [7] and DeepLab CNN + discrete CRF [7].
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