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Abstract—In this article, we address the problem of optimal
electric vehicle charging in an unregulated electricity market.
This problem is known to be highly nonlinear even in the case of
fixed electricity prices due to a nonlinear state-of-charge curve
representing physical battery limitations. We design tractable
formulations for single and multiple EV charging frameworks.
In the first part of the paper, we develop a new efficient cutting
plane method, that can be used for solving charging optimization
problem for both scenarios of known and uncertain electricity
prices. The latter scenario with real-time electricity rates is
considered in the second part of the paper. We obtain robust
optimization counterparts of the nominal charging problems that
are particularly important from an economic perspective when
budget constraints are strictly enforced. New robust formulations
are proven to be tractable. Moreover, computational experiments
illustrate that a decision maker can find solutions that are close
to optimal in terms of the corresponding objective values, and
robust with respect to uncertain electricity prices.

Index Terms—Electric vehicle, robust optimization, charging
schedule, state-of-charge curve.

NOMENCLATURE

A. Indices
t Time index
v EV index
l Time shift index

B. Sets
T Feasible set of a nominal problem (1)
Ui(Γ) Uncertainty set with robustness level Γ
Cl Charging shift

C. Parameters
mt Electricity unit price at time t
Sinl Initial battery state-of-charge (SoC)
Qr Battery capacity divided by time resolution ∆t
Γ Robustness level
B Charging budget
z∗ Optimal charging cost
θ∗ Optimal battery charge level
ν(U) Empirical probability that price vector is

an element of U
µ(U) Empirical probability that charging policy p(U)

does not violate budget constraint
V EV fleet size
L The number of charging shifts
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D. Variables
pt Charging level at time t
p∗ Testing point
p̂ Projection point
y Vector of dual variables
x Simulated vector of electricity prices
Y vl Binary assignment indicator of EV v to shift Cl

I. INTRODUCTION

The rapidly growing market of electric vehicles (EV) is
driven by environmentally friendly zero-emission engines with
low noise level, lower operating costs and other social and eco-
nomic benefits [1]. The global goals of improving air quality
and emission reduction [2] suggest even higher penetration
of EVs in both corporate and residential automobile market
segments. Despite the fact that in most parts of the world
the electricity cost per mile of an EV is approximately one-
third to one-quarter the cost of gasoline [3], the problem of
minimizing the EV charging expense is still important for both
commercial and individual EV users.

The problem of finding the optimal charging schedule can
be very different for various electricity pricing mechanisms.
The typical electricity tariff structures include fixed, time-of-
use (TOU), and real-time electricity rates. The first scenario
implies a constant energy charge that does not depend on the
time of consumption. The TOU price can be represented as a
piecewise-constant function of time with off-peak and on-peak
prices, while the real-time pricing mechanism assumes that
customers pay electricity supply rates that continuously vary
by the hour [4]. For a fixed electricity rate scenario, total EV
charging cost does not depend on time, therefore all feasible
charging schemes have the same price. On the other hand, the
associated optimization problems become more complicated
for the cases of TOU and real-time pricing mechanisms.
Indeed, the TOU instance implies that the vector of prices does
not consist of equal entries, while the real-time rates instance
suggests that the price vector is not known in advance and
should be somehow estimated.

Another inherent property of charging optimization problem
is nonlinearity of its constraints [5]. In order to reduce the life
loss of EV battery, the charging power should not exceed a
certain confined value defined by a nonlinear concave function
of battery SoC. Although incorporation of nonlinear SoC curve
into optimization problem does not affect convexity of the
feasible region, it does impair its tractability.

Several studies have already been done to solve simplified
versions of the charging optimization problem. For instance,
there are approaches presented in [4] - [8] that are valid under
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assumption of known and fixed electricity prices. More pre-
cisely, Qian et. al [4] consider a piecewise-constant approxima-
tion of nonlinear SoC curves, which makes the optimization
problem linear. A comparison between linear and quadratic
approximations of the problem is given in [6]. Reference [7]
describes another linearized version of the optimal EV charg-
ing problem that incorporates possibility to perform vehicle-
to-grid delivery. Cao et. al [5] suggest a heuristic method for
minimizing the charging cost based on iterative transition of a
small energy portion from a high-price period to a low-price
period. An optimization model for charging and discharging
with given driving patterns of the fleet of EVs is presented in
[8]. But the formulation assumes that maximum charging level
is constant, and electricity prices are either known or predicted
via linear regression as a function of load aggregator demand.

EV charging models based on uncertain electricity pricing
are considered in [9] - [14]. Namely, there is a simple formula
for EV charging rate with vehicle-to-grid capability presented
in [9], but the optimality of the suggested formula is not
discussed. Reference [10] introduces an optimization of the
charging and discharging of EVs considering only a piecewise-
linear dependence between a power system load level and
electricity price. The fleet aggregator perspective that manages
charging and purchasing in the day-ahead electricity market is
considered in [11]. The authors develop a bidding strategy
minimizing transaction costs and taking into account other
market participants. Reference [12] presents decentralized
approach to EV charging with objective of load demand valley
filling and assuming collaboration between EVs and a utility
company. Discrete cost optimization method similar to [5]
based on Markovian chains is introduced in [13]. In this model
the price uncertainty depends on only historic maximum price
of electricity purchasing, and the connection between EVs in
the fleet is stated, but not incorporated to Markov process.
Robust optimization (RO) EV charging model with technical
power grid constraints is described in [14]. But only one
specific type of price uncertainty set is considered, nonlinear
SoC battery limitations are not included and tractability of
suggested optimization problem is not assessed.

In our study, we derive a generic formulation of optimal EV
charge scheduling with nonlinear constraints and uncertainty
of the price of electricity where applicable. Section 2 develops
a tractable method of solving a nominal problem with fixed
electricity prices. The description of the method involves the
proof of convexity of the feasible set, projection formulas, as
well as separating oracle for this nonlinear set (i.e. a procedure
that for any given point either tells that it belongs to a set
or returns a hyperplane separating a point from the set). This
tool necessary for implementation of a cutting plane algorithm,
which serves as an efficient method for solving the introduced
charging problem.

Section 3 discusses RO approach to the EV charging
problem, when electricity prices do not have to be known
in advance, but rather belong to some uncertainty set. This
perspective is useful for budget planning or finding a charging
schedule that does not exceed some budget constraints. In this
section, we prove that the robust counterparts are still tractable,
since the cutting plane algorithm can be extended for the case

of uncertain electricity prices.
The numerical experiments based on real-world electricity

pricing data are presented in Section 4. The main objective
of this analysis is to compare optimal charging schedules
and their performance for a nominal optimization problem
and its robust counterparts with various uncertainty sets.
Computational experiments demonstrate that it is possible to
find robust charging schedules that simultaneously have two
merits. They yield objective values that are close to optimal,
and they are stable with respect to uncertain electricity rates.

A load aggregator perspective and corresponding extensions
of the EV fleet charging optimization problems are designed in
Section 5. Finally, Section 6 discusses universalism and com-
putational efficiency of the suggested cutting plane algorithm.

II. OPTIMIZATION PROBLEM AND ITS TRACTABILITY

A. Problem description
The EV charging optimization problem can be formulated

as finding a schedule P (t) that minimizes the total cost

C =

t0+T∫
t0

m(t)P (t) dt,

where m(t) is the unit electricity price at time t, and [t0; t0+T ]
is a time interval of charging [5]. In order to prevent battery
damage, the charging power P (t) is upper bounded as de-
scribed by inequality

0 ≤ P (t) ≤ Pmax(t) ∀t ∈ [t0; t0 + T ].

The maximum charging level Pmax(t) in practice can be
expressed as a concave non-increasing function of the current
SoC S(t) according to the formula from [5], [15]:

Pmax(t) = f(S(t)).

In this paper we incorporate the smooth nonlinear SoC curve
f(S) and its derivative f ′(S) presented in Fig. 1. This particu-
lar function f(S) serves as an example and corresponds to an
advanced AC Level III charging system. However, all results
of the study remain valid for any non-increasing, quasiconcave
function f(S) that does not even have to be differentiable.

The charging level P (t) can be also limited from above by
the maximum power Puser set by EV user and the maximum
power Pcharger that EV charger can output. Upper bounding of
P (t) is also necessary for economic reasons to limit the cost of
demand charge imposed by utility firms on EV chargers. Since
these restrictions can be expressed in terms of simple linear
inequalities (or incorporated to the structure of SoC function
f(S)), we do not explicitly add them to our model.

The total charging demand of an EV user with the initial
SoC Sinl and rated capacity Q̄r is given by equality

t0+T∫
t0

P (t) dt = (1− Sinl)Q̄r.

The discrete counterpart of the continuous optimization prob-
lem with time resolution ∆t can be expressed as follows:

min
p

N∑
t=0

mt pt (1a)
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s.t. 0 ≤ p0 ≤ f(Sinl) (1b)

0 ≤ pt ≤ f
(
Sinl +

1

Qr

t−1∑
k=0

pk
)
, ∀t = 1 . . . N (1c)

N∑
t=0

pt = (1− Sinl)Qr, (1d)

where a common positive factor ∆t in objective (1a) is
ommited and Sinl, f(Sinl), Qr = Q̄r/∆t are assumed to be
known constants. At the same time, components of the cost
vector m can be either fixed and known a priori for the case
of a regulated electricity market, or uncertain for a real-time
pricing scenario. In this section, we consider a nominal prob-
lem with constant components mt in the objective function
(1a). The equality (1d) can be generalized to inequality

α ·Qr ≤
N∑
t=0

pt ≤ (1− Sinl)Qr,

with 0 ≤ α ≤ 1 − Sinl, if decision maker wants to charge
a battery up to at least (Sinl + α) · 100% of the total rated
capacity Q̄r.

The feasible region of the nominal optimization problem
denoted as T and described by (1b) – (1d) is nonlinear due to a
large number of constraints of the type (1c). On the other hand,

for any fixed t = 1 . . . N the function f
(
Sinl + 1

Qr

t−1∑
k=0

pk
)

is

concave with respect to variables p0, . . . , pN as a composition
of linear and non-increasing concave function f . Moreover, the
nonlinear upper bound for variable pt in (1c) depends on only
variables with lower indices p0, . . . , pt−1. Therefore, each of
these constraints defines a convex set which is a hypograph of

a concave function f
(
Sinl+

1
Qr

t−1∑
k=0

pk
)
. This is why a feasible

set T is convex as an intersection of a finite number of convex
sets.

B. Cutting plane algorithm

In order to prove that the nominal problem is tractable we
develop a cutting plane algorithm for our special form of the
feasible region T . The main idea of the method is to solve
the nonlinear optimization problem by solving a sequence
of linear programming problems. We start with finding an
optimal solution p∗ of a relaxed nominal problem that includes
only linear constraints from formulation (1). If p∗ satisfies all
omitted nonlinear constraints (1c), then p∗ is an optimum of
the initial problem. If not, we project a testing point p∗ onto
a convex set T and obtain a projection point p̂. After this, it
is necessary to find a supporting hyperplane to the set T at
the point p̂. This hyperplane separates testing point p∗ from
the feasible region T . We add the linear inequality defining a
halfspace that contains set T and then iterate [18].

The remaining part of this subsection describes membership
and separation oracles for the set T , as well as a projection
method that we incorporate into the cutting plane algorithm.

Let us assume that after some iteration of the algorithm
there is a testing point p∗ = (p∗0, p

∗
1, . . . , p

∗
N ) that satisfies

nonnegativity constrainsts p∗t ≥ 0 for all t = 0 . . . N and

linear constraints (1b) and (1d). In this case, the feasibility
of point p∗ can be verified by gradual inspection of nonlinear
constraints of type (1c). Indeed, we can run a loop with respect
to the time index t = 1 . . . N , and for each fixed value of t it
is easy to check if the elements of p∗ satisfy t-th constraint
of a family (1c).

If all N constraints of type (1c) are satisfied, then the testing
point p∗ belongs to the feasible set T . Otherwise, membership
oracle displays the smallest time index t0 for which an upper
bound of (1c) is violated:

t0 = argmin
t=1...N

{
p∗t > f

(
Sinl +

1

Qr

t−1∑
k=0

p∗k
)}
.

Having found a violated constraint, the projection p̂ of the
point p∗ onto the boundary of the convex set T is described
as follows

p̂t =


p∗t , if 0 ≤ t < t0,

f
(
Sinl + 1

Qr

t0−1∑
k=0

p∗k
)
, if t = t0,

0, if t0 < t ≤ N.

Feasibility of point p̂ is due to the definition of time index t0.
Since inequalities of family (1c) with indices t = t0, . . . , N
are active at p̂, then projection point p̂ belongs to the boundary
of the set T .

The supporting hyperplane to the set T at the point p̂ is
defined by standard equality ∇F (p̂)>(p − p̂) = 0, where
function F is defined as

F (p0, . . . , pN ) = pt0 − f
(
Sinl +

1

Qr

t0−1∑
k=0

pk
)
,

and components of its gradient are expressed as below

∂F

∂pt
(p̂) =


−f ′(p̂) 1

Qr
if 0 ≤ t < t0,

1 if t = t0,

0 if t0 < t ≤ N.

The separating inequality ∇F (p̂)>(p − p̂) ≤ 0 does not cut
any feasible point of the convex region T , while testing point
p∗ violates it. Indeed,

∇F (p̂)>(p∗ − p̂) = −f ′(p̂)
1

Qr

t0−1∑
t=0

(p∗t − p∗t )

+ 1 · (p∗t0 − p̂t0) +

N∑
t=t0+1

0 · (p∗t − 0) > 0,

since the only nonzero term (p∗t0 − p̂t0) is strictly positive
by the definition of time index t0. We add linear separating
inequality into the formulation preserving linearity of the
optimization problem, and iterate this step. The cutting plane
method is an exact algorithm that is guaranteed to find an op-
timal solution of the nonlinear charging optimization problem
[18]. The stopping condition and computational efficiency of
the method are discussed in Section 6.
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Figure 1. The SoC curve f(S) and its derivative f ′(S)

III. ROBUST OPTIMIZATION APPROACH

Wholesale prices fluctuate a lot from one day to another
and the variation between low-demand night hours and high-
demand business hours can be huge. In this section, we are
going to generalize the nominal problem (1) to the case of
uncertain electricity prices. This scenario assumes that the
cost vector m in the objective function (1a) is not known
in advance, but rather belongs to some uncertainty set U
[16], [17]. Hence, components mt for t = 0 . . . N should
be treated as uncertain parameters in place of fixed values
to represent an unregulated electricity market with real-time
pricing mechanisms.

Some basic examples of the uncertainty sets U are listed
below:

1) U1 = {m ∈ RN+1 : mt ≤ mt ≤ m̄t, t = 0 . . . N},
where mt and m̄t are estimated from historic data lower
and upper bounds on the electricity price mt at time t.

2) U2(Γ) = {m ∈ RN+1 : |mt−Emt

σ(mt)
| ≤ Γ, t = 0 . . . N}

or

3) U3(Γ) = {m ∈ RN+1 :
N∑
t=0
|mt−Emt

σ(mt)
| ≤ Γ

√
N + 1},

where Emt and σ(mt) are the expected value and
standard deviation of a random electricity rate mt,
respectively. These values could be estimated by sta-
tistical methods given some training data. At the same
time, a nonnegative parameter Γ reflects the level of
robustness. Indeed, the bigger the value of Γ, the larger
the uncertainty set U . Consequently, the price vector m
is more likely to belong to U .

For the RO approach that we develop it is sufficient to assume
that the uncertainty set U is a nonempty bounded polyhedron

with respect to variables m0, . . . ,mN [17]. Therefore, the
following representation holds

U = {m ∈ RN+1 : Dm ≤ d} (2)

for some matrix D ∈ Rn×(N+1) and vector d ∈ Rn. It is easy
to see that the uncertainty sets Ui for i = 1, 2, 3 introduced
above can be represented in the form (2).

Given U , the robust counterpart of the nominal problem (1)
is expressed by the following min-max formulation

zrob(U) = min
p∈T

max
m∈U

N∑
t=0

mt pt. (3)

The decision maker tries to find an optimal charging schedule
p ∈ T under uncertain electricity prices m0, . . . ,mN , that she
believes are randomly chosen by nature from the uncertainty
set U . Moreover, the selection of p is done against the worst
possible scenario, captured by maximization with respect to
parameter m.

The robust framework is motivated by economical perspec-
tive of the EV charging problem. For instance, if there is a fleet
of EVs and an agent is developing a budget plan for charging
the fleet, the question of the highest possible charging price is
essential when the electricity rates are uncertain. In this case,
the robust budget estimation problem (3) yields not only an
upper bound on the total charging price zrob(U), but also the
corresponding optimal charging policy p∗rob(U).

Another example of a practical problem that can be modeled
with RO techniques has in some sense a dual nature to the
problem (3). Let us assume that the maximum acceptable
budget B for charging is given. If the decision maker tries to
maximize the total battery charge without violating the budget
constraint, we obtain a robust formulation (4).

θrob(U) = max
p

N∑
t=0

pt

s.t.
N∑
t=0

mt pt ≤ B, ∀m ∈ U

0 ≤ p0 ≤ f(Sinl)

0 ≤ pt ≤ f
(
Sinl + 1

Qr

t−1∑
k=0

pk
)
,

∀t = 1 . . . N.

(4)

The tractability proofs of semi-infinite programming prob-
lems (3) and (4) are developed in the propositions below.

Proposition 1. RO problem (3) with an uncertainty set of
the type (2) is equivalent to the computationally tractable
nonlinear programming problem (5).

min
p,y,z

z

s.t. y>d ≤ z
y>D = p>

y ≥ 0
p ∈ T.

(5)

Proof. First of all, we introduce a new auxiliary scalar
variable z and represent min-max problem (3) in the following
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form
min
p, z

z

s.t. max
m∈U

m>p ≤ z
p ∈ T.

(6)

For any fixed value of vector p we consider the inner linear
optimization problem

max
m

m>p

s.t. Dm ≤ d.
(P)

Since the uncertainty set U described by the nonempty poly-
hedron {Dm ≤ d} is assumed to be bounded, then the primal
problem (P) is feasible and has a finite optimum. Therefore,
by the strong duality theorem [18] the optimal cost of the
problem (P) is equal to the optimal cost of the dual problem
(D):

min
y

y>d

s.t. y>D = p>

y ≥ 0.

(D)

Hence, the optimization problem (6) can be updated as follows

min
p,y z

z

s.t. min
y

y>d ≤ z

y>D = p>

y ≥ 0

p ∈ T.

(6′)

Finally, it is easy to see that the inner minimization with
respect to y in the problem (6′) can be omitted, what im-
mediately yields the formulation (5).

It is worth mentioning that the latter problem has the same
nonlinear constraints as the nominal problem (1). That is
why the cutting plane algorithm designed in Section 2 is still
applicable, what makes problem (5) tractable. 2

For the semi-infinite optimization charging problem with
a budget constraint (4), the similar duality argument can be
developed in order to prove the following proposition.

Proposition 2. RO problem (4) with an uncertainty set of
the type (2) is equivalent to the computationally tractable
nonlinear programming problem (7).

max
p,y,z

N∑
t=0

pt

s.t. y>d ≤ B
y>D = p>

y ≥ 0

0 ≤ p0 ≤ f(Sinl)

0 ≤ pt ≤ f
(
Sinl + 1

Qr

t−1∑
k=0

pk
)
, ∀t = 1 . . . N.

(7)

Thus, the highly nonlinear EV charging optimization prob-
lem (1) is tractable not only with a fixed cost vector m, but
also when electricity prices m0, . . . ,mN are uncertain. The
latter scenario can be modeled with a combination of the
cutting plane algorithms and robust programming techniques.
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IV. COMPUTATIONAL RESULTS

In this section, we compare the performance of two different
approaches to the EV charging problem using the real-world
electricity pricing data. The first approach with fixed electricity
rates is the nominal problem (1) introduced in Section 2.
The second RO framework includes two possible formulations
(3) and (4) with various uncertainty sets Ui defined in the
beginning of Section 3. Two approaches will be compared in
terms of some performance indicators, such that the optimal
charging price z∗rob, the guaranteed total battery charge θ∗rob,
and robustness µ of the charging policy p∗ that we will
explicitly define below.

From the dataset [19] published by the US National Grid
for New York City we derive hourly electricity prices for
weekdays of 2 consecutive months: May and June 2014 (Fig.
2). The selected data include the total of K = 43 observations,
where each observation is a vector of the length 24.

Having assumed that the electricity rate is fixed during any
given hour, now it is possible to estimate parameters

Emj =

K∑
k=1

mj(k)

K
and σ2(mj) =

K∑
k=1

(mj(k)− Emj)
2

K − 1
,

for all j = 1 . . . 24, where mj(k) denotes an electricity price
of the j-th hour in the k-th observation.

Additionally, for each of the hours j = 1, . . . , 24 we test
a hypothesis that random electricity rate mj is a normal
random variable with parameters Emj and σ2(mj). More
precisely, Kolmogorov-Smirnov statistical method [20] allows
us to find a minimum confidence level fj ∈ [0, 1] with
which a conjecture H0 = {mj ∈ N(Emj , σ

2(mj))} can be
accepted. We use MATLAB function kstest [21] and derive
that the vector f = (f1, . . . , f24) consists of fj = 0.99 for all
j = 1 . . . 24.

The computation of vector f is necessary for quality estima-
tion of the uncertainty sets U . Indeed, given that components
of the vector f have high values, now it is possible to sample
random vector

x = (x1, . . . , x24),

s.t. xj ∈ N(Emj , σ
2(mj)), for j = 1, . . . , 24, (8)

and check if x is an element of a given uncertainty set U . The
higher the empirical probability ν(U) that x ∈ U , the better
the reliability of the uncertainty set U .
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The time interval of possible charging [t0; t0 + T ] in our
experiments is assumed to be equal to [0h, 24h]. We discretize
this interval at a sampling frequency of 1 observation per
minute, what implies that the total number of time periods
N in the model is equal to 1 ·60 ·24 = 1, 400. For both of the
computational experiments considered below, the rate capacity
is assumed to be equal to Qr = 29.07 kWh [4] and the initial
SoC Sinl = 0.2.

Experiment A. Robust budget estimation

In this experiment, we consider RO problem of type (3) for
various uncertainty sets. We solve this min-max problem using
a duality method suggested in proposition 1. For different sets
Ui, i = 1, 2, 3 and levels of robustness Γ ∈ [0, 4] the following
descriptive characteristics are computed:
• The empirical probability ν(U). This value is an esti-

mation of the probability that the uncertain vector m is
indeed an element of the set U . We calculate ν(U) based
on 10,000 simulations with respect to random vector x
with normal components defined by (8). Higher values of
the indicator ν(U) correspond to more robust selections
of uncertainty sets U . Reliability of sets Ui, i = 1, 2, 3
as a function of robustness parameter Γ is presented in
Fig. 3.

• The optimal cost z∗rob(U) (3), that is equal to the robust
budget estimate. In other words, z∗rob(U) is an upper
bound on the charging cost given that the unknown
electricity price vector m is randomly selected from the
suggested uncertainty set U . The robust charging costs
z∗rob(U) are plotted in Fig. 4.

It is worth mentioning that the nominal problem (1) with
vector m substituted with its expected value Em is a special
case of robust formulation (3) with uncertainty set U2 and
Γ = 0. The optimal cost of the nominal problem

z∗nom = z∗rob(U2(0))

serves as a benchmark for other robust charging scenarios with
the corresponding costs z∗rob(U).

The optimal nominal value z∗nom obtained from Fig. 4
means that the average EV charging cost is equal to $0.535.
On the other hand, with probability 1 this cost is exceeded
according to the simulation results (Fig. 3) and since uncer-
tainty set U2(0) consists of only single point. Therefore, a
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Figure 4. Robust charging cost estimation z∗rob(Ui), i = 1, 2, 3 as a function
of Γ

benchmark z∗nom = 0.535 is not acceptable for robust budget
planning.

From Fig. 3 we observe that the reliability of uncertainty
sets grows when Γ increases. Indeed, it is easy to see that the
sets Ui(Γ), i = 2, 3 become larger as Γ goes from 0 to 4. For
instance, a probability that uncertain electricity price vector m
is an element of U2(3) is reasonably high and equals 95%.

At the same time, Fig. 4 demonstrates that the robust budget
estimate is also an increasing function of parameter Γ, since
for larger values of argument Γ we want to be protected against
the worst case of a wider set of scenarios. The implementation
of the same uncertainty set U2(3) yields an upper bound on the
charging cost that is equal to $0.843 that holds with probability
ν(U2(3)) = 95% calculated above.

Experiment B. Robust charging with a budget constraint

The second computational experiment illustrates the robust
charging problem with the imposed budget constraint (4).
We fix the value of maximum acceptable charging budget
B = $0.7. The tractability of this semi-infinite nonlinear
optimization problem is due to proposition 2. Analogously to
the first experiment, we consider different uncertainty sets U
and robustness levels Γ. The performance indicators are:
• The optimal cost value θ∗rob(U) of problem (4) that is

equal to the total guaranteed amount of electricity that
we can purchase during the charging without violating
the budget constraint. This lower bound θ∗rob(U) is cal-
culated under assumption that uncertain electricity rates
are randomly selected from the set U . The exact values
of the guaranteed battery charges θ∗rob(U) are presented
in Fig. 5.

• The empirical probability µ(U) that the optimal solution
p∗(U) of the problem (4) is feasible. More precisely,
after the optimal charging schedule p∗(U) is found, we
simulate vector x 10,000 times according to its definition
(8). For each randomly generated x, it is necessary to
check if the budget constraint

N∑
t=0

mt p
∗
t (U) ≤ B

holds, where the charging policy p∗(U) is fixed, and the
electricity price vector m is substituted with vector x.
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The portion of scenarios when this inequality holds is
equal to µ(U). The dependence between reliability µ(U)
of suggested charging schedule p∗(U) and parameter Γ
is illustrated in Fig. 6.

First of all, it is easy to see that a maximum possible value
of θ∗rob(U) presented in Fig. 5 is equal to

(1− Sinl)Q̄r = (1− 0.2) · 29.07 = 23.35 kWh

despite the fact that the constraint
N∑
t=0

pt = (1− Sinl)Qr

is removed from the formulation (4). Indeed, when the total

charge
t−1∑
k=0

pk reaches the level (1− Sinl)Qr for some t, the

battery becomes fully charged and all the remaining variables
pk, k ≥ t will be forced to zero since f(1) = 0.

From Fig. 5 it is easy to see that implementation of
uncertainty sets Ui(Γ) for i = 2, 3 and small values of
Γ ≤ 1.5 yields charging schedules p∗(U) that fully recharge
the battery. On the other hand, the probability µ(U) that the
budget constraint will not be violated can be as low as 65.2%
what can be observed from Fig. 6.

At the same time, for instance, if the uncertainty set U2(2) is
incorporated to the formulation (4), then we obtain the charg-
ing schedule p∗ with the total charge θ∗rob = 21.97 kWh and
probability 97.8% that we do not exceed budget B = $7.0. In
this scenario, the cost function θ∗rob is only 23.35−21.97

23.35 = 5.9%
suboptimal, while the probability µ(U2(2))that solution p∗ is
feasible is reasonably high and close to 100%.

The latter example demonstrates only one possible choice
of decision p∗(U) that can be made taking into consideration
a trade-off between optimality θ∗rob(U) and robustness µ(U).
Other possible selections are presented in Fig. 5 and 6.

V. GENERALIZATIONS OF FORMULATIONS

In order to address a larger set of possible real-world
scenarios with additional practical constraints, in this section
we consider generalizations of optimization problems (1), (3)
and (4). First of all, EV charging problem under uncertain
electricity prices is more relevant for a fleet of vehicles
associated with a common load aggregator rather than a single
EV. The reason is that load aggregator has access to wholesale
market with fluctuating prices, which is rarely the case for
individual EVs. This extension can be modeled by introduction
of the second car index v = 1 . . . V for decision variables pt
from (1) – (7), where V is the size of the fleet.

The second practical limitation is a length of the charging
period during which EV is attached to a charger. Since this
period is rarely equal to 24 hours, we introduce the concept
of fleet charging shifts Cl, l = 1 . . . L that can be described
as arbitrary subsets of the global optimization time horizon
{1, . . . , N}. Moreover, in order to be able to assign EVs
v = 1 . . . V to charging shifts Cl, l = 1 . . . L, we introduce
additional binary decision variables

Y vl =

{
1, if v can be charged only during time slot Cl,
0, otherwise.

Having defined necessary sets and variables, now it is possible
to consider an extended version of charging optimization
problem (1) for a decision maker managing the fleet of EVs.

min
p,Y

V∑
v=1

N∑
t=0

mt p
v
t (9a)

s.t. 0 ≤ pv0 ≤ fv(Svinl), ∀v = 1 . . . V (9b)

0 ≤ pvt ≤ fv
(
Svinl +

1

Qvr

t−1∑
k=0

pvk
)
, ∀t ≤ N, ∀v (9c)

N∑
t=0

pvt = (1− Svinl)Qvr , ∀v = 1 . . . V (9d)

α1
l ≤

V∑
v=1

Y vl ≤ α2
l , ∀ l = 1 . . . L (9e)∑

t6∈Cl

pvt ≤M · (1− Y vl ), ∀v = 1 . . . V (9f)

L∑
l=1

Y vl = 1, ∀ l = 1 . . . L (9g)

Y vl ∈ {0, 1}, ∀ l = 1 . . . L, ∀v = 1 . . . V. (9h)

Constraints (9b) – (9d) represent physical charging limitations
for each of the EVs v = 1 . . . V . Parameters Svintl, Q

v
r and

SoC functions fv(S) have the same meaning as before, but
now they can vary across the fleet. Possible upper and lower
bounds (α2

l and α1
l , respectively) on the number of EVs

that can be charged during a time shift Cl are described by
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inequalities (9e). The upper bounds α2
l may be also adjusted

to represent the total demand charge limitation for the entire
fleet. Conditions (9f) prohibit charging of the EVs outside
time shifts to which they are assigned, given that constant
M is large enough. It is sufficient to take M to be equal
to N · maxv=1...V f

v(0). Finally, each EV is assigned to
exactly one time shift Cl due to (9g). Mixed integer nonlinear
optimization formulation (MINLP) (9) models a centralized
approach to EV fleet charging problem with several time shifts.

The extension of the dual problem (4) with the objective
to maximize the total charging level of the EV fleet without
exceeding a given global budget B is almost identical to
formulation (9):

max
p,Y

V∑
v=1

N∑
t=0

pvt

s.t.
V∑
v=1

N∑
t=0

mtp
v
t ≤ B

(9b), (9c), (9e) – (9h).

(10)

It is worth mentioning, that both nominal MINLPs (9) and (10)
with fixed and known electricity prices m can be generalized
to the case of uncertain prices via RO approach presented
in Section 3. Indeed, duality technique from propositions 1
and 2 is still valid in spite of introduction of binary variables
Y vl . This is due to the fact that uncertain parameters mt, t =
0 . . . N are multiplied only by continuous variables pvt .

VI. CUTTING PLANE METHOD EFFICIENCY

In this section, we discuss reasoning behind the suggested
cutting plane algorithm as well as its comuptational perfor-
mance.

The first benefit of implementing the algorithm from Sec-
tion 2 is its universalism. It is applicable to all types of
EV charging optimization problems described above. These
problems include nominal and robust formulations for both
single EV scenario (NLP) and a framework of the EV fleet
(MINLP). Indeed, despite the nonconvexity of a feasible set in
the latter case, nonlinear optimization problems (9) and (10)
with discrete variables Y vl are still solvable by the suggested
cutting plane method. The main idea is that feasibility ver-
ification of any testing point p∗ = ((p1)∗, . . . , (pV )∗) with
respect to nonlinear constraints (9b) and (9c) can be performed
independently for each sub-vector (pv)∗, v = 1 . . . V exatcly
as described in subsection 2B.

Moreover, the proposed algorithm does not require SoC
functions fv , v = 1 . . . V to be differentiable [22]. It can also
handle optimization problems with quasiconvex feasible sets,
which are possible for less regular battery chemistry than in
the case presented in Fig.1.

The second major advantage of the cutting plane method is
computational efficiency. The design of the proposed algorithm
exploits specific structure of nonlinear constraints (9b), (9c)
and therefore significantly outperforms generic off-the-shelf
nonlinear solvers. The following set of experiments explicilty
illustrates practical benefits of the suggested technique.

In the first two lines of Table 1 we report computational
times, number of cuts and iterations of three solvers for the

Table I
COMPUTATIONAL PERFORMANCE OF CUTTING PLANE METHOD

Exp. Type
Cut. plane alg. Ipopt Bonmin
Time Cuts Time Iter Time Iter

1. (A) NLP 9s 32 1560s 84 283s 18

2. (B) NLP 13s 28 975s 89 69s 13

3. (9) MINLP 0.37h 4939 NA NA 41.1h 2 · 105

4. (10) MINLP 2.23h 7160 NA NA 17.5h 9 · 104

experiments A and B described in Section 4 with uncertainty
set U1. Even the case of a single EV and a reasonable number
of decision variables (1,440) in RO problems (5) and (7)
demonstrates the remarkable advantage of the cutting plane
approach.

This edge becomes even larger for the case of multiple
EVs. Experiment 3 represents solution characteristics of ro-
bust counterpart of MINLP (9) with the following values
of parameters: fleet size V = 40; L = 3 disjoint 8-hours
time shifts Cl; constants Svinl = 0.2, Q̄vr = 29.07 and SoC
functions fv(S) = f(S) are equal for all EVs v in a
campaign; uncertainty set is U1; upper and lower bounds in
inequalities (9e) are 0.5V and 0.25V , respectively. Experiment
4 corresponds to a robust counterpart of (10) with a global
budget constant B = $0.7V and the rest of parameters having
identical values as in experiment 3.

The cutting plane algorithm was implemented in Julia/JuMP
environment [23] solved by Gurobi Optimizer 6.0.4 and run-
ning on Intel Xeon E5440 (2.83 GHz) with 8 cores and
32GB RAM. The perfomance of the method was compared
with COIN-OR interior-point and branch-and-bound nonlinear
solvers Ipopt 3.12 [24] and Bonmin 1.8 [25]. The tolerance
of 0.5% was chosen to be a stopping condition for all
experiments. In all considered instances the suggested iteration
method was able to find the optimal solution much faster than
off-the-shelf nonlinear solvers.

VII. CONCLUSION

This work addresses optimum scheduling of single and
multiple EV charging for both fixed and uncertain electricity
prices. The first feature of this type of problem is nonlinearity.
The upper bound on a charging level is represented by a
nonlinear concave function of SoC. Despite the incorporation
of discrete variables and nonlinear constraints to the model,
both membership and linear separating oracles are developed
for this set. The latter tools allow us to design an efficient
cutting plane algorithm for practical solving of the highly
nonlinear EV charging problems.

A major advantage of the suggested cutting plane algorithm
is that it can be applied even for the case when electricity rates
are not fixed values, but rather uncertain parameters of the
optimization problem. This scenario represents an unregulated
electricity market with more complex pricing mechanisms
than markets with constant or TOU prices that are known
in advance. One possible way to handle the electricity price
uncertainty is to consider robust counterparts of the nominal
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problems. This approach is important for robust budget esti-
mation of load aggregator and finding a charging schedule that
does not violate a given budget constraint. In the second part
of the paper, we obtain robust counterparts and prove their
tractability.

The numerical experiments demonstrate the advantages of
RO framework. We consider two possible optimization prob-
lems and corresponding trade-offs between optimality of the
cost function and robustness of charging policies. In both
cases, we have found feasible solutions that are not far from
being optimal in terms of the objective value, but at the same
time these robust charging schedules are stable with respect
to uncertain electricity prices.
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