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Decomposition via ADMM for Scenario-Based Model Predictive Control

Jia Kang1, Arvind U. Raghunathan2 and Stefano Di Cairano2

Abstract— We present a scenario-decomposition based Al-
ternating Direction Method of Multipliers (ADMM) algorithm
for the efficient solution of scenario-based Model Predictive
Control (MPC) problems which arise for instance in the control
of stochastic systems. We duplicate the variables involved in
the non-anticipativity constraints which allows to develop an
ADMM algorithm in which the computations scale linearly in
the number of scenarios. Further, the decomposition allows
for using different values of the ADMM stepsize parameter
for each scenario. We provide convergence analysis and derive
the optimal selection of the parameter for each scenario. The
proposed approach outperforms the non-decomposed ADMM
approach and compares favorably with Gurobi, a commercial
QP solver, on a number of MPC problems derived from
stopping control of a transportation system.

I. INTRODUCTION

Model predictive Control (MPC) [1] exploits a model of
the plant to be controlled, that usually includes constraints
on inputs and states, to predict the future plant behavior
and to accordingly select the control action that provides
the most desirable predicted response. The selection of the
control action is performed by solving a finite horizon
optimal control problem initialized at the current state of the
system and retaining only the first portion of the solution
as control action. In particular for plant models described by
linear systems subject to polyhedral constraints, the resulting
problem is a Quadratic Program (QP), which can be solved
by many different algorithms, fast gradient [2], multiplicative
dual update [3], and ADMM [4]–[7] being examples of
methods that perform many simple iterations, and interior-
point [8] and active-set [9] being examples of methods that
perform fewer, more complex iterations.

Scenario-based MPC is a technique for model-based con-
trol of stochastic systems inspired by the scenario enumer-
ation approach of stochastic programming [10]. In [11] a
scenario-based stochastic MPC was proposed which results
in a tree structure, where only the nodes that are more likely
to realize are expanded. The approach in [11] was applied to
problems from the automotive industry [12], [13], where the
scenario-based MPC showed effective performance. How-
ever, the computational cost associated with solving the
stochastic MPC increases cubically with the number of
scenarios unless the problem structure is exploited. Further-
more, in [11]–[13] high performance solvers are used, which
requires significant resources and have complex code and
thus are challenging to implement in embedded systems due
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to platform limitations, and code verification requirements.
In this paper we address how to use simple algorithms that
are suitable also for embedded control architectures and that
use the scenario-based MPC problem structure to speed up
the computation of the solution.

We propose a decomposition approach for scenario-based
MPC problems. In particular, we consider the ADMM al-
gorithm of [6], [7] wherein the optimal step-size parameter
was derived. The formulation in [7] does not allow to exploit
the structure inherent in scenario-based MPC problem. Here,
we describe an ADMM formulation that involves an equality
constrained quadratic program (QP) which decouples by
scenario and a projection problem whose computation scales
linearly in the number of scenarios. Our numerical results
show that similar to IPMs, the ADMM algorithm converges
in a constant number of iterations regardless of the number
of scenarios and the length of the MPC horizon. This
property combined with the simplicity of the iterations makes
the algorithm particularly well-suited for embedded control
applications. Further, we allow the ADMM parameter to be
chosen differently for each scenario. We present convergence
analysis and derive the optimal ADMM parameter for each
scenario. While a similar decomposition has been proposed
independently and almost concurrently in [14], here we
exploit the results of [6], [7] to analyze the ADMM algorithm
and to obtain the optimal value for the ADMM parameter.

The paper is organized as follows. Mathematical formu-
lation of the scenario-based MPC is provided in Section II.
The ADMM algorithm of [6], [7] is presented in Section III.
Section IV describes the ADMM algorithm with scenario
decomposition. Section V provides a short convergence anal-
ysis for the scenario decomposition based ADMM algorithm.
Numerical results are provided in Section VI, followed by
conclusions in Section VII.

Notation: We denote by R,R+ the set of reals and set
of non-negative reals, respectively, and by Sn the set of
symmetric n × n matrices. All vectors are assumed to be
column vectors. For a vector x ∈ Rn, xT denotes its
transpose and for two vectors x, y, (x, y) = [xT yT ]T . For a
matrix A ∈ Rn×n, ρ(A) denotes the spectral radius, λi(A)
denotes the eigenvalues and λmin(A), λmax(A) denote the
minimum and maximum eigenvalues. For a matrix A ∈ Sn,
A � 0 (A � 0) denotes positive (semi)definiteness. We
denote by In ∈ Rn×n the identity matrix. The notation
λ ⊥ x ∈ Y denotes the inequality λT (x′−x) ≥ 0, ∀x′ ∈ Y ,
which is also called the variational inequality. We use ‖ · ‖
to denote the 2-norm for vectors and matrices. A sequence
{xk} ⊂ Rn converging to x∗ is said to converge Q-linear
rate if ‖xk+1 − x∗‖ ≤ r‖xk − x∗‖ where 0 < r < 1. We



denote by {xk} → x̄ the convergence of the sequence to x̄.

II. PROBLEM DESCRIPTION

Consider the uncertain discrete-time linear prediction
model of a plant, possibly augmented with additional states
for enforcing control specifications,

x(k + 1) = A(dp(k))x(k) +B(dp(k))u(k) + Fda(k) (1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the control
input vector, dp(k) ∈ Rnp are uncertain parameters which
can vary over the time-steps, da ∈ Rnd is an unmeasured
disturbance vector, and A ∈ Rnx×nx , B ∈ Rnx×nu , F ∈
Rnx×nd are the state, control and disturbance transfer matri-
ces, respectively.

At every discrete time step k ∈ Z, k ≥ 0, given the current
state x(k), the scenario-based MPC solves the problem,

min
{(xr,ur)}Nr

r=1

Nr∑
r=1

αrφ(xr, ur)

s.t. xr,t+1 = Ar,txr,t +Br,tur,t + Fdar,t

(xr,t+1, ur,t) ∈ Xr,t+1 × Ur,t
t = 0, . . . , N − 1, r = 1, . . . , Nr

xr,0 = x(k)

u1,0 = . . . = uNr,0

(2)

where αr ∈ [0, 1] is the probability for the particular
scenario r and

∑Nr

r=1 αr = 1, dr = (dar,0, . . . , d
a
r,N−1) for

r = 1, . . . , Nr are Nr different realizations of the uncertain
parameter and disturbance vector, ur = (ur,0, . . . , ur,N−1),
by xr = (xr,1, . . . , xr,N ) denote the set of states and control
trajectories for each of those realizations. The sets Xr,t,Ur,t
are polyhedral sets defining the feasible region for the states
and controls. The objective function in (2) is defined as,

φ(xr, ur) :=
1

2

N−1∑
t=0

(
xTr,tQx,rxr,t + uTr,tRu,rur,t

)
+

1

2
xTr,NPrxr,N

(3)

where Qx,r, Pr ∈ Rnx×nx are stage and terminal cost
matrices on the state, respectively, Ru,r ∈ Rnu×nu is the
stage cost matrix for the controls. Typically, Ru,r � 0 and
Qx,r, Pr � 0. Note that (3) also allows to formulate a
reference tracking objective by setting Qx,r = CTQε,rC,
Qε,r ∈ Rne×ne , Pr = CTPε,rC, Pε,r ∈ Rne×ne , where
εr = Cxr , ε ∈ Rne×ne , ne < nx models the tracking error
for a reference model embedded in (1).

Stochastic MPC solves (2) to find the optimal input
sequence {u∗r}

Nr
r=1, and then applies to the system the control

input u(k) = u∗r,0 for any r since the constraints in (2)
ensure that the control for t = 0 is identical across the
scenarios. These constraints are called the non-anticipativity
conditions [15] and result in: (i) computing one control
action at time step k regardless of the manifestation of the
uncertainty, and (ii) allowing to recompute a different control
action at time step k + 1 once the uncertainty manifests at
time step k. Thus, the formulation in (2) is an instance of

two-stage stochatic QP [15]. For simplicity of exposition,
we restrict our attention to the two-stage formulation in (2)
though the methods described here can be easily extended to
multistage stochastic QPs. We introduce additional variables
ȳr that are equated to the controls in the first time-step i.e.,

ȳr = ur,0 ∀ r = 1, . . . , Nr.

Through the introduction of ȳr, we pose (2) as,

min
{yr}

Nr
r=1

Nr∑
r=1

(
1

2
yTrQryr + qTr yr

)
s.t. Aryr = br ∀ r = 1, . . . , Nr

yr ∈ Yr ∀ r = 1, . . . , Nr

ȳ1 = . . . = ȳNr

(4)

where,

yr = (yr, ȳr), yr = (xr, ur), qr = 0

Qr = αr


IN−1 ⊗Qx,r 0 0 0

0 Pr 0 0
0 0 IN ⊗Ru,r 0
0 0 0 0


br = (Ar,1x(k) + Frd

a
r,0, . . . , Frd

a
r,N−1, 0)

Yr = Xr,1 × . . .Xr,N × Ur,0 × . . .Ur,N−1︸ ︷︷ ︸
=:Yr

×Rnu .

The matrix Ar is defined so that,

Ar =

(
Âr −B̂r 0
0 −Inu

⊗ eT1 Inu

)

where, Âr =


Inx 0 . . . 0 0
−Ar,1 Inx

. . . 0 0
...

...
. . .

...
...

0 0 . . . Inx
0

0 0 . . . −Ar,N−1 Inx


and B̂r =

−Br,0 . . . 0
...

. . .
...

0 . . . −Br,N−1


and e1 ∈ RN is the first vector of the standard basis of RN ,
i.e., the first component is 1 and the others are 0. The set
Yr is assumed to be of the form Yr = {yr | ymin ≤ yr ≤
ymax} where −∞ ≤ ymin

i < ymax
i ≤ ∞ for i = 1, . . . , n.

The assumption on Yr is imposed for computational reasons,
while the results of this paper can be easily extended to
general convex sets. We show in the next section the ADMM
formulation for the stochastic QP, where the structure of the
two-stage stochastic QP formulation is not exploited.

III. ADMM FOR THE FULL TWO-STAGE STOCHASTIC QP

Consider formulating the stochastic MPC in (4) as,

min
y

1

2
yTQy + qTy

s.t. Ay = b

y ∈ YND

(5)



where y = (y1, . . . ,yNr
), YND = Y1 × · · · × YNr

, and
the equality constraints Ay = b represent all the equality
constraints defined in (4), i.e., the system dynamics for
each scenario and the non-anticipativity constraints between
scenarios. Consider the following modification of (5) as
proposed in [6], [7],

min
y,w

1

2
yTQy + qTy

s.t. Ay = b,w ∈ YND

y = w

(6)

where w ∈ Rn are introduced and required to lie in the
convex set YND. The steps in the ADMM algorithm are

yl+1 = arg min
y

L(y,wl,λl) s.t. Ay = b

= M(wl + λl − q̃) +Nb (7a)
wl+1 = arg min

w
L(yl+1,w,λl) s.t. w ∈ YND

= PY(yl+1 − λl) (7b)
λl+1 = λl +wl+1 − yl+1 (7c)

where βλ are multipliers for the constraint y = w in (6),

q̃ = q/β, M := Z
(
ZT (Q/β + In)Z

)−1
ZT , N :=

(In−MQ/β)R(AR)−1, and R,Z denote an orthonormal
basis for the range space of AT and null space of A,
respectively. The following result was shown in [7]. A key
assumption in the proof is that the Linear Independence
Constraint Qualification (LICQ) [16] holds at the solution.

Theorem 1 (Theorem 1 & 2 [7]): Suppose that the
QP (5) has a solution, LICQ holds at the solution and
ZTQZ � 0. Then, the iterates {(wl,λl)} generated by the
ADMM algorithm (12) converge at a 2-step Q-linear rate to
the solution of (5). Furthermore, the optimal step-size β∗

that maximizes the rate of convergence is given by√
λmin(ZTQZ)λmax(ZTQZ). (8)

The algorithm based on (7) performs a simple iteration
that can be executed in an embedded microcontroller, but it
still does not exploit the structure of the stochastic QP, and
hence may have limited performance in terms of computing
time. The next section presents an ADMM algorithm that
scales linearly in the number of scenarios.

IV. SCENARIO DECOMPOSITION-BASED ADMM

Consider the formulation of the stochastic MPC in (4),

min
{yr}

Nr
r=1

Nr∑
r=1

(
1

2
yTrQryr + qTr yr

)
s.t. Aryr = br ∀ r = 1, . . . , Nr

y ∈ Y SD

(9)

where Y SD is defined as

Y SD =

{
(y1, . . . ,yNr

)

∣∣∣∣ yr ∈ Yr ∀ r = 1, . . . , Nr
ȳ1 = . . . = ȳNr

}
.

(10)

Observe that the non-anticipativity constraints are accounted
for in the convex set Y SD. Consider the following modifica-
tion of QP (9) based on [6], [7],

min
y,w

Nr∑
r=1

(
1

2
yTrQryr + qTr yr

)
s.t. Aryr = br ∀ r = 1, . . . , Nr

y = w,w ∈ Y SD

(11)

where y = (y1, . . . ,yNr
) ∈ Rn with n = Nr(N(nx+nu)+

nu). The steps in the ADMM algorithm are

yl+1 = arg min
y

Nr∑
r=1

Lr(yr,w
l
r,λ

l
r) (12a)

s.t. Aryr = br ∀ r = 1, . . . , Nr

wl+1 = arg min
w∈Y SD

Nr∑
r=1

Lr(y
l+1
r ,w,λlr) (12b)

λl+1 = λl +wl+1 − yl+1. (12c)

where Lr(yr,wr,λr) := 1
2y

T
rQryr +qTr yr

+βr

2 ‖yr −wr − λr‖2. The update step of λ in (12c)
scales linearly in the number of scenarios. The following
shows that the same holds for (12a) and (12b).

Proposition 1: The computational cost for the update
in (12) scales linearly in the number of scenarios Nr.

Proof: Observe that the objective functions and con-
traints in (12a) are decoupled by scenarios. Hence, the update
can be rewritten as,

yl+1
r = M r(w

l
r + λlr − qr/βr) +N rbr

where, M r := Zr

(
ZTr (Qr/βr + In)Zr

)−1
ZTr ,

N r := (In −M rQr/βr)Rr(ArRr)
−1,

(13)

and Rr,Zr denote an orthonormal basis for the range space
of AT

r and null space of Ar, respectively. Thus, the update
for y decouples by scenario and scales linearly with the
number of scenarios.

In (12b), the objective function is componentwise separa-
ble in w. Consider the following decomposition of wr as
wr = (wr, w̄r) where wr corresponds to the variables yr
in (4), and w̄r corresponds to ȳr. Using this decomposition
the constraint w ∈ Y SD can be posed as,

wr ∈ Yr ∀ r = 1, . . . , Nr and w̄1 = . . . = w̄Nr
. (14)

Note that w̄r are only constrained by the equality of the
values across scenarios and are not limited by bounds. Hence,
the update in (12b) can be obtained as

wl+1
r = PYr (yl+1

r − λlr)

w̄l+1
r =

1
Nr∑
r=1

βr

Nr∑
r=1

βr(ȳ
l+1
r − λ̄lr) (15)

where we have used λr = (λr, λ̄r). Thus, the update for w
scales linearly in the number of scenarios.



The next section provides a sketch of the convergence
analysis for the ADMM algorithm in (12) and derives the
optimal parameter values β∗r .

V. CONVERGENCE ANALYSIS

We begin by showing that the solutions of (9) are the only
fixed points of ADMM iterations (12). We first state the sta-
tionarity conditions of (9). Suppose y∗ solves (9), then there
exist multipliers ξ∗r for the equality constraints Aryr = br
and multipliers λr for the set inclusion constraints satisfying
the stationary conditions:

Qry
∗
r +AT

r ξ
∗
r − λ

∗
r = −qr

Ary
∗
r = br

(λ∗1, . . . ,λ
∗
Nr

) ⊥ y∗r ∈ Y SD.

(16)

The variational inequality in (16) can be written as,

λ∗r ⊥ y∗r ∈ Yr,
Nr∑
r=1

λ̄∗r = 0. (17)

The following charaterizes the relation between wk+1,λk+1.
Lemma 1: At every iteration of the ADMM algorithm

wl+1,λl+1 in (12) satisfy: (i) λl+1
r ⊥ wl+1

r ∈ Yr and (ii)
Nr∑
r=1

βrλ̄
l+1
r = 0.

Proof: The proof of (i) follows along the same lines as
in Lemma 2 [6] and is omitted. To show (ii), consider

Nr∑
r=1

βrλ̄
l+1
r =

Nr∑
r=1

βr(λ̄
l
r + w̄l+1

r − ȳl+1
r ) = 0

where the first equality follows from multiplying the update
for each scenario in (12c) by βr and summing, the second
equality from w̄l+1

1 = · · · = w̄l+1
Nr

and (15).
Using the above relation we can state the equivalence be-
tween fixed points of (12) and the optimal solutions to (9).
For convenience, βλ will denote (β1λ1, . . . , βNrλNr ) and
λ/β will denote (λ1/β1, . . . ,λNr/βNr ).

Theorem 2: Suppose (9) is feasible. Then, if (y◦,w◦,λ◦)
is a fixed point of (12), (y◦,ξ◦,βλ◦) is a KKT point for (9),
where ξ◦ is the multiplier for the equalities in the subproblem
for y in (12a). Conversely, if (y∗, ξ∗,λ∗) is a KKT point of
(9), (y∗,y∗,λ∗/β) is a fixed point of (12).

Proof: Suppose that (y◦,w◦,λ◦) is a fixed point of
(12). From the update for λ in (12c) we obtain,

λ◦ = λ◦ +w◦ − y◦ =⇒ 0 = w◦ − y◦ =⇒ y◦ ∈ Y SD,

where the second implication follows from (12b). From
Lemma 1, w◦ and βλ◦,w◦ satisfy (17) and hence, the
variational inequality βλ◦ ⊥ y◦ ∈ Y SD holds. From the
update of y in (12), there exist ξ◦ such that(

Qr + βrI AT
r

Ar 0

)[
y◦r
ξ◦r

]
=

[
βrw

◦
r + βrλ

◦
r − qr

br

]
,

i.e., the first order optimality conditions are satisfied. Sub-
stituting βry

◦
r for βrw◦r and simplifying, we obtain that

y◦r , ξ
◦
r , βrλ

◦
r satisfy the first two constraints in (16). Hence,

(x◦, ξ◦,βλ◦) is a KKT point of (9) which implies that y◦

is a minimizer of (9). Thus, the first claim holds.
Suppose that (x∗, ξ∗,λ∗) solves (9). Hence,(

Qr + βrI AT
r

Ar 0

)[
y∗r
ξ∗r

]
=

[
βry

∗
r + λ∗r − qr
br

]
which is obtained from (16) by rearranging and adding βry∗r
to the left and right hand sides of the first equation, which is
the fixed point of the update step of y in (12) with yk+1 =
wk = y∗,λk = λ∗/β. Furthermore, from (17), λ∗r/βr ⊥ y∗r
for all βr > 0, which implies

(λ∗r/βr)
T (v′ − y∗) ≥ 0,∀v′ ∈ Yr

=⇒ (y∗r − y∗r + λ∗r/βr)
T (v′ − y∗r ) ≥ 0, ∀v′ ∈ Yr.

Thus, y∗r = PYr
(y∗r − λ∗r/βr). Further,

Nr∑
r=1

βr(λ̄
∗
r/βr) =

Nr∑
r=1

λ̄∗r = 0 =⇒ w̄∗r = ȳ∗r ,

where the second equality follows from (17) and the
implication from the update step in (15). Consequently,
(y∗,y∗,λ∗/β) is a fixed point of the update step for w
in (12). The fixed point of the update equation in λ holds
trivially, and thus also the second claim holds.

Substituting for yk+1 in (12) and simplifying we obtain,

wk+1 = PY SD
(vk)

λk+1 = (PY SD
− In)(vk)

(18)

where PY SD
(·) is as defined in (15) and vk = (v1, . . . ,vNr

),

vkr = M r(w
k
r + λkr )− λkr −M rq̃r +N rbr. (19)

Using vk, the ADMM iteration can be equivalently cast as,

vk+1 = M SDPY SD
(vk) + (M SD − In)(PY SD

− In)(vk)

−M SDq̃SD +N SDbSD

(20)
where q̃SD = (q̃1, . . . , q̃Nr

), bSD = (b1, . . . , bNr
) and

M SD =

M1 · · · 0
...

. . .
...

0 · · · MNr

 ,N SD =

N1 · · · 0
...

. . .
...

0 · · · NNr

 .

The above formulation is precisely the form analyzed in [7]
and hence the analysis in [7] can be used verbatim after
noting the following result.

Lemma 2: the orthonormal basis for the range and null
space of equality constraints , RSD,ZSD in (9), are given by

RSD =

R1 · · · 0
...

. . .
...

0 · · · RNr

 ,ZSD =

Z1 · · · 0
...

. . .
...

0 · · · ZNr

 .

Proof: The proof follows by noting that the constraints
in (9) decouple by scenario and hence, RSD,ZSD have the
above block-diagonal structure.
We can now state the main result on the optimal value of the
parameter βr that maximizes the rate of convergence. The
results follow directly from the results in [7].



Theorem 3: Suppose (4) has a solution, LICQ holds at
the solution and ZTrQrZr � 0. Then, the iterates {(wl,λl)}
generated by the ADMM algorithm (12) converge at a 2-step
Q-linear rate to the optimal solution of (4). Furthermore, the
optimal step-size β∗r that maximizes the rate of convergence
is given by

β∗r =

√
λmin(ZTrQrZr)λmax(ZTrQrZr). (21)

Proof: The analysis in Theorem 1 in [7] can be applied
to show the two-step Q-linear convergence of {(wl,λl)}.
Further, from Theorem 2 in [7] we have that the maximal
convergence rate can then be obtained by choosing βr as

(β∗1 , . . . , β
∗
Nr

) = arg min
β1,...,βNr

‖2ZTSDM SDZSD − In−m‖.

Since ZTSDM SDZSD is block-diagonal with ZTrM rZr on its
diagonal and each βr affects only M r, we have that

β∗r = arg min
β
‖2ZTrM rZr − Inu

‖.

This proves the claim.

VI. NUMERICAL RESULTS

To test the performance of ADMM [6] presented in Sec-
tion III and scenario decomposition-based ADMM presented
in Section IV on stochastic MPC problems, we implemented
both algorithms in MATLAB R2010b in M-code and also the
corresponding C-mex versions. OpenBLAS [17] was used for
performing the matrix and vector operations. Also, we used
the start-of-the-art solver Gurobi 5.6.2 [18] to benchmark
the performance. All of the solvers have the same MATLAB
interface with our stochastic MPC problems. The tested
stochastic MPC problem comes from the stopping control
of a transportation system [19] with dynamics

d̈(t) =
1

rm
τ(t)− c1

m
ḋ(t)− c0g

m
µ, (22)

where d[m] is the distance from the stop position, ḋ[m/s] is
the velocity, τ [Nm] is the tractive and braking torque, c1 and
c0 are parameters determining the bearing friction and rolling
resistance g = 9.81[m/s2] is the gravity acceleration, and µ
is the friction with the ground. The states and inputs are
subject to constraints dmin ≤ d ≤ dmax, vmin ≤ ḋ ≤ vmax,
umin ≤ u ≤ umax, and we consider µ as the uncertainty for
each scenario. In our tests, the matrices Qr,Ar are identical
across scenarios.

We present computational results for different number of
scenarios (Nr = 2, 4, 8, 16), and different lengths of the
MPC prediction horizon (N = 25, 50, 100). Table I shows
the average (over 10 runs) elapsed time and iterations for all
the three solvers. All timing was performed on a 3.20 GHz
Intel(R) Core(TM) i7-3930K CPU processor with 32 GB
RAM. In Table I ADMM denotes the algorithm presented in
Section III while ADMM-d refers to the algorithm presented
in Section IV. Note that we do not take advantage of
parallelism in the current implementation other than those
offered thorough MATLAB’s and OpenBLAS’s [17] multi-
threaded execution of their subroutines. The termination error

for all three solvers was set to 10−6. The ADMM timing
only reports the elapsed time in ADMM iterations since the
optimal values for βr, the matrix M and the vector Nb are
all precomputed.

Comparing the ADMM MATLAB version with the
ADMM C-mex version, one can see that ADMM MATLAB
is approximately one order of magnitude slower than ADMM
mex. This is as expected since the C++ implementation is
generally 10–20 times faster than the MATLAB implementa-
tion. Comparing ADMM mex with Gurobi, one can see that
ADMM mex is comparable with Gurobi when the problem
size is small. However, ADMM mex becomes less favorable
compared to Gurobi as the problem size increases, since
its timing increases quadratically with the problem size. On
the other hand, the scenario decomposition-based ADMM
(ADMM-d) scales much more favorably and comparably
with Gurobi as the problem size increases. Note that the
barrier method in Gurobi is a second-order Newton-based
algorithm while ADMM is only a first-order algorithm.
Consequently, the convergence of speed of ADMM is slower
than Gurobi, and ADMM is expected to take far more
iterations to reach convergence. Since the number of coupling
constraints for stochastic MPC problems is generally very
small, good speedup is possible [20].

Figure 1 visualizes the ratio of the CPU time for the
ADMM algorithms to the CPU time for Gurobi as we
increase the number of scenarios for 50 and 100 time
steps. Again, we can clearly see that the performance of
ADMM deteriorates compared with Gurobi and ADMM-d
as the problem size increases. ADMM-d is quite comparable
with Gurobi on most instances. We believe that we can
further improve performance of ADMM-d through a parallel
implementation, which will be considered in a subsequent
study.

VII. CONCLUSIONS

We present a scenario-decomposition based Alternating
Direction Method of Multipliers (ADMM) algorithm for the
efficient solution of scenario-based Model Predictive Control
(MPC) problems. The algorithm results in an ADMM formu-
lation involving an equality constrained quadratic program
(QP) which decouples by scenario and a projection problem,
the computation of which scales linearly in the number of
scenarios. Numerical results show that the proposed approach
compares favorably with Gurobi and the computational time
scales well with the increase in scenarios and number of
time-steps in MPC. However, we also note that in the
context of ADMM algorithm if the scenarios vary from MPC
problem to the next then, the overhead in computing some
of the matrices involved in the iterations might outweigh the
gains in the iteration simplicity. Future works will consider
approaches for mitigating this computational burden.
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