
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Explicit model predictive control accuracy analysis
Knyazev, A.; Zhu, P.; Di Cairano, S.

TR2015-149 December 15, 2015

Abstract
Model Predictive Control (MPC) can efficiently control constrained systems in real-time ap-
plications. MPC feedback law for a linear system with linear inequality constraints can be
explicitly computed off-line, which results in an off-line partition of the state space into non-
overlapped convex regions, with affine control laws associated to each region of the partition.
An actual implementation of this explicit MPC in low cost micro-controllers requires the
data to be "quantized", i.e. represented with a small number of memory bits. An aggressive
quantization decreases the number of bits and the controller manufacturing costs, and may
increase the speed of the controller, but reduces accuracy of the control input computation.
We derive upper bounds for the absolute error in the control depending on the number of
quantization bits and system parameters. The bounds can be used to determine how many
quantization bits are needed in order to guarantee a specific level of accuracy in the control
input.

IEEE Conference on Decision and Control (CDC)

c© 2015 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Explicit model predictive control accuracy analysis

Andrew Knyazev1, Peizhen Zhu2 and Stefano Di Cairano3

Abstract— Model Predictive Control (MPC) can efficiently
control constrained systems in real-time applications. MPC
feedback law for a linear system with linear inequality con-
straints can be explicitly computed off-line, which results in
an off-line partition of the state space into non-overlapped
convex regions, with control laws associated to each region of
the partition. An actual implementation of this explicit MPC in
a target control micro-controller hardware requires the data to
be “quantized”, i.e. represented with a small number of memory
bits. An aggressive quantization decreases the number of bits
and the controller manufacturing costs, and may increase the
speed of the controller, but reduces accuracy of the control.
We derive upper bounds for the absolute error in the control
depending on the number of quantization bits and system
parameters. The bounds can be used, e.g., to determine how
many quantization bits are needed in order to guarantee a
specific level of accuracy in the input.

I. INTRODUCTION

Model predictive control (MPC) [1] is an effective method
for control design of multivariable constrained systems in
chemical and process control, automotive, aerospace, and
factory automation [2]–[4]. Due to the need to solve a
constrained optimal control problem in real time, MPC tends
to be significantly more computationally expensive than other
control methods.

Explicit MPC [5], [6] may reduce the online computa-
tional cost and code complexity by pre-computing the MPC
feedback law as a state feedback, thus making it viable for
fast applications with limited computational capabilities [7]–
[10]. In particular, for linear systems subject to linear con-
straints and cost function based on 1-norm, ∞-norm, or
squared 2-norm, the Explicit MPC results in a polyhedral
piecewise affine (PWA) feedback law. Thus, during the on-
line execution, the Explicit MPC controller first identifies
which polyhedral region contains the current state, and then
computes the control action by evaluating the corresponding
affine control law. The identification of the polyhedral region
is referred to as the point location problem [11], which
can be solved by sequential search and binary search tree
see, e.g., [12], [13]. Due to the exponential increase of the
number of regions with respect to the number of constraints
in the MPC problems, in recent years several techniques
for reducing complexity of the explicit MPC feedback law
while maintaining its most important properties have been
proposed, see, e.g., [14]–[16] and references therein.

1Mitsubishi Electric Research Laboratories; 201 Broadway Cambridge,
MA 02139 knyazev@merl.com

2Mitsubishi Electric Research Laboratories; 201 Broadway Cambridge,
MA 02139 pzhu@merl.com

3Mitsubishi Electric Research Laboratories; 201 Broadway Cambridge,
MA 02139 dicairano@merl.com

In practice, the data of explicit MPC have to be typically
stored in a micro-controller hardware memory, so that every
stored number is represented by a small fixed number of bits
for every number in the data. In other words, data cannot be
stored exactly and hence a precision loss occurs. We call
this reduction of precision “quantization” and the reduced
precision data “quantized” data. The method for quantiza-
tion can be as simple as rounding. Aggressive quantization
has the advantage of decreasing memory requirements and
increasing the speed of the control input evaluation, at the
price of introducing inaccuracy in the computation of the
control input. If the quantization precision is too small, the
controller can fail to accurately determine the region for the
current state of the controlled system, and thus, the control.
For example, by quantizing the region data some regions may
disappear, or holes between regions, where the control input
cannot be determined, may appear. In addition, by quantizing
the state measurement/estimate data the quantized state may
jump to a different region.

The effect of quantization has been investigated for im-
plicit MPC for instance in [17], [18], but not been fully
addressed for Explicit MPC. In this paper, we investigate
the resulting accuracy in the control input computation in
Explicit MPC as a consequence of different quantization
levels, so that we can determine how many bits needs to be
used to guarantee a desired level of accuracy in the control
input computation.

In Section II, we provide an accuracy analysis divided
into different cases, depending on mutual positions of the
exact and the quantized system states. A most likely and
easy to analyze case is where the quantization does not
affect the system state region, so that the same feedback law
applies to both the exact and the quantized system states. A
difficult case for analysis, leading to a much larger possible
controller inaccuracy, is where the quantization makes the
system state to jump over a region face to a different region.
Here, bounding the accuracy of the control requires taking
into account not only quantization precision for the system
state, but also quantization effects of the region faces and of
the feedback laws in different regions. Upper bounds on the
accuracy of the control input computation in Section II use
no knowledge of the quantized data, describing the worst
case scenario, for that reason called “a-priori” bounds. In
Section III, we show how such bounds can be improved by
exploiting a rescaling technique that makes the system state
space evenly sized in all spacial directions.

After some quantized implementation of the controller is
determined, the a-priori bounds of Section II are improved in
Section III, using the already known off-line quantized data,

in addition to the original data. Resulting tighter a-posteriori
bounds depend primarily on the quantization precision of the
current state.

All bounds mentioned above are deterministic, guaranteed
under our assumptions. The a-priori bounds for the case,
where the state region changes as a result of the quantization,
are the most pessimistic, but in this case the system state
needs to be in a proximity to a face of the region. If the
system state is randomly uniformly distributed over the state
space, such a situation has a small probability to appear.
We use this and similar observations to derive in Section III
probabilistic estimates of the control error bounds, which
improve our deterministic bounds, but only hold with certain
probability.

We validate the bounds using several numerical tests in
Section IV. Finally, Section V summarizes our conclusions.

Preliminary: throughout this paper, R denotes real number.
‖·‖1, ‖·‖2, and ‖·‖∞ denote 1-norm, 2-norm, and∞-norm,
respectively. A

′
denotes the transpose of A. The explicit

MPC control law has the form

ui(x) = Fix+Gi ∀x ∈ Pi, i = 1, . . . , nr,

where Fi ∈ Rm×n, Gi ∈ Rm, Pi = {x ∈ Rn|Hix ≤
Ki, Hi ∈ Rni

c×n,Ki ∈ Rni
c}, nr denotes the number

of regions, and Hi =

[
H1
i

′

, . . . ,Hnc
i

i

′]′

and Ki =

[K1
i , . . . ,K

nc
i

i]
′
. We denote u(x) such as

u(x) =

u1(x)

...
unr

(x)

and u(x) is a continuous PWA function. PWA controller
determines which region contains a given state x. If the state
x is in the region, then the corresponding affine control law
to compute the control input is used.

We use hx = k to denote a general hyperplane, where
h ∈ R1×n, k ∈ R and x ∈ Rn. The vector h′ (the transpose
of h) can be thought of as a vector normal (orthogonal) to
the hyperplane hx = k at each point. The hyperplane dose
not change, if h and k are multiplied by the same nonzero
scalar.

Definition 1.1 (face): [19] Linear inequality hx ≤ k is
called valid for a polyhedron P if hx ≤ k holds for all
x ∈ P . A nonempty subset of a polyhedron is called a face
of P if it is represented as P ∩ {x ∈ Rn|hx = k}, for
some valid inequality hx ≤ k. The faces of polyhedron P
of dimension 0, 1, (n − 2) and (n − 1) are called vertices,
edges, ridges and facets, respectively.

Definition 1.2 (distance): A distance between a point x0
and a hyperplane hx = k is defined as

dist(x0, hx = k) =
|hx0 − k|
‖h‖2

.

We assume that all data are quantized when storing the
data in the control hardware. Let the quantization function
be f(z), such that ẑ = f(z) = z + ∆z, where ‖∆z‖∞ ≤ ε

and 0 ≤ ε ≤ 1. Given a state x, we have x̂ = x + ∆x.
Similarly, we have ûi(x̂) = F̂ix̂+ Ĝi, where Ĥix̂ ≤ K̂i for
i = 1, . . . , nr. In general, we use the symbol “hat” to denote
data after quantization.

II. ACCURACY ANALYSIS

In this section, we focus on accuracy analysis of the
control input. Since the control input depends on the location
of the state, to analyze the accuracy of the control input we
have to analyze how the state changes and which region it
falls into before and after quantization. For every state x,
after quantization the state x̂ may fall into one of regions or
not. In the following, we analyze the situation case by case.

Case 1: suppose that x̂ is in the region P̂i and x is in the
region Pi. In this case, the state x is in the “same” region
as the state x̂ after quantization. Here, the “same” region
means that the quantized region P̂i and the exact region Pi
have the same index i in our database of regions. Therefore,
the accuracy of the control input can be measured by the
maximum absolute changes between ui(x) and ûi (x̂), i.e.,
‖ûi (x̂)− ui(x)‖∞.

Case 2: suppose that x̂ is in the region P̂i and x is out
of any region Pi for i = 1, . . . , nr. We see that the state
x is not in any original region. But, after quantization the
state x̂ falls into one of regions. This may happen when the
state x is in the neighborhood of the outside of boundary of
the union of the regions, which is convex. In this case, the
control law corresponding to the state x does not exist. After
quantization, the control law corresponding to the state x̂ is
ûi (x̂) .

Case 3: suppose that x̂ is out of any region P̂i and x is
out of any region Pi for i = 1, . . . , nr. In this case, the state
x and the state x̂ are out of all regions. Consequently, the
control laws corresponding to x and x̂ do not exist.

Case 4: suppose that x̂ is out of any region P̂i for i =
1, . . . , nr, but x is in one of regions, e.g., region Pj . In this
case, the state x is in one of regions, but after quantization
the state x̂ does not fall into any region. It is possible that
the state x̂ may fall into some holes which mean some holes
between regions after quantization. In this case, the control
law corresponding to x̂ does not exist

Case 5: suppose that x̂ is in the region P̂i and x is in
the region Pj , where i 6= j, which means the state x is in
one of regions, but after quantization the state x̂ falls into
another region. In addition, the two original regions Pi and
Pj may intersect each other or may not, see Figure 1 for one
dimension. Under this situation, the accuracy of the control
input can be measured by ‖ûi (x̂)− uj(x)‖∞.

From analysis mentioned above, at least one of the control
laws corresponding to the states x and x̂ does not exist in
cases 2, 3 and 4. In the rest of the paper, we are interested
to further investigate the accuracy of the control input when
both the states x and x̂ exist.

As we know, the control input depends which region the
state falls into. The region is consisted by hyperplanes. To
obtain the bounds of the accuracy of the control input, we

Fig. 1. Left: two neighboring regions; Right: two regions with no
intersection (1D).

start with the accuracy of the hyperplane when data are
quantized.

Lemma 2.1: Let hx ≤ k be a half-space. Let y = hx− k
and ŷ = (h+ ∆h)(x+ ∆x)− (k + ∆k) with ‖∆h‖∞ ≤ ε,
‖∆x‖∞ ≤ ε, and |∆k| ≤ ε for some ε ≥ 0. We have

|ŷ − y| ≤ ε(‖h‖1 + ‖x‖1 + nε+ 1). (1)
Proof: From direct calculation, we have

|ŷ − y|
= |(h+ ∆h)(x+ ∆x)− (k + ∆k)− (hx− k)|
= |h∆x+ ∆hx+ ∆h∆x−∆k|
≤ |h∆x|+ |∆hx|+ |∆h∆x|+ |∆k|
≤ ‖h‖1‖∆x‖∞ + ‖∆h‖∞‖x‖1 + ‖∆h‖∞‖∆x‖1 + |∆k|
≤ ε‖h‖1 + ε‖x‖1 + nε2 + ε

= ε(‖h‖1 + ‖x‖1 + nε+ 1).

Lemma 2.2: Let hyperplane hx = k separate two neigh-
boring regions Pi and Pj , such that hx ≤ k for x ∈ Pj and
hx ≥ k for x ∈ Pi. Let the state x be in the region Pj . After
quantization, x̂ falls into the region P̂i. We have

−δ < y ≤ 0 ≤ ŷ < δ,

where δ, y and ŷ use the same notation as in Lemma 2.1.
Proof: According to Lemma 2.1, we have |ŷ − y| ≤ δ,

which implies
−δ + y ≤ ŷ ≤ δ + y.

After quantization, x̂ falls into the region P̂i which means x̂
is out of region P̂j . So, δ + y > 0. Therefore, we have

−δ < y ≤ 0.

Similarly, we can obtain that 0 ≤ ŷ < δ.
Corollary 2.3: Let the state x be satisfied hx ≤ k. After

quantization, we have ĥx̂ ≥ k̂. Then,

dist(x, hx = k) ≤ δ

‖h‖2
,

where δ = ε(‖h‖1 + ‖x‖1 + nε+ 1).
Proof: From Definition 1.2 and Lemma 2.2, we can

obtain this result directly.
Corollary 2.3 illustrates that after quantization the state

jumps to the other side of a hyperplane which happens if

distance from the state to the hyperplane is less than a
constant.

By the auxiliary lemmas and corollary presented above,
we are already to provide our main result.

Theorem 2.4: Let a hyperplane hx = k separate two
neighboring regions Pi and Pj , such that for x ∈ Pj , we have
hx ≤ k and for x ∈ Pi, we have hx ≥ k. Moreover, Pi and
Pj share a common facet Z , where Z ⊂ {x : hx = k}. Let
the state x be in the region Pj and the orthogonal projection
of x on the hyperplane hx = k be in Z . After quantization,
x̂ falls into the region P̂i. We have

‖û(x̂)− u(x)‖∞ ≤ δ

‖h‖22
‖(Fi − Fj)h′‖∞ +

ε(‖Fi‖∞ + n‖x‖∞ + nε+ 1),(2)

where δ = ε(‖h‖1 + ‖x‖1 + nε+ 1).

Proof: Since x is in the region Pj , but after quantization
x̂ falls into the region P̂i. According to Lemma 2.1 and 2.2,
we get −δ < hx−k ≤ 0, where δ = ε(‖h‖1+‖x‖1+nε+1).
To get the accuracy for u(x), based on Minkowski inequality
we have

‖û(x̂)− u(x)‖∞
= ‖ûi(x̂)− uj(x)‖∞
= ‖F̂ix̂+ Ĝi − Fjx−Gj‖∞
≤ ‖Fix+Gi − Fjx−Gj‖∞ +

‖Fi∆x+ ∆Fix+ ∆Fi∆x+ ∆Gi‖∞.

From the above inequality, in order to get the upper bound
of difference of u(x), we have to get the upper bound of
‖Fix+Gi−Fjx−Gj‖∞, when x satisfies −δ < hx−k ≤ 0.
Let the orthogonal projection of x on the hyperplane hx = k
be xp, where xp is in Z . We can write

xp = x+ th′,

where h′ is the transpose of h and t is a real scalar. We have

k = hxp

= hx+ thh′

= hx+ t‖h‖22.

Therefore, |t| = |hx − k|/‖h‖22. Since u(x) is a linear
continuous affine function, we have Fixp+Gi = Fjxp+Gj .
It follows Fi(x+ th′) +Gi = Fj(x+ th′) +Gj . Hence,

‖Fix+Gi − Fjx−Gj‖∞ = ‖t(Fi − Fj)h′‖∞
= |t|‖(Fi − Fj)h′‖∞

=
|hx− k|
‖h‖22

‖(Fi − Fj)h′‖∞

≤ δ

‖h‖22
‖(Fi − Fj)h′‖∞. (3)

Moreover,

‖Fi∆x+ ∆Fix+ ∆Fi∆x+ ∆Gi‖∞
≤ ‖Fi∆x‖∞ + ‖∆Fix‖∞ + ‖∆Fi∆x‖∞ + ‖∆Gi‖∞
≤ ‖Fi‖∞‖∆x‖∞ + ‖∆Fi‖∞‖x‖∞

+‖∆Fi‖∞‖∆x‖∞ + ‖∆Gi‖∞
≤ ε(‖Fi‖∞ + n‖x‖∞ + nε+ 1). (4)

Combining inequalities (3) and (4), we can obtain the result
as expected.

In Figure 2, the state x in the red area of the region
Pj satisfies the assumption in Theorem 2.4, such that the
orthogonal projection of x on the hyperplane hx = k is in
Z .

Fig. 2. The state x in the red area of the region Pj satisfies that the
orthogonal projection of x on the hyperplane hx = k is in Z .

Remark 2.5: The bound of accuracy of the control input in
(2) is called a priori bound, since the data after quantization
are not explicitly known, and a priori information about data
before quantization needs to be used.

Remark 2.6: Determination of neighboring regions is a
non-trivial problem, since regions share a common hyper-
plane may not necessarily share a common facet, see [20]. To
find the common facet, we first find the common hyperplane
hx = k between two regions Pi and Pj , then to decide
whether the hyperplane hx = k is a common facet of regions
Pi and Pj .

Remark 2.7: If the state x is in the region Pj and after
quantization x̂ is still in region Pj , from Theorem 2.4 the
first term in (2) disappears. Therefore, ‖û(x̂) − u(x)‖∞ ≤
ε(‖Fj‖∞ + n‖x‖∞ + nε+ 1).

Remark 2.8: We mention that to get the bound of the ab-
solute error in u(x), i.e., max ‖û(x̂)−u(x)‖∞, equivalently,
it is to solve

max
x
‖F̂ix̂+ Ĝi − Fjx−Gj‖∞

s.t. Hjx ≤ Kj

Ĥix̂ ≤ K̂i

x̂ = f(x).
In particular, for the case m = 1 and n ≤ 2 if we relax

the condition for the state x whose orthogonal protection on

the hyperplane hx = k is not necessary in Z, we can get the
different bounds for the absolute error in the control input.
See the following lemma and see appendix for the proof.

Lemma 2.9: Let m = 1 and n ≤ 2. Let a hyperplane
hx = k separate two neighboring regions Pi and Pj , such
that for x ∈ Pj , we have hx ≤ k and for x ∈ Pi, we have
hx ≥ k. Moreover, Pi and Pj share a common facet Z ,
where Z ⊂ {x : hx = k}. Let the state x be in the region
Pj . After quantization, x̂ falls into the region P̂i. We have

|û(x̂)− u(x)| ≤ δ

|k|
|Gi −Gj |

+ ε(‖Fi‖∞ + n‖x‖∞ + nε+ 1),

where δ = ε(‖h‖1 + ‖x‖1 + nε+ 1).
Remark 2.10: Comparing these two bounds presented in

Lemma 2.9 and in Theorem 2.4 for the case m = 1 and
n ≤ 2, the only difference are the first term in bounds, i.e.,
δ|Gi−Gj |/|k| and δ‖(Fi−Fj)h′‖∞/‖h‖22. Furthermore, if
n = 1, then these two bounds are equivalent.

III. EXTENSION OF ERROR BOUND ESTIMATION

From the above analysis, we can see that the a priori bound
for the accuracy of the control input depends on ε, δ, and
the dimension of regions. When the dimension of regions n
gets very large, the bound estimation may be pessimistic. In
this section, we update the a priori bound by rescaling data,
improve the bound by using quantization errors, and refine
it by impacting of the probabilistic relaxation.

A. Rescale

The accuracy of u(x) depends on how small ε and δ are.
To make ε and δ small, one approach is to rescale the regions,
h, and k, such that

hD−1Dx

max(‖hD−1‖1, |k|)
≤ k

max(‖hD−1‖1, |k|)
,

where D is a diagonal matrix with ‖Dx‖∞ ≤ 1. Let Dx,
hD−1/max

(
‖hD−1‖1, |k|

)
, and k/max

(
‖hD−1‖1, |k|

)
be our new x, h, and k, respectively. We have ‖x‖∞ ≤ 1,
|hx| ≤ 1, and |k| ≤ 1. Our new δ is less than ε(n+ 2 +nε).
The control law has the form

ui(x) = FiD
−1x+Gi ∀x ∈ Pi, i = 1, . . . , nr.

Consequently,

‖û(x̂)− u(x)‖∞ ≤
δ

‖h‖22
‖(Fi − Fj)D−1h′‖∞ +

(ε‖FiD−1‖∞ + nε1‖x‖∞ + nεε1 + ε1),

where ε is taken after rescaling for regions and ε1 is taken
after rescaling for the input control.

Remark 3.1: In particular, let m = 1 and n ≤ 2.
Combining Lemma 2.9, Theorem 2.4, and the rescaling skill
stated above, we obtain

|û(x̂)− u(x)| ≤ min

{
δ

‖h‖22
|(Fi − Fj)D−1h′|,

δ

|k|
|Gi −Gj |

}
+(ε‖FiD−1‖∞ + nε1‖x‖∞ + nεε1 + ε1).

B. A posteriori bound

In practice, we use a fixed point number format which has
a specific number of bits reserved for the integer part and a
specific number of bits reserved for the fractional part. We
use MATLAB function fi with a-bit total word length, 1-bit
for sign and b-bit fraction length. Given a state x, we have

x̂ = fi(x, 1, a, b) = x+ ∆x,

where ‖∆x‖∞ ≤ ε = 2−b. Similarly, we have ûi(x̂) = F̂ix̂+
Ĝi, where Ĥix̂ ≤ K̂i for i = 1, . . . , nr. The quantization
errors ∆Hi, ∆Ki, ∆Fi, and ∆Gi are known, given the
number of bits for the fractional part. Every component in
∆Hi, ∆Ki, ∆Fi, and ∆Gi is bounded by 2−b.

Since the quantization errors are known, all results are
presented in Section II and Subsection III-A can be updated.
Under assumptions of Theorem 2.4, we have

‖û(x̂)− u(x)‖∞ ≤ δ

‖h‖22
‖(Fi − Fj)h′‖∞ (5)

+ ‖∆Fix+ ∆Gi‖∞ + ‖F̂i‖∞ε,

where δ = |∆hx − ∆k| + ‖ĥ‖1ε, since the term ‖Fi∆x +
∆Fix+ ∆Fi∆x+ ∆Gi‖∞ in the proof of Theorem 2.4 can
be written as

‖Fi∆x+ ∆Fix+ ∆Fi∆x+ ∆Gi‖∞
= ‖(∆Fix+ ∆Gi) + (Fi∆x+ ∆Fi∆x)‖∞
≤ ‖∆Fix+ ∆Gi‖∞ + ‖F̂i‖∞‖∆x‖∞
≤ ‖∆Fix+ ∆Gi‖∞ + ‖F̂i‖∞ε.

Since the bound in (5) is based on the data obtained before
and after quantization, therefore it is called a posteriori
bound.

C. Probabilistic bound

However, the bounds may be large in some cases, since
it is unlike to take all states x in regions to reach the upper
a posterior bound. In this subsection, we present the new
probabilistic bounds for the case m = 1.

From the proof of Lemma 2.1 and Theorem 2.4, we can
write

|û(x̂)− u(x)| ≤ Z =
|(Fi − Fj)h′|
‖h‖22

(|∆hx−∆k|+ |ĥ∆x|)

+(|∆Fix+ ∆Gi|+ |F̂i∆x|),

where ∆x can be write as 2−b[ε1, . . . , εn]′ with εi ∈ [−1, 1]
for i = 1, . . . , n. Moreover, we can rewrite

Z = c0 +

∣∣∣∣∣
n∑
i=1

c1iεi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

c2iεi

∣∣∣∣∣ ,
where c0 =

|(Fi−Fj)h
′|

‖h‖22
|∆hx − ∆k| + |∆Fix + ∆Gi|,

ĥ = [c11, . . . , c1n], and F̂i = [c21, . . . , c2n]. ε1, . . . , εn are
independently distributed. Let εi be distributed normally,
such as εi ∼ N (0, 1) for i = 1, . . . , n. Let X1 =

∑n
i=1 c1iεi

and X2 =
∑n
i=1 c1iεi. Then,

X1 ∼ N (0, σ2
1) and X2 ∼ N (0, σ2

2),

where σ2
1 and σ2

2 are variance of X1 and X2, respectively.
Therefore, Y1 = |X1| and Y2 = |X2| follow half-normal
distributions with probability density functions

fY1
(y1;σ1) =

√
2

σ1
√
π

exp

(
− y21

2σ2
1

)
and

fY2
(y2;σ2) =

√
2

σ2
√
π

exp

(
− y22

2σ2
2

)
,

respectively. Since Y1 and Y2 are independent, the probability
density function of Z can be obtained by

fZ(z) =

∫ +∞

0

fY1
(z − y2 − c0)fY2

(y2)dy2,

where z ∈ [c0,+∞). Furthermore,

fZ(z) =

√
2√

π(σ2
1 + σ2

2)
exp

(
− (z − c0)2

2 (σ2
1 + σ2

2)

)
[

erf

(
σ1(z − c0)

σ2
√

2 (σ2
1 + σ2

2)

)

+erf

(
σ2(z − c0)

σ1
√

2 (σ2
1 + σ2

2)

)]
,

where erf(x) = 2√
π

∫ x
0
e−t

2

dt. From the probability distribu-
tion, we develop a refinement of our a posteriori bound with
a specified high probability p. We denote the new bounds
Zp and define it by

P (Z ≤ Zp) ≤ p.

To calculate Zp for a given p, we use the inverse cumulative
density function of Z.

IV. TEST RESULTS

In this section, we present several tests regarding to the
accuracy of u(x). The system to be controlled is a double
integrator

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k),

where

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
, andD =

[
0
0

]
.

Moreover, the state x satisfies
[
−15
−15

]
≤ x ≤

[
15
15

]
and the input u(k) satisfies the constraints, such that −1 ≤
u(k) ≤ 1.

In our first test, we take a quantization function as
f(z) = z+∆z, where ∆z is a random vector and satisfying
‖∆z‖∞ ≤ 0.01. Let the state

x =

[
−1.872300978007571
−2.005527198961941

]
and after quantization

x̂ =

[
−1.8624195
−2.0045545

]
.

The state x is in the region P9 and after quantization x̂ jumps
into the region P̂6. For the detail, let us see the data sets for
regions in the following.

H9 =

−0.090909090909091 −0.181818181818182
−0.051779109470760 −0.352859834980392
0.110805433262676 0.533053615854606
0.074084535025187 0.430780401254739

1 1
−1 −1
1 0

K9 =

1.000001
1.000001
−0.999999
−0.999999

10.000000999999999
10.000000999999999

15

H6 =

−0.074084535025187 −0.430780401254739
0.152799695981699 0.650013942240116
0.115162535317429 0.554474699453481

−1 −1

K6 =

1.000001
−0.999999
−0.999999

10.000000999999999

 .
The corresponding input controls for both regions are

u9(x) =

[
−0.277555756156289× 10−16

0

]′
x+ 1

u6(x) =

[
−0.027755575615629× 10−15

−0.111022302462516× 10−15

]′
x+ 1.

After quantization,

[
Ĥ9 K̂9

]
=

−0.09375 −0.1796875 1
−0.0546875 −0.3515625 1

0.109375 0.53125 −1
0.0703125 0.4296875 −1

1 1 10
−1 −1 10
1 0 15

[
Ĥ6 K̂6

]
=

−0.0703125 −0.4296875 1

0.15625 0.6484375 −1
0.1171875 0.5546875 −1
−1 −1 10

 .
The corresponding input control for region P̂6 after quanti-
zation is

û6(x) =

[
−0.0065625
−0.00777875

]′
x̂+ 1.01.

From the above data sets, we can see that the common
hyperplane between regions P9 and P6 is hx = k. where
h =

[
0.074084535025187 0.430780401254739

]
and

k = −0.999999. We can obtain δ = 0.054026931132494.

By calculation, our bound for the absolute error of u(x) in
Theorem 2.4 is

δ

‖h‖22
‖(Fi − Fj)h′‖∞ + ε(‖Fi‖∞ + 2‖x‖∞ + 2ε+ 1)

= 1.352402835933399× 10−17 + 0.050310543979239

= 0.050310543979239.

The absolute error of u(x) from the real computation by
sequential search is |u(x)− û(x)| = 0.037815056285625.

From this example, we can see that the bound is sharp.
From other hand, we also can see that the term ‖x‖∞ =
2.005527198961941 is a dominant term in our bound.
Rescaling regions may help to get a bound closer to the
absolute error of u(x) from the real computation. We use
the rescale technique as Subsection III-A described. We take
D = diag(1/15, 1/15). Our new x is

x =

[
−0.124820065200505
−0.133701813264129

]
and our new H , K and u(x) are

H9 =

−0.333333333333333 −0.666666666666667
−0.127963732064873 −0.872036267935127
0.172095792416971 0.827904207583029
0.146741295941595 0.853258704058405

0.5 0.5
−0.5 −0.5

1 0

K9 =

0.244444688888889
0.164756097374066
−0.103542227280021
−0.132048386032173
0.333333366666667
0.333333366666667

1

H6 =

−0.146741295941595 −0.853258704058405
0.190330219501678 0.809669780498322
0.171977496676730 0.828022503323270

−0.5 −0.5

K6 =

0.132048650129209
−0.083041190166703
−0.099556291882137
0.333333366666667

u9(x) =

[
−0.416333634234434× 10−15

0

]′
x+ 1

u6(x) =

[
0.041633363423443× 10−15

−0.166533453693773× 10−15

]′
x+ 1.

We still use the quantization function f(z) = z + ∆z,
where ∆z is a random vector with ‖∆z‖∞ ≤ 0.01. Let

x̂ =

[
−0.1241613
−0.133637

]
. After quantization, data for regions

and the input control are as follows:

[
Ĥ9 K̂9

]
=

−0.3359375 −0.6640625 0.2421875
−0.125 −0.875 0.1640625

0.171875 0.828125 −0.1015625
0.1484375 0.8515625 −0.1328125

0.5 0.5 0.3359375
−0.5 −0.5 0.3359375

1 0 1

[
Ĥ6 K̂6

]
=

−0.1484375 −0.8515625 0.1328125

0.1875 0.8125 −0.0859375
0.171875 0.828125 −0.1015625
−0.5 −0.5 0.3359375

 .
The corresponding input control for region P̂6 after quanti-
zation is

û6(x) =

[
−0.0065625
−0.00777875

]′
x̂+ 1.01.

The state x jumps from the region P9 to the region P̂6 after
quantization. Therefore, we get the bound of absolute error
of u(x) is 0.012874036265283 and the absolute error of
u(x) obtained from real computation by sequential search
is 0.011854337345.

From this example, we obtain our bounds by taking
random quantization errors. In reality, data are stored in low
available memory with fixed bits. In next a series of tests
we still take the same example, but quantize data using a-bit
total word length, 1-bit for sign, and b-bit for fraction length
in fi function.

We take a random state x and it is in the region Pj , but
after quantization it jumps to the region P̂i, where Pi and
Pj are neighbors. In Figure 3, we plot the a priori bounds
of absolute errors of u(x) as described in Theorem 2.4 and
Lemma 2.9, the a posteriori bounds of absolute errors of u(x)
as described in Subsection III-B, and plot the absolute errors
of u(x) by using sequential search in real computation.

From Figure3, the maximum of difference between our a
priori bounds and real errors is about 0.9 and the maximum
of difference between our a posteriori bounds and real errors
is about 0.1 for a = 12 and b = 5 (upper). The maximum of
difference between a priori bounds and real errors is about
0.1 and the maximum of difference between our a posteriori
bounds and real errors is about 0.01 for a = 16 and b = 9
(bottom). From this test, we can see that the a posteriori
bounds are about 10 times sharper than the a priori bounds
if taking the same a and b for bits. Moreover, when we take
more bits for the total word length and the fractional part,
both a priori bounds and a posteriori bounds become sharper
and sharper.

In the next test, we compare the a posteriori bounds
without rescaling data with those bounds after rescaling data
by take same random states. The upper of Figure 4 presents
the a posteriori bounds of absolute errors of u(x) for a = 12
and b = 5 without rescaling data, while the bottom of Figure
4 presents the bounds after rescaling, in which we take

Fig. 3. Testing data with a-bit word total length and b-bit for fraction
length. Upper: a priori bounds, a posteriori bounds and real computation
absolute errors with a = 12 and b = 5. Bottom: both bounds of absolute
errors of u(x) and absolute errors in real computation with a = 16 and
b = 9.

a = 12 and b = 10 for regions and states, and take a = 17
and b = 10 for control inputs. From Figure 4, we can see that
the a posteriori bounds without rescaling data are between 0
and 0.35, and the a posteriori bounds for data after rescaling
is less than 0.035. Though the bounds become smaller after
rescaling, the real error of the absolute difference become
smaller as well after rescaling.

In previous tests, we notice that for some states the
posteriori bounds are almost near zero. Since we take ran-
dom states for random regions, the posteriori bounds for
some common hyperplane may be very small, but for some
common hyperplane may be not. Next, we would like to
test the states near the common hyperplanes between two
neighbor regions to see in which regions the corresponding
control inputs of the states are stable or not. We take the
random states around the common hyperplane, such that the
states are obtained as x = x̄ + 0.5rand(2, 1) where x̄ is
on the hyperplane in regions and rand(2, 1) is an uniformly
distributed random vector.

We summarize our test in Table I. For example, the bounds

Fig. 4. Upper: A posteriori bounds and real computation absolute errors
with a = 12 and b = 5. Bottom: A posteriori bounds and real computation
absolute errors after rescaling with a = 12 and b = 10 for regions and
with a = 17 and b = 10 for the control input.

and the real errors are less than 10−4, if the state is in region
P1 or P9 and after quantization the state jumps into region
P̂9 or P̂1. The maximum and minimum bounds are 0.191
and 0.058, respectively, and the corresponding real errors are
0.036 and 0.022, if the state is in region P3 or P5 and after
quantization the state jumps into region P̂3 or P̂5. To see
detail for every common hyperplane, we take the common
hyperplane between region 3 and 5 as an example. Figure 5
presents the a posteriori bounds and real computation errors.

V. CONCLUSIONS

In this paper we have derived a priori bounds and a
posteriori bounds of accuracy analysis of control inputs
when data are quantized and stored in low available memory
control hardware. Based on those bounds, one can decide the
bits and accuracy in the control input.

APPENDIX

The proof of Lemma 2.9 is provided in the following.
Proof: Suppose hx ≤ k for x ∈ Pj and hx ≥ k for x ∈ Pi.

Neighboring Maximum and Corresponding real
regions minimum (posteriori) errors
1 and 9 less than 10−4 less than 10−4

2 and 8 less than 10−4 less than 10−4

3 and 4 0.270, 0.121 0.071, 0.019
3 and 5 0.191, 0.058 0.036, 0.022
3 and 12 0.245, 0.184 0.102, 0.069
4 and 7 less than 10−4 less than 10−4

5 and 6 less than 10−4 less than 10−4

6 and 9 less than 10−4 less than 10−4

7 and 8 less than 10−4 less than 10−4

7 and 13 0.181, 0.171 0.104, 0.090
10 and 13 0.248, 0.225 0.118, 0.111
11 and 12 0.245,0.228 0.097, 0.963

TABLE I
A POSTERIORI BOUNDS AND REAL ERRORS FOR THE STATES NEAR A

SINGLE COMMON HYPERPLANE WITH a = 12 AND b = 5

Fig. 5. A posteriori bounds and real errors with a = 12 and b = 5 for
the states near the common hyperplane between regions 3 and 5.

To get the accuracy for u(x), we have

|û(x̂)− u(x)| ≤ |Fix+Gi − Fjx−Gj |
+ |Fi∆x+ ∆Fix+ ∆Fi∆x+ ∆Gi|.

From the above inequality, in order to get the upper bound
of difference of u(x), we have to get the upper bound of
|Fix+Gi − Fjx−Gj |. Since the state x after quantization
falls to the region Pi, by Lemma 2.2, we have −δ < hx−k ≤
0. For ∀x0 ∈ Z , we have hx = k. Since u(x) is a linear
continuous affine function, we have

Fix0 +Gi = Fjx0 +Gj , (6)

for ∀x0 ∈ Z . We note that for n = 1, it is obvious that x0
is on hx = k. For n = 2, Fix + Gi = Fjx + Gj is a line
and hx = k also is a line. So these two lines are the same.

Suppose that the maximum value of |Fix + Gi − Fjx −
Gj | occurs at some x ∈ Pj , when it is in the hyperplane
hx − k = −β, where 0 < β ≤ δ. Since hx0 = k, we have
h(x− x0) = −β. Furthermore, h

(
k
−β (x− x0)

)
= k which

implies that k
−β (x− x0) is on the hyperplane hx = k. So,

Fi

(
k

−β
(x− x0)

)
+Gi = Fj

(
k

−β
(x− x0)

)
+Gj . (7)

According to equalities (6) and (7), we get

|Fix+Gi − Fjx−Gj | =
β

|k|
|Gi −Gj |

≤ δ

|k|
|Gi −Gj |. (8)

Consequently, we obtain the result as expected.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[2] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control engineering practice, vol. 11, no. 7, pp.
733–764, 2003.

[3] S. Di Cairano, “An industry perspective on mpc in large volumes
applications: Potential benefits and open challenges,” in Proc. 4th IFAC
Nonlinear Model Predictive Control Conference. Citeseer, 2012, pp.
52–59.

[4] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The
development of model predictive control in automotive industry: A
survey,” in IEEE Conf. Control Applications. IEEE, 2012, pp. 295–
302.

[5] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control
based on linear programming - the explicit solution,” Automatic
Control, IEEE Transactions on, vol. 47, no. 12, pp. 1974–1985, Dec
2002.

[6] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[7] S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky, and
D. Hrovat, “Model predictive idle speed control: Design, analysis, and
experimental evaluation,” vol. 20, no. 1, pp. 84 –97, 2012.

[8] S. Di Cairano, J. Doering, I. Kolmanovsky, and D. Hrovat, “MPC-
based control of engine deceleration with open torque converter,”
Maui, HI, 2012, pp. 3753–3758.

[9] S. Di Cairano, H. Tseng, D. Bernardini, and A. Bemporad, “Vehicle
yaw stability control by coordinated active front steering and differ-
ential braking in the tire sideslip angles domain,” vol. 21, no. 4, pp.
1236–1248, 2013.

[10] S. Di Cairano, H. Park, and I. Kolmanovsky, “Model predictive
control approach for guidance of spacecraft rendezvous and proximity
maneuvering,” Int. J. Robust and Nonlinear Control, vol. 22, no. 12,
pp. 1398–1427, 2012.

[11] J. E. Goodman and J. O’Rourke, Eds., Handbook of Discrete and
Computational Geometry. Boca Raton, FL, USA: CRC Press, Inc.,
1997.

[12] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of piecewise
affine control via binary search tree,” Automatica, vol. 39, no. 5, pp.
945–950, 2003.

[13] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to
manage the time-storage complexity in a point location problem:
Application to explicit model predictive control,” Automatica, vol. 47,
no. 3, pp. 571–577, 2011.

[14] T. Geyer, F. D. Torrisi, and M. Morari, “Optimal complexity reduction
of piecewise affine models based on hyperplane arrangements,” in
American Control Conference, 2004. Proceedings of the 2004, vol. 2.
IEEE, 2004, pp. 1190–1195.

[15] M. Kvasnica, J. Löfberg, and M. Fikar, “Stabilizing polynomial
approximation of explicit mpc,” Automatica, vol. 47, no. 10, pp. 2292–
2297, 2011.

[16] M. Kvasnica and M. Fikar, “Clipping-based complexity reduction in
explicit mpc,” Automatic Control, IEEE Transactions on, vol. 57, no. 7,
pp. 1878–1883, 2012.

[17] E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constantinides,
“Number representation in predictive control,” in Proc. 4th IFAC
Nonlinear Model Predictive Control Conference. Citeseer, 2012, pp.
60–67.

[18] S. Longo, E. C. Kerrigan, and G. A. Constantinides, “Constrained lqr
for low-precision data representation,” Automatica, vol. 50, no. 1, pp.
162–168, 2014.

[19] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari, “Multi-parametric
toolbox (mpt),” in Hybrid Systems: Computation and Control, ser.
Lecture Notes in Computer Science, R. Alur and G. Pappas, Eds.
Springer Berlin Heidelberg, 2004, vol. 2993, pp. 448–462.

[20] A. Airan, B. Bhartiya, and M. Bhushan, “Linear machine: A novel
approach to point location problem,” Preprints of the 10th IFAC
international symposium on dynamics and control of process systems,
2013.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2015-149.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

