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Abstract
The recently released REverberant Voice Enhancement and Recognition Benchmark (RE-
VERB) challenge includes a reverberant automatic speech recognition (ASR) task. This pa-
per describes our proposed system based on multi-channel speech enhancement preprocessing
and state-of-the-art ASR techniques. For preprocessing, we propose a single-channel derever-
beration method with reverberation time estimation, which is combined with multichannel
beamforming that enhances direct sound compared with the reflected sound. In addition,
this paper also focuses on state-of-the-art ASR techniques such as discriminative training of
acoustic models including the Gaussian mixture model, subspace Gaussian mixture model,
and deep neural networks, as well as various feature transformation techniques. Although, for
the REVERB challenge, it is necessary to handle various acoustic environments, a single ASR
system tends to be overly tuned for a specific environment, which degrades the performance in
the mismatch environments. To overcome this mismatch problem with a single ASR system,
we use a system combination approach using multiple ASR systems with different features
and different model types because a combination of various systems that have different error
patterns is beneficial. In particular, we use our discriminative training technique for sys-
tem combination that achieves better generalization by making systems complementary with
the modified discriminative criteria. Experiments show the effectiveness of these approaches,
reaching 6.76 and 18.60 % word error rates on the REVERB simulated and real test sets.
These are 68.8 and 61.5 % relative improvements over the baseline.
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Abstract

The recently released REverberant Voice Enhancement and Recognition
Benchmark (REVERB) challenge includes a reverberant automatic speech
recognition (ASR) task. This paper describes our proposed system based on
multi-channel speech enhancement preprocessing and state-of-the-art ASR
techniques. For preprocessing, we propose a single-channel dereverberation
method with reverberation time estimation, which is combined with multichannel
beamforming that enhances direct sound compared with the reflected sound. In
addition, this paper also focuses on state-of-the-art ASR techniques such as
discriminative training of acoustic models including the Gaussian mixture model,
subspace Gaussian mixture model, and deep neural networks, as well as various
feature transformation techniques. Although, for the REVERB challenge, it is
necessary to handle various acoustic environments, a single ASR system tends to
be overly tuned for a specific environment, which degrades the performance in
the mismatch environments. To overcome this mismatch problem with a single
ASR system, we use a system combination approach using multiple ASR systems
with different features and different model types because combination of various
systems that have different error patterns is beneficial. In particular, we use our
discriminative training technique for system combination that achieves better
generalization by making systems complementary with the modified
discriminative criteria. Experiments show the effectiveness of these approaches,
reaching 6.76% and 18.60% word error rates on the REVERB simulated and real
test sets. These are 68.8% and 61.5% relative improvements over the baseline.

Keywords: Reverberant speech recognition; Dereverberation; Discriminative
training; Feature transformation; System combination; REVERB challenge

1 Introduction
Automatic speech recognition (ASR) using distant microphones can overcome ap-

plication restrictions of places and devices and widen the usage of speech interfaces.

For example, users can control distant home appliances by voice without touching

the devices. However, in such a scenario it is necessary to address reverberation,

which is composed of reflected sounds from walls, ceilings, or furniture, in addition

to the direct sound from a sound source. Reverberation as well as noise degrades

the intelligibility of speech for humans, and it also significantly degrades ASR per-

formance.
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The REverberant Voice Enhancement and Recognition Benchmark (REVERB)

challenge is an Audio and Acoustic Signal Processing (AASP) challenge sponsored

by the IEEE Signal Processing Society in 2013, and has recently been released

for studying reverberant speech enhancement and recognition techniques [1]. This

paper focuses on the speech recognition task, which is a medium-sized vocabulary

continuous speech recognition task, in order to evaluate the ASR performance in

reverberant environments.

In such a scenario, speech enhancement before ASR is important and impacts

ASR performance. We have proposed a single-channel dereverberation method [2].

This method first estimates a reverberation time, which is one of the most important

parameters for characterizing the extent of reverberation, and attempts to eliminate

the reverberant components based on the estimated reverberation time. In addition,

in order to exploit the eight-channel data provided by the REVERB challenge, we

use a beamforming (BF) approach [3] with a direction-of-arrival estimation [4, 5].

In addition to the speech enhancement process, we focus on the state-of-the-

art ASR techniques. Recently, ASR performance has been significantly improved

owing to various types of discriminative training [6, 7] and feature transforma-

tions [8, 9, 10, 11, 12, 13]. In the previous Computational Hearing in Multisource

Environments (CHiME) challenge [14], we showed the effectiveness of discriminative

training and feature transformations in noisy environments [15, 16], and this time,

also our proposed system employs these techniques. However, the CHiME challenge

and other existing evaluation campaigns for noise-robust ASR [17, 14] mainly focus

on the variety of non-stationary additive noises, and the variety of room shapes or

room types in these campaigns is very limited. On the other hand, the REVERB

challenge [1] includes eight different reverberant environments: four rooms, which

are composed of three simulated rooms and one real recorded room, multiplied by

two types of source-to-microphone distances. In this scenario, due to the variety in

the evaluation environments and the mismatch between simulated training data and

real test data, discriminative training would cause over-training problems, although

discriminative training is very powerful for matched conditions where training and

evaluation conditions are close, in general. Therefore, it is important to confirm that

speech recognition systems with discriminative training and feature transformations

perform robustly in various reverberant environments.

This paper deals with two feature transformation approaches: linear transfor-

mation and non-linear discriminative feature transformation. The former approach

converts original feature vectors to new feature vectors based on linear transfor-

mation matrices. This paper deals with linear discriminant analysis (LDA) [8] and

maximum likelihood linear transformation (MLLT) [9, 10] to estimate the trans-

formation matrices. LDA uses long context input features, which are obtained by

concatenating multiple features in contiguous frames, as original feature vectors to

exploit feature dynamics. Therefore, LDA can reduce the influence of reverberation

because the long context input features can handle the distorted speech features

across several frames due to the influence of longer reverberation than the window

size of the short-time Fourier transform (STFT) [18, 19]. This property is partic-

ularly effective for reverberant speech recognition, and this paper investigates the

effectiveness of LDA on ASR performance in detail with varying context sizes. In
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addition, MLLT finds a linear transformation of features to reduce state-conditional

feature correlations. For the latter approach, we use non-linear discriminative fea-

ture transformation [12], which directly reduces ASR errors by estimating non-linear

feature transformation matrix with discriminative criteria.

The above feature transformation techniques estimate transformation matrices in

the training stage. However, to improve recognition accuracy for unknown condi-

tions in the evaluation stage, the adaptation strategy of estimating feature trans-

formation matrices for evaluation data is also effective. This paper deals with basis

feature-space maximum likelihood linear regression (basis fMLLR) [20], which can

estimate transformation matrices robustly even in the cases of short utterances. In

addition, in the training stage, speaker adaptive training (SAT) [11] is also used. It

trains acoustic models in a canonical speaker space based on the MLLR framework

in order to obtain better feature transformation in the adaptation stage.

After the feature transformations, Gaussian mixture model (GMM) based acous-

tic models are obtained by using discriminative training techniques [6, 7] and also

this paper deals with deep neural networks (DNN) [13] that have recently attracted

great attention, and we have shown promising results in noisy environments [16].

Note that the lower layers of a DNN play the role of discriminative feature trans-

formation [21], and our DNN system skips discriminative feature transformation,

which is already included in a DNN.

The studies above mainly focus on a single ASR system. On the other hand, the

use of multiple systems is another solution to improve the robustness of ASR perfor-

mance [22, 23, 24]. For our proposed method, which exploits discriminative training

methods, the best performing system is different from environment to environment

due to the variety of evaluation data or mismatch between training and evaluation

data. The system combination methods relax the degradation of speech recognition

performance coming from these varieties or mismatches, e.g., [25, 26] proposed to

use complementary system for system combination. This paper constructs various

systems that have different properties, and in particular, our proposed discrim-

inative training method introduces complementary systems intentionally within

a lattice-based discriminative training framework [27, 28]. The results from var-

ious recognizers will be combined using recognizer output voting error reduction

(ROVER) [22].

In summary, there are three objectives in this paper: First, the effectiveness

of dereverberation and microphone-array speech enhancement techniques is vali-

dated. Second, the effectiveness of feature transformation and discriminative train-

ing for reverberant environments is validated. The objectives here are various

types of acoustic modeling such as the GMM, subspace Gaussian mixture model

(SGMM) [29], and DNN and their discriminative training. Third, to address the

variety of reverberant environments, a system combination approach is introduced

and its effectiveness is validated.

There are two main differences between this paper and the REVERB challenge

workshop paper [30]: First, we add detailed descriptions about validated techniques

and the experimental setup. For example, we detail the speech enhancement, feature

transformation, and speaker adaptation parts. Second, we compare our proposed

method with other participants’ systems that were submitted to the workshop,

which clarifies the effectiveness of our proposed method.
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2 System overview
Figure 1 shows a schematic diagram of the proposed system, which consists of three

components. The first component is based on a speech enhancement step, which is

described in Section 3. This paper focuses on single- and eight-channel data. The

speech enhancement part consists of (1) a multichannel delay-and-sum BF with

direction-of-arrival estimation that enhances the direct sound compared with the

reflected sound, (2) a single-channel dereverberation technique with reverberation

time estimation that attempts to eliminate late reverberation, and (3) a normalized

least-mean-squares (NLMS) adaptive filter algorithm that attempts to eliminate

short-term distortions such as microphone difference or speech distortions caused

by speech enhancement methods.

The second component is based on a feature transformation step, including several

feature-level transformations (LDA, MLLT, and basis fMLLR) and discriminative

feature transformation (Section 4.1). This step uses two types of features [Mel-

frequency cepstral coefficients (MFCC) and perceptual linear prediction (PLP)]. By

using two different types of features, it is believed that complementary hypotheses

can be obtained for system combination.

The third component is based on the ASR decoding step that uses a discrimina-

tively trained acoustic model with margin control. Three types of systems (GMM,

SGMM, and DNN) are constructed. Boosted maximum mutual information (bMMI)

is used for GMM and SGMM in Sections 4.2 and for DNN in Section 4.4.

In addition, Section 4.5 describes our proposed system combination approach that

combines discriminatively trained complementary systems. In addition to the three

types of SAT model, a GMM model without SAT is also constructed; our proposed

method constructed complementary systems for each system. The output results of

16 systems are combined using ROVER, and the final hypotheses are obtained.

3 Speech enhancement
This section deals with speech enhancement methods: delay-and-sum BF with cross-

spectrum phase (CSP) analysis in Section 3.1, a proposed dereverberation method

in Section 3.2, and an NLMS algorithm that attempts to eliminate short-term dis-

tortion in Section 3.3. We describe them step by step. The delay-and-sum BF using

the CSP method and NLMS adaptive filter algorithm is used for an 8-ch system;

the dereverberation method is used for both the 1-ch and 8-ch systems.

3.1 Delay-and-sum BF after direction-of-arrival estimation using CSP method

To enhance the direct sound from the source, a frequency-domain delay-and-sum BF

is applied [3]. The time-domain s-th sample zm(s) observed by them-th microphone

is transformed into the STFT spectrum. The spectrum xt,m(n) at the t-th frame

and n-th frequency bins obtained as

xt,m(n) =

NF−1∑
s=0

[ϕ(s)zm(φ · t+ s)] exp

(
−2πȷ

s

NF
n

)
, (1)

where φ is a frame shift, and ϕ is a window function with the window length NF .

A vector form of the spectrum xt,m denotes [xt,m(0), . . . , xt,m(NF − 1)]⊤ ∈ CNF ,
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where ⊤ denotes a transpose of vectors or matrices. The enhanced spectrum x̃t(n)

is obtained by summing the spectrum xt,m(n) with a compensation of a time delay

as

x̃t(n) =
∑
m

xt,m(n) · exp
(
−2πȷ

n

NF
τt,m

)
. (2)

The arrival time delay τt,m of the m-th microphone from the first microphone is

related to the direction of arrival at the t-th frame (here τt,1 = 0). This time delay

is estimated by CSP analysis [4]. First, an inverse STFT transform a cross-power

spectrum between first and m-th microphones into the time domain as

ψt,m(s) =
1

NF

NF−1∑
n=0

[
ϕ(n)

xt,1(s) · x∗t,m(s)

|xt,1(s)||xt,m(s)|

]
exp

(
2πȷ

n

NF
s

)
, (3)

where “*” denotes a complex conjugate. The highest correlated point is the max-

imum point of elements among {ψt,m(0), . . . , ψt,m(NF − 1)}. Thus, the time delay

τt,m is calculated as

τt,m = max
s∈[0,...,NF−1]

ψt,m(s)× 1

fsamp
, (4)

where fsamp is a sampling frequency. To improve the performance of the original

CSP method, we used a peak-hold process [31] and noise component suppression,

which sets the cross power spectrum to zero when the estimated signal-to-noise ratio

(SNR) is below 0dB [5]. Synchronous addition of multiple microphone pair-wise CSP

coefficients reduces the noise influence [32].

3.2 Single-channel dereverberation with estimation of reverberation time

For a single-channel dereverberation method, we employ an algorithm proposed

in [2]. The proposed algorithm is briefly described below and detailed discus-

sions are found in [2]. Since the proposed method is independently processed

across microphones, we omit the microphone index m. When reverberation time

Tr is much longer than the frame size, an observed power spectrum Xt =

[|xt(0)|2, . . . , |xt(NF − 1)|2]⊤ is modeled as a weighted sum of the source’s power

spectrum X̂t ∈ RNF . The source’s power spectrum is estimated as follows in the

existence of stationary noise N ∈ RNF when the spectrum between frequency bins

is independent:

Xt =
t∑

µ=0

wµX̂t−µ +N , (5)

where µ and w are the delay frame and the weight coefficient, respectively. The

source’s power spectrum X̂t is related to Xt as

X̂t−µ = η(Tr)Xt−µ −N , (6)
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where η is the ratio of a direct sound component to the sum of the direct and

reflected sound components, which is a decreasing function of Tr because longer Tr

increases the energy of the reflected sound components. Here, we assume that the

reverberation time Tr and η are independent of frequency bins, for simplicity.

Assuming that w0 is unity to normalize reverberation decay for the direct sound,

Eq. (7) can be derived from the above relations:

X̂t = Xt −
t∑

µ=1

wµ [η(Tr)Xt−µ −N ]−N . (7)

Reverberation is divided into two stages: early reverberation and late reverber-

ation. The threshold between them is denoted by D (frames) after arrival of a

direct sound. Generally, late reverberation mainly degrades speech recognition per-

formance and early reverberation can be ignored. Therefore, the proposed method

only focuses on late reverberation. Early reverberation is complex because it greatly

depends on room shapes and distributions of room materials, whereas late rever-

beration is statistical and the sound-energy density decays exponentially with time

under the assumption of a diffuse sound field. These are modeled according to Po-

lack’s statistical model [33], and wµ is determined as

wµ =

 0 (1 ≤ µ ≤ D)

αs

η(Tr)
e−2 3 log 10

Tr
φµ (D < µ)

, (8)

which corresponds to a reverberation decay in Fig. 2. Here, αs is a subtraction

parameter to be set. The upper condition and lower condition correspond of Eq. (8)

to the early and late reverberations, respectively. Assuming η is constant, Eq. (7) is

a process similar to spectral subtraction [34]. If the subtracted power spectrum X̂t

is less than βXt, it is substituted with βXt. This process is called a flooring, and

β is a flooring parameter. We define the floored ratio ρ as a ratio of the number of

floored time-frequency bins to the total number of bins.

The proposed method estimates a reverberation time Tr from a flooring ration

ρ. Two observations are exploited for this estimation. First, when some arbitrary

reverberation times (Ta) are assumed, ρ increases monotonically with Ta because

a longer Ta increases the extent of subtraction. This is modeled as a linear rela-

tion with the inclination ∆ρ. Second, ρ increases with Tr at the same Ta. Since

actual η(Tr) decreases with Tr, the power spectrum after dereverberation assuming

a constant η, is more likely to be floored for a longer Tr because the second term

of Eq. (7) is larger than that of the actual one in the condition with a longer Tr.

Therefore, Tr has a positive correlation with ∆ρ. This can be modeled as

Tr = a∆ρ − b, (9)

with two predetermined constants a and b.

The estimation process of Tr is summarized as follows: Calculate ρ and the in-

clination ∆ρ by a least-squares regression for some values of arbitrary assumed

reverberation times Ta, and estimate an actual reverberation time Tr by Eq. (9).
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3.3 NLMS adaptive filter algorithm

The goal of the NLMS adaptive filter algorithm is to eliminate short-term distortions

from an observed distorted signal sequence zs = [z(s−NL + 1), . . . , z(s)]⊤ ∈ RNL

based on a desired signal ds [35] by using a linear filter with the tap length NL.

Filtersw′
s ∈ RNL that realize these requirements are recursively trained in a manner

where errors between filtered signals and desired signals are minimized as

min
w′

s

|ds − z⊤
s w′

s|2. (10)

An LMS algorithm uses instantaneous values for the estimation of a gradient, and

an NLMS algorithm normalizes the step size parameter by the signal power. Thus,

the update formula of an NLMS algorithm is obtained as

w′
s = w′

s−1 +
ϱ

ϵ+ |zs|2
zs[ds − z⊤

s w′
s−1], (11)

where ϱ is a step size, and ϵ is a very small constant that avoids the instability of the

update formula. The initial value of filter w′
0 is 0. In this case, zs is a reverberant

speech, and ds is a clean speech without reverberation. A filter w′ is obtained from

the entire training data set. For evaluation, desired signals ds cannot be obtained;

thus, the filter cannot be changed. The tap length of NLMS is short because the

goal of this filter is to eliminate a short-term distortion, whereas the proposed

dereverberation algorithm (3.2) attempts to eliminate late reverberation.

4 Speech recognition
4.1 Feature transformation and speaker adaptation

Static features concatenated during the left L frames, current frame, and the right

R frames are compressed into low-dimensional (I ′-dimensional) features by using

LDA. The class of LDA is the state of the triphone HMM. In addition to this, to

reduce the correlation between feature dimensions, MLLT is used. Combined feature

transformation is realized as

y′
t = AM

[
AL[y⊤

t−L, . . . ,y
⊤
t , . . . ,y

⊤
t+R]

⊤] , (12)

where yt is an original I-dimensional feature at the t-th frame, and y′
t is an I ′-

dimensional transformed feature; AL ∈ RI′×(I×(L+R+1)) is a transform matrix of

LDA, and AM ∈ RI′×I′
is a transform matrix of MLLT.

For adaptation, instead of a normal fMLLR transformation, the basis fMLLR [20]

is used. It can robustly estimate transform matrices and bias terms even for short

utterances. This method realizes the transformation of original features y′
t into

adapted features y′′
t by using pretrained bases of transform matrices and bias terms

and estimating their weights as

y′′
t =

∑
ν

πν
[
Af

νy
′
t + bfν

]
, (13)

where Af
ν ∈ RI′×I′

and bfν ∈ RI′
are the ν-th pre-trained basis of an fMLLR trans-

form matrix and bias term, respectively, which are estimated from entire training

data. For evaluation, only their weights πν are estimated.
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Moreover, to address the wide variety between speakers, SAT as an acoustic model

adaptation [11] is frequently used. In SAT training, acoustic models are trained on

speaker-adapted training data, which are transformed into canonical speaker space

by using speaker adaptation techniques, in this case, fMLLR. This can reduce the

influence of a speaker variation. This paper validates the effectiveness of feature

transformations (LDA and MLLT) and adaptation techniques (basis fMLLR and

SAT).

4.2 MMI discriminative training of acoustic model

MMI discriminative training is a supervised training algorithm that maximizes the

mutual information between correct labels and recognition hypotheses. This paper

focuses on bMMI [36], where a boosting factor b ≥ 0 is used to introduce a weight

depending on phoneme accuracies. The objective function is given as

Fb(λ) =
∑
r

log
pλ (y

r|Hsr )
κ
pL(sr)∑

s pλ (y
r|Hs)

κ
pL(s)e−bA(s,sr)

, (14)

where yr = [y0
⊤, . . . ,yT (r)−1

⊤]⊤ is the r-th utterance’s feature sequence and T (r)

is the total frame number of the r-th utterance. The acoustic model parameters λ

are optimized by the extended Baum-Welch algorithm. λ is a mean, variance, and

mixture weight of GMM. Hsr and Hs are the HMM sequences of the correct label

sr and a hypothesis s, respectively; pλ is the acoustic model likelihood; κ is the

acoustic scale; pL is the language model likelihood; and A(s, sr) is the phoneme

accuracy of s for sr. This paper compares the performances of bMMI training of

GMM and SGMM to those of maximum likelihood (ML) training.

4.3 Discriminative feature transforms

The extension of a discriminative training to a feature transformation is referred to

as a feature-space discriminative training [12]. It estimates a matrixM ∈ RI′×J that

projects rich, high-dimensional features ht ∈ RJ (J ≫ I ′) down to low-dimensional

transformed features, as follows:

vt = y′′
t +Mht. (15)

Usually, Gaussian posteriors of an Ng-mix universal background model (UBM) are

used for ht [37]. The objective function can be obtained simply by replacing yr

with the r-th utterance’s transformed feature sequence vr = [v0
⊤, . . . ,vT (r)−1

⊤]⊤

in Eq. (14) as

Fb (M) =
∑
r

log
pλ (v

r|Hsr )
κ
pL(sr)∑

s pλ (v
r|Hs)

κ
pL(s)e−bA(s,sr)

. (16)

The matrices M are optimized by maximizing the objective function Fb (M). In

this study, we validate the effectiveness of a feature-space bMMI (f-bMMI).
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4.4 Discriminative training of DNN

In a DNN-HMM hybrid system, sequential discriminative training according to the

(b)MMI criterion (14) has been proposed [38] in addition to a usual cross-entropy

(CE) training. The DNN provides posterior probabilities for the HMM state j. The

acoustic likelihood pθ is replaced by a pseudo likelihood as

pθ (y
r|j) = pθ (j|yr)

p0 (j)
, (17)

where p0 (j) is the prior probability of a state j calculated from a forced alignment

of the training data. For each HMM state, the model θ includes a softmax activation

function:

pθ(j|yr) =
exp aj(y

r)∑
j′ exp aj′(y

r)
, (18)

where aj is the activation of the j-th unit in the output layer. θ is a parameter in

weight matrices and bias terms of DNN. These activations are trained discrimina-

tively according to the bMMI criterion. The bMMI objective function is the same

as Eq. (14), simply by replacing λ with θ: Fb (θ).

4.5 Constructing complementary system suitable for system combination

We describe a discriminative method that constructs complementary systems for

appropriate system combination [27, 28]. Complementary systems are constructed

by discriminatively training a model, which begins with an initial model. The pro-

posed discriminative training method for complementary systems is extended from a

discriminative training principle. Assuming Q base systems have already been con-

structed and fixed, the discriminative training objective function Fc for building a

complementary system is

Fc(M) = (1 + αc)Fb(M)− αc

Q

Q∑
q=1

Fb1(M), (19)

where Fb1 is a Fb just replaced by b with b1. Derived formula was

Fc(M) = Fb(M)

+ αc

∑
r

[ 1
Q

Q∑
q=1

log pM
(
yr|Hsq

)κ
pL(sq)e

−b1A(sq,sr)

− log
∑
s

pM (yr|Hs)
κ
pL(s)e

−bA(s,sr)
]
,

(20)

whereM is the set of model parameters of a complementary system to be optimized;

that is, λ,M , and θ. αc is a scaling factor. The model parameterM is shared among

the original F and theQ base models’ F to be optimized. This subtracts an objective

function related to the one-best hypothesis of the q-th base system, sq, from an

objective function related to the correct label sr. The discriminative criterion F is

selected as bMMI or f-bMMI. If αc equals zero, this objective function matches the
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original F . The first term in Eq. (19) promotes a good performance according to the

discriminative training criterion, whereas the second term makes the target system

generate hypotheses that have different tendencies from the original Q base models.

This procedure is commonly used to obtain the objective functions of Sections 4.2,

4.3, and 4.4.

5 Experimental setup
5.1 REVERB challenge speech recognition task

We validated the effectiveness of our proposed approaches for a reverberated speech

recognition task on the REVERB challenge [1] data. The task is a medium-

vocabulary ASR in reverberant environments, whose utterances are taken from the

Wall Street Journal (WSJ) database (WSJCAMO [39]). This database includes two

types of data: SimData created by convolving clean speech with six types of room

impulse responses at a distance of 0.5m (near) or 2m (far) from the microphones

in three offices (Rooms 1, 2, and 3) whose reverberation times are 0.25, 0.5, and

0.75s, respectively, with relatively stationary noise at 20dB SNR; and RealData

created by recording real-world speech at a distance of 1m or less (near) or 2.5m or

less (far) from the microphones in one room (Room 1) with stationary noise such as

air conditioner noise. Eight microphones were arranged on the circle with a radius

of 0.1m. The number of speakers and utterances of the training set (tr), evaluation

set (eva), and development set (dev) is shown in Table 1.

Acoustic models were trained using tr. Some of the parameters, e.g., language

model weights, were tuned based on the WERs of dev. The vocabulary size is 5 k,

and a trigram language model is used. The REVERB challenge speech recognition

task is categorized in terms of processing techniques, training data of the acoustic

model, recognizer type, and number of channels used, as shown in Table 2. All

experiments in this paper were “utterance-based batch processing,”[1] “acoustic

model trained on the challenge provided multicondition (MC) training data,” “own

recognizer,” and “single- or eight-channel data.” These systems were constructed

by using the Kaldi toolkit [40].

5.2 Speech enhancement

The REVERB challenge provides single-, two-, and eight-channel data. We used

single- and eight-channel data. For single- and eight-channel data, the proposed

dereverberation technique was used with parameters: D = 9, α = 5, β = 0.05,

a = 0.005, and b = 0.6. For eight-channel data, before dereverberation, delay-

and-sum BF with a direction of arrival estimation by CSP analysis was performed,

which used a total of 8C2(= 28) pairs of microphones. After dereverberation, NLMS

adaptive filters with NL = 200 taps were applied.

5.3 Feature extraction and transformation and acoustic model adaptation

We describe the settings of acoustic features and feature transformations, which are

detailed in [15, 16]. The baseline acoustic features were 0–12 order MFCCs and PLPs

[1]This allows for multiple decoding passes per utterance, such as for calculating

the fMLLR matrix, but decodes each test utterance separately, without taking into

account information from other test utterances, or speaker identities.
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with first and second dynamic features. After concatenating static MFCCs/PLPs

during L+R+ 1 frames without using delta feature, a total of (13× (L+R+ 1))-

dimensional features were compressed into 40 dimensions by the LDA.

For adaptation, when speaker IDs were known for the training set, bases Af
ν and

bfν were estimated. For the development and evaluation set, speaker IDs are assumed

to be unknown, and weight vector πν was estimated.

5.4 Discriminative methods

In discriminative feature transformation (Section 4.3), a UBM with Ng = 400-

mix Gaussians was used. The offset features were calculated for each composed

of 40-dimensional features, including MFCC/PLP features with dynamic features

(39 dimensions in total) and the posterior probability of it, with context expan-

sion (contiguous nine frames). The number of dimensions of feature vector ht was

400[Gauss] × 40[dim/(Gauss · frame)] × 9[frame]. Features with the top two GMM

posteriors were selected and all other features were ignored.

The boosting factor b of bMMI and f-bMMI was 0.1. To construct complementary

systems, the additional boosting factor b1 in the second term of Eq. (19) was 0.3 and

αc was 0.75. For f-bMMI, in one iteration, f-bMMI for the matrix M was coupled

with bMMI for the acoustic model parameters λ.

5.5 Building acoustic models

First, clean acoustic models were trained. The number of monophones was 45,

including silence (“sil”). Triphone model has 2,500 states and 15,000 Gaussian dis-

tributions. Second, using the alignments and triphone tree structures of the clean

model, reverberated acoustic models were trained on the MC dataset according to

the ML criterion. Finally, from this ML model, we performed the discriminative

training and feature transformations.

For DNNs, we used Povey’s implementation of neural network training in

Kaldi [40]. DNN has two hidden layers was two and each hidden layer has 642

nodes. The total number of parameters was 2M. The initial learning rate of CE

training was 0.02, and this decreased to 0.004 at the end of training. The train-

ing targets for the DNN were determined by the forced alignments on reverberant

speech using a GMM model with SAT. The parameters used in our experiments

were set as those in the WSJ tutorial (s6) attached to the Kaldi toolkit, although

some settings such as the number of model parameters or some minor parameters

were modified.

5.6 System combination

We prepared three types of ASR acoustic model systems for the challenge: GMM,

SGMM, and DNN. To improve the performance of the respective systems, for GMM,

f-bMMI was used; whereas for SGMM and DNN, bMMI was used. On the develop-

ment set, because output tendencies of GMM with and without SAT model were

different, both systems were used for a system combination. For each system, com-

plementary systems were constructed by the proposed method as shown in 4.5.

These systems were trained both for MFCC and PLP features; thus, a total of 16

systems were prepared. After decoding for generated lattices, minimum Bayes risk

decoding [41], which slightly improved the performance, was commonly used.
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5.7 Black-box optimization

Bayesian optimization using Gaussian processes [42] was applied to various speech

recognition problems including neural network [43] and HMM topology optimiza-

tion [44]. In this paper, we also applied this technique to the selection of combined

systems and the parameter optimization for ROVER. The objective function of the

optimization was WER of the development set.

6 Results and discussion
6.1 Baseline and speech enhancement techniques

Tables 3 and 4 show the WERs of the development set (dev) for three simu-

lated rooms and one real room with two types of source-to-microphone distances

(near/far). Table 3 is based on a single-channel one and Table 4 is based on an

eight-channel one. The “Kaldi baseline” in Table 3 is an acoustic model trained

on the MC data without speech enhancement. “derev.” is the proposed derever-

beration method with a reverberation time estimation. Although, for some cases

in Room 1, the reverberation time is fairly short and the proposed method de-

graded performance, for other cases and on average, performance was improved by

approximately 2%. [45] showed that our proposed dereverberation technique is ef-

fective even with a state-of-the-art de-noising auto-encoder. For the eight-channel

data shown in Table 4, BF with “derev.” significantly improved performance by

approximately 6.3–8.3% on average, because the direction of arrival estimation was

stable and reliable. “NLMS” improved the WER by 2.0% for the RealData, but

degraded the WER by 0.6% for the SimData. However, because these decreases in

performance has less impact than the improvements, we used NLMS below.

These results above used MFCC features. Experimental results using PLP features

are shown in Table 5. On average, the ASR performances using PLP features were

approximately 0.2–1% lower than those using MFCC features; however, their error

tendencies were fairly different, which was a good property for system combination.

6.2 LDA and MLLT feature transformation and adaptation

LDA and MLLT feature transformations significantly improved performance by

approximately 2.6–5.5%. Table 6 shows the effect of an LDA context size on perfor-

mance. The performance of the SimData could not be improved by context sizes

longer than 4. For the RealData, performance could be improved in several cases

by adding more right context, but generally not by adding left context. In rever-

berant environments, because reverberant components of current frames give an

influence on the features in the right context, the right context can be useful for

improving speech recognition performance. In the end, we kept the context size at

the default setting, L = R = 4.

Tables 3 and 4 show that the adaptation technique, basis fMLLR, improved per-

formance by approximately 1.3–6.9%. The effect of SAT is unstable between envi-

ronments.

6.3 Discriminative training of acoustic model and discriminative feature

transformation

Tables 3 and 4 show that the discriminative training was effective for reverber-

ant environments. The performances of f-bMMI training were higher than those of
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bMMI training in all cases by approximately 0.6–1.7%. The WERs of our comple-

mentary systems were only slightly lower (0.2–0.7%) than those of the base systems,

and they have different tendencies from base systems; thus, they appear to be well

suited to system combination.

Table 7 shows the effect of the iteration numbers of bMMI and f-bMMI on the

development set performance. The results show that the best performance was

achieved at four iterations.

6.4 SGMM and DNN

Tables 3 and 4 show the performance of SGMM acoustic models. For the SimData,

the performance of SGMMs was higher than that of GMMs. However, for the Re-

alData, the performance was lower than that of GMMs. Because the RealData

were noisier than the SimData, the estimation of speaker vector can be unstable.

DNN acoustic models achieved the best performance for the SimData. Although

the best system for the RealData was GMM without SAT, DNN was the sec-

ond best. On average over the SimData and RealData, DNNs achieved the best

performance. Although DNN was trained discriminatively even by CE training ac-

cording to the frame-level discriminative criterion, sequence discriminative training,

bMMI, for DNN systems turned out to be as effective as for other systems.

6.5 System combination

We tested five types of system combinations, as shown in Table 8. The number 2

stands for one MFCC system and one PLP system. The number 4 stands for two

MFCC and two PLP systems composed of a base system and the proposed com-

plementary system. These systems’ outputs are combined by using ROVER. The

ID 1) system was a combination of SAT-GMMs (f-bMMI) using both MFCC and

PLP features. The performance for the RealData improved by 1.2–4.2% over the

f-bMMI with a SAT (MFCC) single system. For the GMM system without SAT,

using f-bMMI [ID 2)], the WER improved by 0.2–1.5% for the SimData and 0.6–

1.4% for the RealData, respectively. Including the complementary systems [ID

3)], the WER improved slightly. For the best case, WER improved by 0.4%, while

for the worst case, WER decreased by 0.1%. This shows the effectiveness of our pro-

posed method. Adding in SGMMs [ID 4)], which was effective for the SimData, the

performance for the SimData further improved by 0.3–0.4%. Taking into account

DNNs [ID 5)], the performance was again improved; this system, which combined

16 systems in total, achieved the best average performance on the development

set. For the reference, the results of eight systems combination without using our

proposed combination are added to the last line of 1ch case [ID 6)]. The WER on

RealData was worse than those of the proposed 16 system combination, which

shows that the complementary training generalizes the ASR results for unseen data

conditions more.

In all cases except for the Room 1/far(8-ch) condition,[2] the performances were

better than those of the best system. This shows that the system combination

approach is effective for the case where reverberant environments are various.

[2]In this case, GMM(f-bMMI) exhibited the best performance (26.25% WER).
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6.6 Black-box optimization

For eight-channel data, black-box optimization was performed. Figure 3 shows the

average WER in terms of the iteration number. WER almost decreased monoton-

ically and, after 100 iterations, it converged. Among these iterations, the results

that achieved the best WER on average, are shown in the last column of Table 8.

The performance improved mainly for the RealData.

6.7 Evaluation set

Table 9 shows the results for the evaluation set (eva). Legend of the table is the

same to the development set. The optimal system combination is determined based

on the WER on the development set. The discriminative training of acoustic model

(bMMI) and feature-space discriminative training (f-bMMI) significantly improved

the performance. SGMM was better than GMM because model adaptation was well

performed. DNN outperformed GMM and SGMM. The DNN with discriminative

training achieved the best performance for the SimData and RealData among

single systems. This shows the robustness of DNN in unseen conditions. Moreover,

system combination [ROVER 5)] improved the WER by 1.0–1.3% for the SimData

and 2.1–2.2% for the RealData, respectively. Among system combination systems,

the performance of ROVER 5) was better than that of ROVER 6), which used

blackbox optimization and could be overly tuned on the development set.

6.8 Comparison to other participants’ results in the REVERB challenge workshop

The results in the previous section were submitted to the REVERB challenge work-

shop. Fig. 4 shows the WERs for the single-channel data of other participants who

belong to the same category, which corresponds to all cases except “own dataset”

in the training data of the acoustic models in Table 2. Fig. 5 shows those for the

eight-channel data. For speech enhancement purposes, a long-short term memory

recurrent neural network (LSTM-RNN) was effective [46] (“TUM2” in the figure).

Many participants used DNN-based acoustic modeling (e.g., [47] “Nanyang Tech”

in the figure). Speaker adaptation of DNN based on the i-vector technique in ad-

dition to robust features, also performed well [48] (“INRS Energie” in the figure).

We achieved the best performances in both single- and eight-channel cases.[3]

7 Conclusion
We evaluated the medium-sized vocabulary continuous speech recognition task of

the REVERB challenge in order to validate the effectiveness of single-channel dere-

verberation and multi-channel beamforming techniques and discriminaive train-

ing of acoustic model and feature transformation in reverberant environments. For

speech enhancement, experiments shows the effectiveness of dereverberation of the

[3]Among all the participants, [49] was the best. This is a state-of-the-art system

composed of a liner-prediction based dereverberation technique, DNN based acous-

tic modeling, and rescoring using RNN language model. The main difference from

our system was the use of the “own dataset” that can compensate for the mis-

matches between training data and evaluation data (especially for the RealData)

and improve the performance.
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late reverberation components, and beamforming using multiple microphones that

enhances direct sounds compared to the reflected sounds.

For speech recognition, we validated the effectiveness of feature transformations

and discriminative training. Experiments show that these techniques are effective

across various types of reverberation as well as in noisy environments. To improve

robustness in eight types of environments, the system combination approach was

used. From two to sixteen systems were constructed to address the problem where

the best performing system was different from environment to environment. System

combination improved performance; in almost all cases, the combined system out-

performed the best performing single system. Our proposed method to specifically

provide desired complementary systems for system combination further improved

performance. The best results were submitted to the REVERB challenge workshop,

and our results were the best among the challenge participants in the same category,

which clarifies the effectiveness of our proposed approach.
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Tables

Table 1 Number of speakers and utterances of training (tr), development (dev), and evaluation
(eva) set for the REVERB challenge.

set Number of speakers Number of utterances
tr - 92 7,861

dev
SimData 20 1,484
RealData 5 179

eva
SimData 28 2,176
RealData 10 372

Table 2 Category of the REVERB challenge speech recognition task. Underline “ ” denotes the
category to which this paper belongs.

Type
Processing Scheme full batch, utterance-based, real-time

Training data of acoustic model own dataset, multi-condition, clean

Recognizer type
own recognizer,

challenge baseline recognizer
Number of channels used 1, 2, 8

Table 3 WER [%] in terms of rooms and microphone distances on the REVERB challenge dev set
using single-channel data and MFCC features. The proposed dereverberation method was used. Three
types of acoustic models (GMM, SGMM, and DNN) were constructed with feature transformation
(LDA+MLLT), adaptation (basis fMLLR and SAT), and discriminative training (bMMI and f-bMMI).

SimData RealData
Room 1 Room 2 Room 3 Avg Room 1 Avg

Feature Type near far near far near far near far
Kaldi baseline MFCC ML 10.96 12.56 15.70 34.21 19.61 39.24 22.05 48.53 47.37 47.95

derev. 12.41 14.68 14.03 27.16 16.39 33.85 19.75 47.04 44.57 45.81
GMM +LDA+MLLT ML 9.46 11.01 11.51 22.04 13.08 28.09 15.87 39.99 40.67 40.33

+basis fMLLR 7.77 10.00 9.76 19.28 11.05 24.90 13.79 33.00 35.54 34.27
bMMI 7.13 9.61 9.12 16.19 10.46 21.98 12.42 30.69 35.20 32.95
f-bMMI 6.27 8.73 8.28 14.89 9.37 19.54 11.18 28.32 31.31 29.82
f-bMMIc 7.06 9.05 8.58 14.96 10.16 20.43 11.71 29.01 31.72 30.37

+SAT ML 8.87 11.21 9.71 19.89 10.95 24.04 14.11 36.06 36.23 36.15
bMMI 6.56 8.51 7.76 16.24 9.03 19.88 11.33 34.19 37.53 35.86
f-bMMI 5.88 7.60 7.25 14.59 8.09 17.51 10.15 31.63 34.72 33.18
f-bMMIc 6.07 7.82 7.22 14.89 8.43 17.51 10.32 32.38 35.27 33.83

SGMM ML 6.47 9.07 8.18 17.11 9.55 20.40 11.80 33.13 34.93 34.03
bMMI 5.53 7.23 7.00 14.44 7.76 17.48 9.91 31.50 33.36 32.43
bMMIc 5.68 7.28 7.02 14.44 7.94 17.68 10.01 30.94 33.08 32.01

DNN CE 6.71 8.85 8.70 15.58 9.15 19.07 11.34 30.88 35.82 33.35
bMMI 5.29 7.06 6.95 13.09 7.57 15.53 9.25 28.45 32.67 30.56
bMMIc 5.14 6.74 6.51 12.37 7.27 15.50 8.92 28.32 33.49 30.91

Table 4 WER [%] on the REVERB challenge dev set using eight-channel data and MFCC features.
In addition to the proposed dereverberation method, BF with direction of arrival estimation by CSP
analysis and NLMS adaptive filters were used.

SimData RealData
Room 1 Room 2 Room 3 Avg Room 1 Avg

Feature Type near far near far near far near far
CSP+BF+derev. MFCC ML 10.79 12.19 11.02 16.71 11.47 20.43 13.77 40.36 42.83 41.60

+NLMS 11.11 12.27 11.81 17.40 12.34 21.46 14.40 38.37 40.74 39.56
GMM +LDA+MLLT ML 8.38 10.30 9.91 14.94 10.19 17.28 11.83 34.06 37.18 35.62

+basis fMLLR 7.74 9.22 8.80 13.33 9.05 15.28 10.57 27.39 30.14 28.77
bMMI 6.64 8.21 7.25 11.39 7.10 11.50 8.68 24.89 27.96 26.43
f-bMMI 6.19 7.40 7.39 10.13 6.58 10.24 7.99 22.58 26.25 24.42
f-bMMIc 6.39 7.33 7.44 9.86 6.70 10.44 8.03 22.71 27.41 25.06

+SAT ML 7.25 9.32 8.70 12.79 8.33 13.80 10.03 28.88 32.88 30.88
bMMI 5.24 7.10 6.56 9.93 5.98 10.98 7.63 26.58 30.83 28.71
f-bMMI 5.01 6.76 5.96 9.07 5.84 9.40 7.01 24.27 29.60 26.94
f-bMMIc 5.16 6.93 6.11 9.49 5.96 9.67 7.22 24.27 29.73 27.00

SGMM ML 5.65 7.62 7.47 10.97 7.00 11.45 8.36 25.27 30.35 27.81
bMMI 4.57 6.05 6.19 9.27 6.01 9.89 7.00 24.70 30.01 27.36
bMMIc 4.72 6.10 6.09 9.56 6.18 10.01 7.11 24.39 30.01 27.20

DNN CE 6.49 7.45 7.84 11.44 7.25 11.97 8.74 25.27 29.32 27.30
bMMI 5.56 6.27 6.24 9.29 5.71 10.44 7.25 23.27 28.84 26.06
bMMIc 5.26 6.05 6.21 9.10 5.61 10.06 7.05 22.65 28.50 25.58
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Table 5 Average WER [%] on the REVERB challenge dev set using PLP features.

1ch 8ch
Feature SimData RealData SimData RealData

Kaldi baseline PLP ML 22.96 48.90
derev. 19.84 44.15

CSP+BF+derev. 13.98 42.21
+NLMS 14.97 41.15
GMM +LDA+MLLT ML 15.63 40.36 12.13 35.11

+basis fMLLR 13.70 34.21 10.73 29.21
bMMI 12.78 33.43 8.94 26.84
f-bMMI 11.91 30.67 8.10 25.72
f-bMMIc 12.20 31.67 8.26 26.30

+SAT ML 13.55 36.25 10.17 30.85
bMMI 11.05 35.63 8.06 28.45
f-bMMI 10.14 33.29 7.32 26.78
f-bMMIc 12.20 31.67 7.61 27.59

SGMM ML 11.90 32.95 8.43 26.99
bMMI 10.25 33.10 7.13 26.67
bMMIc 10.30 33.14 7.19 27.21

DNN CE 11.30 31.87 8.75 27.33
bMMI 9.44 30.19 7.25 26.06
bMMIc 9.40 30.13 6.74 26.37

Table 6 Average WER[%] investigating the effect of LDA context sizes [left (L) and right (R)] on
the REVERB challenge dev set using eight-channel data.

SimData RealData
L \ R 4 5 6 7 4 5 6 7

4 11.83 12.20 12.10 12.57 35.62 34.31 34.10 36.22
5 12.14 12.32 12.46 12.72 34.71 35.34 34.44 33.31
6 12.57 12.33 12.56 12.87 35.49 35.29 34.19 35.11
7 12.83 12.94 13.43 13.49 35.13 35.90 35.67 36.00

Table 7 Average WER [%] investigating the effect of iteration numbers of bMMI and f-bMMI
discriminative training with SAT on the REVERB challenge dev set using eight-channel data.

bMMI
MFCC PLP

# of iterations 1 2 3 4 1 2 3 4
SimData 8.70 8.41 8.18 7.63 9.02 8.64 8.47 8.06
RealData 29.21 28.34 28.16 28.71 29.74 29.26 28.91 28.45

f-bMMI
MFCC PLP

# of iterations 1 2 3 4 1 2 3 4
SimData 8.07 7.56 7.30 7.01 8.47 7.93 7.57 7.32
RealData 27.70 27.29 27.16 26.94 29.36 27.86 27.15 26.78

Table 8 WER [%] on the REVERB challenge dev set, with system combination using both MFCC
and PLP features. For GMM systems, f-bMMI is used, while for SGMM and DNN systems, bMMI is
used. The number 2 stands for MFCC and PLP systems, and the number 4 stands for MFCC and
PLP systems along with their complementary systems. ROVER 6) uses black-box optimization at the
stage of system selection and parameter optimization for ROVER.

SimData RealData
Number of systems Room 1 Room 2 Room 3 Avg Room 1 Avg

ID GMM SAT-GMM SGMM DNN near far near far near far near far
1ch 1) 2 6.00 8.19 7.52 14.37 8.78 18.35 10.54 27.70 30.35 29.03

2) 2 2 5.31 6.37 6.58 12.62 7.42 16.00 9.05 27.26 29.60 28.43
3) 4 4 5.33 6.39 6.63 12.67 7.49 15.60 9.02 27.01 29.67 28.34
4) 4 4 4 5.01 6.34 6.33 12.45 6.87 15.43 8.74 26.64 29.80 28.22
5) 4 4 4 4 4.67 5.88 6.31 11.93 6.63 14.89 8.39 26.58 28.91 27.75
6) 2 2 2 2 4.52 5.68 6.29 12.00 6.50 15.06 8.34 26.45 29.80 28.13

8ch 1) 2 4.72 5.83 5.96 8.92 5.37 8.75 6.59 23.27 28.30 25.79
2) 2 2 4.72 6.02 5.72 8.26 5.14 8.56 6.40 22.27 26.59 24.43
3) 4 4 4.72 5.83 5.77 8.21 5.19 8.38 6.35 22.52 26.52 24.52
4) 4 4 4 4.08 5.16 5.62 7.79 4.80 8.38 5.97 22.40 27.00 24.70
5) 4 4 4 4 4.18 5.11 5.50 7.74 4.85 8.23 5.94 21.90 26.52 24.21
6) 3 1 4 2 4.18 5.51 5.50 7.74 4.97 8.43 6.06 21.58 26.32 23.95
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Table 9 WER [%] on the REVERB challenge eva set. All systems except ROVER are single systems.
MFCC feature was used for single system, and MFCC and PLP features were used for ROVER 5).

SimData RealData
Room 1 Room 2 Room 3 Avg Room 1 Avg

near far near far near far near far
1ch Kaldi baseline 13.23 14.13 15.54 29.69 20.06 37.44 21.68 50.62 45.98 48.30

derev. 12.50 13.43 14.61 24.71 17.09 32.62 19.16 44.75 43.32 44.04
GMM (f-bMMI) 7.27 8.17 8.82 14.11 10.54 18.76 11.28 28.65 29.54 29.10

GMM (SAT,f-bMMI) 6.44 7.22 7.57 13.97 9.52 18.44 10.53 28.87 29.78 29.33
SGMM (SAT, bMMI) 5.81 6.54 7.22 13.84 8.70 18.17 10.05 27.75 28.36 28.06
DNN (SAT, bMMI) 5.90 6.84 7.35 12.57 9.40 16.55 9.77 25.97 25.69 25.83

ROVER 5) 5.30 5.61 6.30 11.16 7.76 14.95 8.51 23.79 23.60 23.70
8ch CSP+BF+derev. 10.94 11.69 10.98 16.33 12.79 21.39 14.02 34.33 36.93 35.63

+NLMS 10.94 12.32 11.38 17.59 13.46 22.96 14.78 35.32 35.28 35.30
GMM (f-bMMI) 6.57 6.93 6.80 9.93 7.47 12.76 8.41 20.22 23.19 21.71

GMM (SAT, f-bMMI) 6.17 6.64 6.51 10.13 7.40 13.15 8.33 20.63 23.67 22.15
SGMM (SAT, bMMI) 5.86 6.44 6.29 9.23 6.96 12.83 7.94 20.66 23.50 22.08
DNN (SAT, bMMI) 5.64 6.18 6.16 9.29 7.08 12.40 7.79 19.35 22.28 20.82

ROVER 5) 4.96 5.62 5.58 8.18 5.73 10.47 6.76 16.90 20.29 18.60
ROVER 6) 5.00 5.56 5.38 8.15 5.73 10.70 6.75 17.47 20.36 18.93
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