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Continuous Curvature Path Planning for Semi-Autonomous Vehicle
Maneuvers Using RRT*

Xiaodong Lan and Stefano Di Cairano

Abstract— This paper proposes a sampling based planning
technique for planning maneuvering paths for semi-autonomous
vehicles, where the autonomous driving system may be taking
over the driver operation. We use Rapidly-exploring Ran-
dom Tree Star (RRT*) and propose a two-stage sampling
strategy and a particular cost function to adjust RRT* to
semi-autonomous driving, where, besides the standard goals
for autonomous driving such as collision avoidance and lane
maintenance, the deviations from the estimated path planned
by the driver are accounted for. We also propose an algorithm to
remove the redundant waypoints of the path returned by RRT*,
and, by applying a smoothing technique, our algorithm returns
a G2 continuous path that is suitable for semi-autonomous vehi-
cles. In order to deal with sudden changes in the environment,
we apply a replanning procedure to enable our algorithm to
rapidly react to the changes in a real-time manner, without full
recomputation of the RRT* solution. Numerical simulations
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

In this paper we consider the problem of planning a
continuous curvature path for semi-autonomous driving. As
information technology and artificial intelligence develop
rapidly, it is becoming possible to use computers to assist
daily driving, even to make the driving process entirely
autonomous. While eventually autonomous driving will be
possible, it is reasonable to expect that for a certain period
the human driver and the autonomous system may need
to coexist and possibly share control of the vehicle. This
may introduce challenges as the decision between the driver
and the path planner may be different at some times, and
a resolution between the two that keeps the vehicle and
the driver safe needs to be obtained [1], [2]. For instance,
when the semi-autonomous planning system takes over from
the driver for objectives such as collision avoidance of lane
keeping, besides achieving such standard planning goals,
additional objectives such as minimizing the modifications
of the estimated path planned by the driver may need to
be accounted for. The interaction between the path planner
and the driver is critical to maintain vehicle drivability under
semi-autonomous operation and driver acceptance of the
system. Limiting the difference between the planned path
and a reference path may be of use also in the case of
autonomous driving, where a reference path may be provided
by higher level planners or navigation systems. When the
vehicle moves along the reference path, it should also have
the ability to deal with sudden changes in the conditions on
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the road, such as a crossing pedestrian, a passing vehicle, or
changes in traffic lights.

In this work we adapt Rapidly-exploring Random Tree
Star (RRT*)[3] and propose some smoothing techniques to
get a G2 continuous path for the maneuvering of semi-
autonomous vehicles. Our algorithm also enables the ve-
hicle to do rapid replanning when sudden changes occur
in the environment. Hence, the semi-autonomous vehicle
can achieve rapid and real-time reaction to various kinds
of road conditions. The approach is based on incremental
sampling-based path planning algorithms, also known as
randomized path planners, particularly the Rapidly-exploring
Random Tree (RRT) algorithm [4], and its recent variant with
optimality guarantees, RRT* [3]. Both of them successively
construct a tree to rapidly cover the whole environment.
The difference is that when adding new vertices to the tree,
RRT* compares the cost of different vertices and connect
this new vertex to the lowest cost vertex inside the tree.
Hence, RRT* is guaranteed to asymptotically approach the
minimum cost feasible path almost surely, if one exists.
There are some existing work using RRT or RRT* to
plan trajectories for autonomous driving. For example, [5]
uses closed-loop RRT to plan trajectories for autonomous
vehicles in an urban environment. Also, [6] uses RRT* to
plan time-optimal trajectories for vehicle maneuvers, and [7]
uses RRT* to plan trajectories for autonomous high-speed
driving. Other methods for path planning include model
predictive control (MPC), which allows to plan trajectories
while accounting for complex vehicle dynamics [8]. In [9]
MPC is combined with motion primitives to design con-
trols for agile maneuvering of ground vehicles. In [10] an
algorithm based on MPC is proposed for real-time obstacle
avoidance for ground vehicles. However, all planners above
are developed explicitly for fully autonomous driving. Here,
we develop our algorithm considering the semi-autonomous
driving case, where it is of importance to account for the
path smoothness, i.e., we aim at obtaining a G2 continuous
path1 for semi-autonomous driving. In particular, here we
consider the difference between reference (i.e., driver) and
semi-autonomous path in terms of curvature, since the driver
is particularly sensitive to lateral acceleration and yaw rate,
which occur while the vehicle turns, and hence the difference
in turning behavior (i.e., in path curvature) should be limited.

In this paper, we first propose some extensions to RRT*
to adapt to path planning for semi-autonomous driving. In

1G2 stands for geometric continuity of 2nd order, which is a less stringent
condition of C2 continuity, but often more appropriate for geometric curves



particular, we use a two stage sampling to bias the growth
of the random tree such that it can explore the whole
environment rapidly, but also refine the path returned to
improve the level of optimality of the solution. Also, the
cost function penalizes the non-smoothness of the path. We
also penalize the difference between the curvature of the
RRT* path and the reference path, since in semi-autonomous
driving it is expected that the maneuver path should be
close to the estimated driver path in terms of curvature.
Next, because of the randomness of RRT*, the path returned
by RRT* often has some unnecessary waypoints. To deal
with this problem, we propose an algorithm to remove such
redundant waypoints, and we use the smoothing technique
proposed in [11] to obtain a G2 continuous path. To enable
our algorithm to deal with sudden changes in environment,
like [12] we apply the replanning procedure to update the
path after changes in environment are detected, while avoid-
ing full recomputation due to the the limited available time.
Thus, the proposed algorithm generates paths that are G2

continuous and minimize the modifications to the estimated
driver path, improves path quality by a two stage sampling,
and reacts to changes in the environment in a real-time
manner.

The rest of the paper is organized as follows. The path
planning problem is formulated in Section II. The algorithm
is introduced in Section III. Results of simulations are given
in Section IV, and conclusions are drawn in Section V.

II. PROBLEM FORMULATION

Denote a configuration of the vehicle in a 2D environment
by x := (px, py, ψ), where px and py are the x and y
coordinates of the vehicle’s position, and ψ is the orientation
of the vehicle, ψ ∈ (−π, π]. In the remainder of this paper,
we also use x = (p, ψ) to denote a configuration, where p =
(px, py) is the position of the vehicle in the 2D environment.
Denote the initial configuration and goal configuration of
the vehicle by xinit and xgoal, respectively. Denote the
bounded and connected configuration state space by X ∈ R3.
Denote the obstacle region and the obstacle-free region in
the configuration space by Xobs and Xfree := X \ Xobs,
respectively. A feasible path in the configuration space is
σ : [0, S] 7→ Xfree, where S is the total length of the path.
Denote by ΣXfree

all the feasible paths in Xfree. Denote
by σx1,x2

the path between two states x1 and x2. Denote a
reference path in X by σref , where we note that σref is in
X , but not necessarily in Xfree. Let c : ΣXfree

7→ R≥0 be
the cost function, which assigns a non-negative cost to all
nontrivial collision-free paths. We assume that c is additive,
that is, if x2 is a point on the path connecting x1 and x3,
then c(σx1,x3

) = c(σx1,x2
)+c(σx2,x3

). Denote by σ∗x1,x2
the

optimal path connecting x1 and x2 with respect to c and the
corresponding optimal cost by c∗x1,x2

:= c(σ∗x1,x2
). Given a

tree T = (V,E) rooted at xroot, for any vertex v ∈ V inside
the tree, Cost(v) is the optimal cost of the path from the root
to v, that is, Cost(v) := c∗xroot,v . The path planning problem
for semi-autonomous driving is as follows.

Problem 1: Given a bounded and connected configuration
space X , an obstacle region Xobs, an initial state xinit ∈
Xfree, a goal state xgoal ∈ Xfree and a twice continuously
differentiable reference path σref , find a G2 continuous path
σ∗ : [0, S] 7→ Xfree such that (i) σ∗(0) = xinit and σ∗(S) =
xgoal , and (ii) c(σ∗) = minσ∈ΣXfree

c(σ), where c(σ) is
a cost function which penalizes the difference of curvatures
between the reference path σref and σ. If no such path exists,
report failure.

III. PATH PLANNING FOR SEMI-AUTONOMOUS DRIVING

In this section, we combine Rapidly-exploring Random
Tree Star (RRT*) with some smoothing techniques to get
a G2 continuous path for semi-autonomous driving. We
first discuss our planning algorithm in the case of a static
environment, then propose a replanning procedure to deal
with dynamic environments.

A. RRT*

Before we present our algorithm, we first introduce the
primitive procedures used in RRT*.

Sampling: The function SampleFree : Z>0 7→ Xfree

returns independent identically distributed (i.i.d.) samples
from Xfree. In this paper, the samples are assumed to be
uniformly distributed. In Figure 1, SampleFree returns xrand.

Nearest Neighbor: Given a tree T = (V,E) and a point
x ∈ Xfree, the function Nearest : (T, x) 7→ v returns a
vertex v ∈ V which is closest to x in terms of a cost
metric, that is, Nearest(T, x) := argminv∈V c

∗
v,x. In Figure 1,

Nearest returns xnearest.
Steering: Given two states x1, x2 ∈ Xfree and a positive

real number η ∈ R>0, the function Steer : (x1, x2, η) 7→ x3

returns a state x3 ∈ Xfree such that x3 is a point on the
optimal path connecting x1 and x2. In this paper, x3 =
Steer(x1, x2, η), where x3 = (p3, ψ3) ∈ σ∗x1,x2

such that
‖p3 − p1‖ ≤ η, ψ3 = ψ2, and where η is the extension
segment length in RRT*. Thus, x3 is relatively close to
x1 to have negligible probability that the path from x1 to
x3 collides with obstacles, we limit the Euclidean distance
between x1 and x3 to η. In Figure 1, Steer returns xnew.

Near Vertices: Given a tree T = (V,E), a state x =
(p, ψ) ∈ Xfree and a positive real number r ∈ R>0, the
function Near : (T, x, r) 7→ V

′ ⊆ V returns the vertices
in V that are in a neighborhood of radius r from x. That
is, Near(T, x, r) = {v = (pv, ψv) ∈ V, | ‖pv − p‖ ≤ r}. We
choose r as a function of the number of vertices in the tree,
and specifically, r(|V |) = min{γ(log |V |/|V |)1/2, η}, where
γ > γ∗ = (2(1 + 1/d)1/dµ(Xfree)/ζ2)1/d, µ(Xfree) is the
volume of the free space, ζd is the volume of the unit ball in
Rd, and |V | denotes the number of vertices in V . In Figure
1, Near returns x1, x2, x3.

Collision Test: Given two states x1, x2 ∈ Xfree, the
Boolean function CollisionFree(x1, x2) returns True if the
optimal path σ∗x1,x2

between x1 and x2 lies in Xfree and
False otherwise.

More details on RRT* and its primitives are in [3].



Fig. 1. Example of tree expansion in RRT*.

B. Path Planning in Static Environment

Next, we adapt RRT* to generate a path for semi-
autonomous driving subject to global and local constraints,
where global constraints are expressed in terms of path
properties, and local constraints are expressed in terms of
node properties. A global constraint is to avoid obstacles,
which can be static or dynamic. We first discuss our planning
algorithm in an environment with static obstacles and later
we extend our work to consider dynamic obstacles. For static
environment, we assume that we know the geometry, position
and orientation of the obstacles. Furthermore, under normal
conditions, the vehicle moves along a reference path, e.g.,
a driver commanded path, and we assume that we know an
estimate of this path in advance. However, such a reference
path may collide with obstacles, for example, a stopped
vehicle, or a pedestrian on the road, or a lane obstacle. In
these situations, we expect that the vehicle maneuvers to
avoid such obstacles without excessive deviation from the
reference path. Thus, we need to plan a path that starts
from the reference path, performs the needed maneuvers and
comes back to the reference path.

The local constraints are related to the kinematic and
dynamic behavior of the vehicle. The main kinematic con-
straint considered in this paper is that the curvature κ of the
maneuver path needs to be close to the reference curvature
κref of the reference path. For the dynamic constraints, the
curvature should be continuous since discontinuities in the
curvature may cause infinite variations of lateral accelera-
tion and velocity which, obviously, cannot be achieved in
practice. Hence, the path returned by the planning algorithm
should be at least second order differentiable. In this work,
we search for a G2 continuous path, which means that
two consecutive segments of the path should have the same
tangent line and the same center of curvature at their joint
point. In order to find a path satisfying these constraints, we
propose the following modifications to RRT*.

1) Two Stage Sampling: In this work we sample in the
configuration space. That is, we sample the position of the
vehicle as well as its orientation (pxrand

, pyrand
, ψrand),

where (pxrand
, pyrand

) is sampled uniformly from the
bounded environment and ψrand is sampled uniformly be-
tween (−π, π]. The reason for sampling the orientation is
that we require smoothness of the path and we want to limit
the orientation change between two consecutive waypoints.
Also, we use the orientation to remove redundant waypoints
from the returned path, thus achieving a further smoothing of

the path, as described later. The sampling takes place in two
stages. In the first stage, we sample in the whole environ-
ment. In this stage, the goal of sampling is to rapidly explore
the entire environment and to find a good enough path
between the initial configuration and the goal configuration.
After such a path is found in the first stage, then the sampling
enters into the second stage. In the second stage, we sample
in the neighborhood of the waypoints and refine the path.
Given a path with waypoints {xinit, x1, x2, . . . , xn, xgoal},
we first choose a waypoint from these waypoints randomly,
denote the randomly chosen waypoint by xi, then we sample
uniformly in the cylinder centered at this chosen waypoint
Cxi,r′ := {x = (p, ψ) ∈ X|‖p − pi‖ ≤ r′, |ψ − ψi| ≤ δ}.
Here, the radius of the ball is usually chosen as r′ = η, where
η is the extension segment length of RRT*, and δ is usually
chosen in (0, π2 ]. When executing the algorithm, we usually
draw more samples in the first stage than in the second stage.
The reason is that it is important to let RRT* explore the
entire environment thoroughly to find a good enough path
before entering into the second stage to perform refinement.

2) Cost Function: Given two states x1 = (p1, ψ1) and
x2 = (p2, ψ2), where p1 = (px1 , py1) and p2 = (px2 , py2),
we choose the cost function as follows.

c(σx1,x2
) = w1‖p1 − p2‖+ w2(θ1 + θ2)

+ w3

(
κ(x1)− κref (x1, σref )

)2
(1)

where w1 is the weight on the Euclidean distance, w2 is
the weight on the smoothness of the path, and w3 is the
weight on the difference between the curvature of the RRT*
path and the reference path, ‖·‖ is the Euclidean norm, θ1

is the angle between ψ1 and the vector −−→p1p2. Specifically,
θ1 = u1·−−→p1p2

‖−−→p1p2‖
, u1 = [cos(ψ1), sin(ψ1)]T . Similarly, θ2 is

the angle between ψ2 and the vector −−→p1p2, θ1, θ2 ∈ [0, π].
κ(x1) is the curvature at vertex x1 and κref (x1, σref ) is the
corresponding reference curvature at x1. Next we show how
to calculate κ(x1) and κref (x1, σref ) given x1, x2 and σref .

In the smoothing procedure, we will use G2 Continuous
Cubic Bézier Spiral (G2CBS) to connect two edges [11].
Because of this, we use the maximum curvature of the
G2CBS curve as the curvature at the joining vertex of the
two edges, see Figure 2(a). Let vertex x1 be given and its
parent in the tree be xparent = (pparent, ψparent), then the
magnitude of the curvature at x1 is given by

|κ(x1)| = q4 sinβ

L cos2 β
(2)

where q4 is a parameter satisfying q1 = 7.2364, q2 = 2
5 (
√

6−
1), q3 = q2+4

q1+6 , q4 = (q2+4)2

54q3
, β = γ

2 and γ is the angle
between the vector −−−−−−→pparentp1 and the vector −−→p1p2, β ∈ [0, π2 ],
and L is the distance between B0 and p1. The sign of κ(x1)
is determined by the rotation direction of the unit tangent
vector at p1 in the 2D plane. Specifically, if B0 is the starting
point of the curve and E0 is the end point of the curve, then if
the unit tangent vector rotates counterclockwise, κ(x1) > 0.
Instead, if it rotates clockwise, then κ(x1) < 0. We can



(a) Path smoothing between two edges by
G2CBS.

(b) Based on the proposed cost, x2 is
the nearest neighbor.

(c) Pruning unnecessary waypoints.

Fig. 2. Proposed modifications to RRT* for semi-autonomous driving.

determine the sign of κ(x1) by considering the direction of
the cross product −−−−−−→pparentp1 ×−−→p1p2. That is,

sgn(κ(x1)) =


1 if (−−−−−−→pparentp1 ×−−→p1p2) · ~e > 0

0 if (−−−−−−→pparentp1 ×−−→p1p2) · ~e = 0

−1 if (−−−−−−→pparentp1 ×−−→p1p2) · ~e < 0

(3)

where ~e is a unit vector perpendicular to both −−−−−−→pparentp1

and −−→p1p2 which completes a right-handed system. Here
(−−−−−−→pparentp1 × −−→p1p2) · ~e = 0 means −−−−−−→pparentp1 and −−→p1p2 are
collinear, and the curvature is κ(x1) = 0.

We compute κref (x1, σref ) by projecting x1 to a point
on the reference path σref and using the curvature of the
resulting point as reference curvature for x1. In this work,
we use the nearest point projection,

κref (x1, σref ) = κ(argminxref∈σref
‖pref − p1‖) (4)

where xref = (pref , ψref ) is any point on σref . One
advantage of (4) is that the reference curvature of each vertex
inside the tree needs only to be calculated once. After it is
calculated, we can store it in memory, and use it in later tree
expansions. This is computationally efficient, especially for
the case of a large number of iterations in RRT*. Based
on cost function (1), the nearest neighbor is selected by
calculating the cost from each vertex to the random node
and by setting the vertex which has the lowest cost as the
nearest neighbor to the random node. For example, in Figure
2(b), if the weight on the curvature difference between the
RRT* path and the reference path is increased, x2 is the
nearest neighbor. If the focus is on reducing the Euclidean
distance and hence w1 is (relatively) large, x1 is the nearest
neighbor.

3) Root of the Tree and Path Found Criterion: We set
the RRT* tree root at xgoal, which is especially useful
in the case of dynamic obstacles. When the environment
changes, we need to remove the branches of the tree that
collide with obstacles. Since our goal is to find a path
leading to xgoal, we would like not to remove the branch
leading to xgoal. If we set the tree root at xgoal, the branch
leading to xgoal is never removed unless the entire tree
becomes invalid, which seldom happens and usually requires
a goal state re-definition. As for the stopping criterion, the
algorithm will return a path between xinit and xgoal when
it generates a random node inside the cylinder centered at

xinit = (pinit, ψinit) and the path connecting the random
node to xinit is collision free. The cylinder is defined as
Cxinit,η,Ψ := {x = (p, ψ) ∈ X|‖p−pinit‖ ≤ η, |ψ−ψinit| ≤
Ψ}, where Ψ is the maximum yaw difference between ψinit
and its parent’s configuration.

4) Remove Redundant Points: Because of the randomness
of the algorithm, there are some unnecessary waypoints in
the path returned by RRT*. We can remove the redundant
waypoints as follows. Let the waypoints returned by RRT*
be σ = {x0, x1, x2, . . . , xn, xn+1}, where xi = (pi, ψi),
x0 = xinit and xn+1 = xgoal. Let the pruned path be σp,
set σp = ∅, and let j = n+ 1. The pruning algorithm works
as follows. Add xj to σp. Starting from x0, find all the
waypoints in {x0, x1, . . . , xj−1} such that σ∗xi,xj

(i ∈ [0, j−
1]) is collision free, denote these waypoints by Xcandidate.
For all the xk ∈ Xcandidate, find the one which minimizes
(θk+θj), where θk =

uk·−−→pkpj
‖−−→pkpj‖

, uk = [cos(ψk), sin(ψk)]T and

θj =
uj ·−−→pkpj
‖−−→pkpj‖

, uj = [cos(ψj), sin(ψj)]
T . Then let j = k and

repeat this process until k = 0, that is, a pruned path is found
between xinit and xgoal. An example of pruning is given in
Figure 2(c). The pseudo code of the pruning algorithm is
shown as Algorithm 1.

5) Smoothing: We use G2 Continuous Cubic Bézier Spi-
ral (G2CBS) [11] to generate a continuous curvature path
between two consecutive line segments, see Figure 2(a). A
Bézier curve is defined as

P (s) =

n∑
i=0

(
n
i

)
(1− s)n−isiPi (5)

where n is the degree of the Bézier curve, s ∈ [0, 1], Pi are
the control points. As in [11], the eight control points in (5)
are

B0 = p1 + Lu1, B1 = B0 − gbu1, B2 = B1 − hbu1

B3 = B2 + kbud, E0 = p1 + Lu2, E1 = E0 − geu2

E2 = E1 − heu2, E3 = E2 − keud

where u1 is the unit vector along the line −−−−−−→x1xparent, u2 is
the unit vector along the line −−→x1x2, ud is the unit vector
along the line

−−−→
B2E2, and

hb = he = q3L, gb = ge = q2q3L, kb = ke =
6q3 cosβ

q2 + 4
L



Algorithm 1 Removal of Redundant Points
Input: σ = {x0, x1, x2, . . . , xn, xn+1};

1: xj ← xn+1; σp ← ∅;
2: while 1 do
3: Add xj to σp;
4: Xcandidate ← ∅;
5: for i=0 to i=j-1 do
6: if CollisionFree(xi, xj) then
7: Add xi to Xcandidate;
8: end if
9: end for

10: xmin ← xk ∈ Xcandidate;
11: Jmin ← (

uk·−−−→pkpj
‖−−−→pkpj‖

+
uj ·−−−→pkpj
‖−−−→pkpj‖

);
12: for each xk′ ∈ Xcandidate \ {xk} do
13: J ← (

uk′ ·−−−→pk′pj
‖−−−→pk′pj‖

+
uj ·−−−→pk′pj
‖−−−→pk′pj‖

);
14: if J < Jmin then
15: Jmin ← J , xmin ← xk′ ;
16: end if
17: end for
18: xj ← xmin;
19: if xj == x0 then
20: Add x0 to σp;
21: Break while loop;
22: end if
23: end while
24: return σp;

where β = γ
2 and γ is the angle between vector −−−−−−→xparentx1

and −−→x1x2. The parameters q1, q2, q3, q4 are

q1 = 7.2364, q2 =
2

5
(
√

6−1), q3 =
q2 + 4

q1 + 6
, q4 =

(q2 + 4)2

54q3
,

(6)
L is the distance between p1, where x1 = (p1, ψ1), and B0,
and it is also the distance between p1 and E0. Based on this,
we choose L as,

L = min

{
min{‖−−−−−−→pparentp1‖, ‖−−→p1p2‖}

2
,
η

2

}
. (7)

The reason for choosing L by (7) is that one edge is used
twice for smoothing, so 2L should be less than or equal
to min{min{‖−−−−−−→pparentp1‖, ‖−−→p1p2‖}, η}. By the smoothing
technique, we obtain a G2 continuous path between pinit
and pgoal. If we also require that the path is continuous at
pinit and pgoal, we add one waypoint in the yaw direction
ψinit and one waypoint in the yaw direction ψgoal, and then
use RRT* to find a set of waypoints between these two new
waypoints. After this, we apply the smoothing technique to
all the waypoints from pinit to pgoal, which results in a
G2 continuous path between pinit and pgoal, which is also
smooth at both pinit and pgoal.

C. Path Planning in Dynamic Environment

Next, similar to [12], we propose a replanning method-
ology when changes occur in the environment. We assume
that we can quickly capture the changes in the environment
and need to rapidly replan if the original path is affected
by such changes. There are two choices for replanning.
Obviously, one can replan from scratch, which however
is a computationally expensive operation, especially if the
environment changes frequently. On the other hand one

can modify the original planning information and perform
only minimal computation to adjust the path to the new
environment. In this paper, we use the second approach since
it reduces the computations, and hence the time to obtain the
new path. The replanning procedure consists of trimming the
tree and regrowing the tree. When a new obstacle appears
or an obstacle changes position, first the edges which collide
with the new obstacles are found. For each edge, we denote
the two endpoints as parent endpoint and child endpoint,
respectively. For all the edges which intersect with obstacles,
we mark their child endpoints as invalid. After all the child
endpoints are marked, we check whether the original path
from xinit to xgoal has any invalid nodes. If it has, then
we trim and regrow the tree. Trimming is performed by
traversing through each node of the tree and marking all
the child of the invalid nodes as invalid. Then, all the invalid
nodes and the edges connecting to them are removed from
the tree. After the tree is trimmed, it can be grown again
to find a new path. When regrowing the tree, it is usually
enough to generate samples in the neighborhood of the area
affected by the new obstacles, which can generate a new
branch to cover this area and find a new path quickly with
reduced computations. The pseudocode of the replanning
procedure is given as Algorithm 2.

Algorithm 2 Replanning
Input: σ = {x0, x1, x2, . . . , xn, xn+1}, T = (V,E), Xobs;

1: for each e ∈ E do
2: Let the two endpoints of e be: xep → xec;
3: if not CollisionFree(xep, xec) then
4: Mark xec as INVALID;
5: end if
6: end for
7: if σ does NOT have any INVALID nodes then
8: return σ;
9: else

10: Vvalid = ∅;
11: for each node xi ∈ V do
12: xp = Parent(xi);
13: if xp is INVALID then
14: Mark xi as INVALID;
15: end if
16: if xi is VALID then
17: Vvalid ← xi;
18: end if
19: end for
20: Delete all the INVALID nodes from the tree;
21: Apply RRT* to regrow the tree;
22: Return a new path σnew;
23: end if

Our planning algorithm for semi-autonomous driving is
summarized as Algorithm 3.

Algorithm 3 Path Planning for Semi-Autonomous Driving
Input: xinit, xgoal ∈ X , σref ;

1: Run RRT* algorithm with stage one sampling;
2: Run RRT* algorithm with stage two sampling;
3: Remove redundant waypoints by Algorithm 1;
4: Apply smoothing technique to get G2 continuous path;
5: If environment changes, replan by Algorithm 2;
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(b) Current vehicle position be-
fore obstacle moves.
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(c) Obstacle moves and tree is
trimmed.
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(d) The magenta curve is the re-
planned path.

Fig. 3. Black blocks: obstacles. Dashed red curve: reference path. Solid curve: planned smooth path. Blue paths: random tree. Yellow dot: vehicle.

D. Computational Complexity

As discussed in [3], the computational complexity of
RRT* is O(N logN). In our algorithm, we have added the
replanning procedure which needs to traverse the tree, which
we perform by depth-first search (DFS). The time complexity
of DFS is O(N) [13], and hence the computational complex-
ity Algorithm 3 is still O(N logN).

IV. NUMERICAL SIMULATIONS

This section presents numerical simulations of Algo-
rithm 3. We consider planning a maneuvering path for
the semi-autonomous vehicle on a roadway. We choose
the parameters of the simulation as follows. The initial
configuration and final configuration are xinit = (120, 45, 0)
and xgoal = (0, 5, 0), respectively. The tree is rooted at
xroot = xgoal. For the primitive procedures, we choose
η = 5 for the Steer function. The parameter γ in the function
Near is chosen as γ = (2(1 + 1/2)1/2µ(Xfree)/ζ2)1/2 + 1.
In the second stage of sampling, δ is set to π

4 . In the stopping
criterion, Ψ is chosen as π

6 . Figure 3(a) shows the path
returned by our algorithm with different weights in the cost
function. The blue curve is the smoothed path under the
cost which only penalizes the Euclidean distance. It gives
the shortest distance curve between xinit and xgoal. The red
curve emphasizes the difference between the curvature of
the RRT* path and the one of the reference path. From
Figure 3(a) we see that it is significantly closer to the
reference path in terms of curvature.

When the vehicle starts moving along the path returned
by our algorithm (see Figure 3(b)), if some obstacles move
to another position or a new obstacle is detected, we need to
replan. When replanning, we first trim the tree and remove
the branches which collide with the obstacles, see Figure
3(c). Based on the trimmed tree, we use RRT* to find a
new path between the current vehicle position and the goal
position. Figure 3(d) shows the path found by the replanning
procedure.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed an RRT*-based algorithm
for semi-autonomous vehicles. Our algorithm is based on a
two stage sampling, which accounts for obstacle avoidance,
path length, and also path curvature and curvature difference
with an estimated driver reference path. A smoothing tech-
nique is applied to get a G2 continuous path. By applying
the replanning procedure, our algorithm can also deal with

sudden changes in the environment. The two stage sampling
and the replanning procedure rapidly provides new and
updated paths. This work can be extended to deal with
uncertain environment, such as in presence of uncertainty in
obstacle positions. Also, the vehicle dynamics can be taken
into account, for instance, following the ideas in [14] which
considers the differential constraint on the vehicle dynamics.
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