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Semi-Active Control of the Sway Dynamics for Elevator Ropes

Mouhacine Benosman

Abstract— In this work we study the problem of rope
sway dynamics control for elevator systems. We choose to
actuate the system with a semi-active damper mounted
on the top of the elevator car. We propose nonlinear
controllers based on Lyapunov theory, to actuate the
semi-active damper and stabilize the rope sway dynamics.
We study the stability of the proposed controllers, and
test their performances on a numerical example.

I. I NTRODUCTION

Modern elevators installed in high-rise buildings are
required to travel fast and ensure comfort and safety
for the passengers. Unfortunately, the dimensions of
such high-rise buildings make them more susceptible
to the impact of bad weather conditions. Indeed,
when an external disturbances, like wind gust or
earthquake, hits a building it can lead to large rope
sway amplitude within the elevator shaft. Large
amplitudes of rope sway might lead to important
damages to the equipments that are installed in the
elevator shaft and to the elevator shaft structure itself,
without mentioning the potential danger caused for
the elevator passengers. It is important then to be able
to control the elevator system and damp out these
ropes oscillations. However, due to cost constraints,
it is preferable to be able to do so, with minimum
actuation capabilities. Many investigations have been
dedicated to the problem of modelling and control
of elevator ropes [1], [2], [3], [4], [5], [6], [7]. In
[4], a scaled model for high-rise, high-speed elevators
was developed. The model was used to analyze the
influence of the car motion profiles on the lateral
vibrations of the elevator cables. The author in [1]
proposed a nonlinear modal feedback to drive an
actuator pulling on one end of the rope. The control
performance was investigated by numerical tests. In
[6], a simple model of a cable attached to an actuator at
its free end was used to investigate the stiffening effect
of the control force on the cable. An off-line energy
analysis was used to tune an open-loop sinusoidal
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force applied to the cable. In [5], the authors proposed
a novel idea to dissipate the transversal energy of
an elevator rope. The authors used a passive damper
attached between the car and the rope. Numerical
analysis of the transverse motion average energy was
conducted to find the optimal value of the damper
coefficient. In [7], [8], [9], the present author studied
the problem of an elevator system using a force
actuator pulling on the ropes to add control tension
to the ropes. The force actuator was controlled based
on Lyapunov theory. Although, the sway damping
performances obtained in [7], [8], [9] were satisfactory,
we decided to investigate other forms of actuation and
control. Indeed, in [7], [8], [9] we proposed a force
control algorithm to modulate the ropes tensions, using
an external force actuator, which was introduced at
the bottom of the elevator shaft to pull on the ropes.
However, retrofitting existing elevators with such a
cumbersome actuator, can prove to be challenging
and expensive. Instead, we propose to investigate here
another actuation method, namely, using semi-active
dampers mounted between the elevator car and the
ropes. These actuators are less cumbersome than the
typical force actuators and thus can be easier/cheaper
to install. This type of actuation has already been
proposed in [5]. The difference between the present
work and [5], is that instead of using a static damper
with constant damping coefficient tuned off-line, we
use a semi-active damper, and use nonlinear control
theory to design a feedback controller to compute
online the desired time-varying damping coefficient
that reduces the rope sway. We study the stability of
the closed-loop dynamics, and show the performances
of these controllers on a numerical example. One
more noticeable difference with the work in [7], [8],
[9], is that due to the semi-active actuation, the model
of the actuated system is quite different from the
one presented in [7], [8], [9]. Indeed, in [7], [8], [9]
the model of the actuated system exhibited terms
where the control variable was multiplied by the
sway position variable only. In this work, the actuated
model, exhibits terms where the control variable, i.e.
the semi-active damper coefficient, is multiplied both



by the sway position and the sway velocity variables,
furthermore, the control variable term appears in the
right hand side of the dynamical equations of the
system, i.e. as part of an external disturbance on the
system (refer to Section II). These differences in the
model, make the controller design and analysis more
challenging than in [7], [8], [9].

The paper is organized as follows: In Section II,
we recall the model of the system when actuated
with a semi-active damper mounted between the ropes
and the elevator car. Next, in Section III, we present
the main results of this work, namely, the nonlinear
Lyapunov-based semi-active damper controllers,
together with their stability analysis. Section IV is
dedicated to some numerical results. Finally, we
conclude the paper with a brief summary of the results
in Section V.
Throughout the paper,R, R+ denotes the set of real,
and the set of nonnegative real numbers, respectively.
For x ∈ RN we define|x| =

√
xTx, and we denote

by Aij , i = 1, ..., n, j = 1, ...,m the elements of the
matrix A.

II. ELEVATOR ROPEMODELLING

In this section we first recall the infinite dimension
model, i.e partial differential equation (PDE), of a
moving hoist cable, with non-homogenous boundary
conditions. Secondly, to be able to reduce the PDE
model to an ODE model using a Galerkin reduction
method, we introduce a change of variables and re-
write the first PDE model in a new coordinates, where
the new PDE model has zero boundary conditions. Let
us first enumerate the assumptions under which our
model is valid: 1) The elevator ropes are modelled
within the framework of string theory, 2) The elevator
car is modelled as a point mass, 3) The vibration in
the second lateral direction is not included, 4) The
suspension of the car against its guide rails is assumed
to be rigid, 5) The mass of the semi-active damper is
considered to be negligible compared to the elevator
car mass.

Under the previous assumption, following [3], [1]
and [5], the general PDE model of an elevator rope,
depicted on Figure 1, is given by

ρ( ∂2

∂t2 + v2(t) ∂2

∂y2 + 2v(t) ∂
∂y∂t + a ∂

∂y

)
u(y, t)

− ∂
∂yT (y, t)∂u(y,t)

∂y + cp
(

∂
∂t + v(t) ∂

∂y

)
u(y, t)

+kdp

(
∂
∂t + v(t) ∂

∂y

)
u(y, t)δ(y − l + ldp) = 0

(1)

Fig. 1. Schematic representation of an elevator shaft showing the
different variables used in the model

whereu(y, t) is the lateral displacement of the rope.ρ
is the mass of the rope per unit length.T is the tension
in the rope, which varies depending on which rope in
the elevator system we are modelling, i.e. main rope,
compensation rope, etc.cp is the damping coefficient
of the rope per unit length.v = ∂l(t)

∂t is the elevator
rope velocity, wherel : R → R is a function (at least
C2 ) modelling the time-varying rope length.a = ∂2l(t)

∂t2

is the elevator rope acceleration. The last term in the
righthand-side of (1) has been added to model the semi-
active linear damper effect on the rope at the contact
point δ(y − l + ldp), where δ is the Dirac impulse
function, kdp is the damping coefficient (the control
variable) andldp is the distance between the car-top
and the point of attach of the damper to the controlled
rope, e.g. [5].
The PDE (1) is associated with the following two
boundary conditions:

u(0, t) = f1(t)
u(l(t), t) = f2(t)

(2)

wheref1(t) is the time varying disturbance acting on
the rope at the level of the machine room, due to
external disturbances, e.g. wind gust.f2(t) is the time
varying disturbance acting at the level of the car, due
to external disturbances. In this work we assume that
the two boundary disturbances acting on the rope are
related via the relation:

f2(t) = f1(t)sin
(π(H − l)

2H
)
, H ∈ R (3)

whereH is the height of the building. This expression
is an approximation of the propagation of the boundary



disturbancef1 along the building structure, based on
the lengthl, it leads tof2 = f1 for a length0 (which
is expected), and a decreasing force along the building
until is vanishes atl = H, f2 = 0 (which makes sense,
since the effect of any disturbancef1, for example
wind gusts, is expected to vanish at the bottom of
the building). As we mentioned earlier the tension of
the ropeT (y) depends on the type of the rope that
we are dealing with. In the sequel, we concentrate on
the main rope of the elevator, the remaining ropes are
modelled using the same steps by simply changing the
rope tension expression.
For the case of the main rope, the tension is given by

T (y, t) = (me +ρ(l(t)− y))(g−a(t))+0.5Mcsg (4)

whereg is the standard gravity constant,me,Mcs are
the mass of the car and the compensating sheave,
respectively. Next, we reduce the PDE model (1) to
a more tractable model for control, using a projection
Galerkin method or assumed mode approach, e.g. [10],
[11].
To be able to apply the assumed mode approach,
let us first apply the following one-to-one change of
coordinates to the equation (1)

u(y, t) = w(y, t) +
l(t)− y

l(t)
f1(t) +

y

l(t)
f2(t) (5)

One can easily see that this change of coordinates
implies trivial boundary conditions

w(0, t) = 0
w(l(t), t) = 0 (6)

After some algebraic and integral manipulations, the
PDE model (1) writes in the new coordinates as

ρ∂2w
∂t2 + 2v(t)ρ ∂2w

∂y∂t +
(
ρv2 − T (y, t)

)
∂2w
∂y2

+(G(t) + vkdpδ(x− l + ldp))∂w
∂y

+(cp + kdpδ(x− l + ldp))∂w
∂t

= y (−ρs1(t)− cps2(t))− ρf
(2)
1 + s4(t)

−∂w
∂t

( l−y
l f1(t) + y

l f2(t)
)
kdpδ(x− l + ldp)

−vkdp
f2−f1

l δ(x− l + ldp)

(7)

whereG(t) = ρa(t)− ∂T
∂y +cpv(t), and thesi variables

are defined as

s1(t) = ll(2)−2l̇2

l3 f1(t) + 2 l̇
l2 ḟ1

+ (l3f
(2)
2 −f2l2l(2)+2ll̇2f2−2l2 l̇ḟ2)

l4 − f
(2)
1
l

s2(t) = l̇
l2 f1 − ḟ1

l + ḟ2

l − f2
l̇
l2

s3(t) = f2−f1

l

s4(t) = −2v(t)ρs2(t)−G(t)s3(t)− cpḟ1(t)

(8)

associated with the two-point boundary conditions

w(0, t) = 0, w(l(t), t) = 0. (9)

Now instead of dealing with the PDE (1) with non-zero
boundary conditions, we can use the equivalent model,
given by equation (7) associated with trivial boundary
conditions (9).
Following the assumed-modes technique, the solution
of the equation (7), (9) writes as

w(y, t) =
j=N∑
j=1

qj(t)φj(y, t), N ∈ N (10)

whereN is the number of bases (modes), included in
the discretization,φj , j = 1, ..., N are the discretiza-
tion bases andqj , j = 1, .., N are the discretization
coordinates. In order to simplify the analytic manipu-
lation of the equations, the base functions are chosen
to satisfy the following normalization constraints∫ l(t)

0

φ2
j (y, t)dy = 1,

∫ l(t)

0

φi(y, t)φj(y, t)dy = 0, ∀i 6= j

(11)
To further simplify the base functions, we define the nor-
malized variable, e.g. [5], [3]ξ(t) = y(t)

l(t) , and the nor-

malized base functionsφj(y, t) = ψj(ξ)√
l(t)

, j = 1, ..., N .

In these new coordinates the normalization constraints write
as

∫ 1

0
ψ2
j (ξ)dξ = 1,

∫ 1

0
ψi(ξ)ψj(ξ)dξ = 0, ∀i 6= j. After

discretization of the PDE-based model (7), (8) and (9) (e.g.
refer to [3]), we can write the reduced ODE-model based on
N -modes as

Mq̈+ (C + C̃U)q̇+ (K + K̃U)q = F (t) + F̃ (t)U, q ∈ RN
(12)

where

U=kdp

Mij=ρδij

Cij=ρl
−1 l̇

(
2

∫ 1
0 (1−ξ)ψi(ξ)ψ

′
j(ξ)dξ−δij

)
+cpδij

C̃ij=l
−1ψi(

l−ldp
l )ψj(

l−ldp
l )

Kij=
1
4ρl

−2 l̇2δij−ρl−2 l̇2
∫ 1
0 (1−ξ)2ψ

′
i(ξ)ψ

′
j(ξ)dξ

+ρl−1(g−a(t))
∫ 1
0 (1−ξ)ψ

′
i(ξ)ψ

′
j(ξ)dξ+mel

−2(g−a(t))
∫ 1
0 ψ

′
i(ξ)ψ

′
j(ξ)dξ

+ρ(l−2 l̇2−l−1 l̈)
(
0.5δij−

∫ 1
0 (1−ξ)ψi(ξ)ψ

′
j(ξ)dξ

)
−

cp l̇l
−1(

∫ 1
0 ψi(ξ)ψ

′
j(ξ)ξdξ+0.5δij)+0.5Mcsgl

−2 ∫ 1
0 ψ

′
i(ξ)ψ

′
j(ξ)dξ

k̃ij=l
−2 l̇

(
−ψ

′
j(

l−ldp
l )ψi(

l−ldp
l )(

l−ldp
l )−0.5ψi(

l−ldp
l )ψj(

l−ldp
l )

+ψ
′
j(

l−ldp
l )ψi(

l−ldp
l )

)
Fi(t)=−l

√
l(ρs1(t)+cps2(t))

∫ 1
0 ψi(ξ)ξdξ

+
√
l
(
s4(t)−ρf(2)

1 (t)
) ∫ 1

0 ψi(ξ)dξ

F̃i(t)=
ḟ1√

l
ψi(

l−ldp
l )+

l−ldp√
l
ψi(

l−ldp√
l

)(l̇l−2(f1−f2)+l−1(ḟ2−ḟ1))

δij =
{

0, i 6= j
1, i = j

(13)
where i, j ∈ {1, ..., N}, andsk, k = 1, 2, 3, 4 are given in
(8).

Remark 1: The model (12), (13) has been obtained for the
general case of time-varying rope lengthl(t), however, in this



paper we only consider the case of stationary ropesl = cte,
which is directly deduced from (12), (13), by settingl̇ = l̈ =
0, ∀t. The case where the car is static and the control system
has to reject the ropes’ oscillations is of interest in practical
setting. Indeed, besides the case of commercial buildings at
night (where the elevators are not in use), in many situations
where the building is swaying due to external strong weather
conditions, the elevators are stopped, for the security of the
passengers. The control system is then used to damp out the
ropes sway, to avoid the ropes from damaging the elevator
system, and be still functional after the external disturbances
have passed.1

III. M AIN RESULT: LYAPUNOV-BASED SEMI-ACTIVE

DAMPER CONTROL

The first controller deals with the case where the building,
hosting a stationary elevator (stopped at a given floor),
sustains a brief (impulse-like) external disturbance. For
example, an earthquake impulse with a sufficient force to
make the top of the building oscillate, or a strong wind
gust that happens over a short period of time, exciting
the building structure and implying residual vibrations
of the building even after the wind gust interruption. In
these cases, the elevator ropes will vibrate, starting from a
non-zero initial conditions, due to the impulse-like external
disturbances (i.e., happening over a short time interval), and
this case correspond to the model (12), (13) with non-zero
initial conditions and zero external disturbances. We can
now state the following theorem.

Theorem 1: Consider the rope dynamics (12), (13), with
non-zero initial conditions, with no external disturbances,
i.e., f1(t) = f2(t) = 0,∀t, then the feedback control

U(z) = umax
q̇T C̃q̇√

1 + (q̇T C̃q̇)2
(14)

wherez = (qT , q̇T )T , implies thatq(t) → 0, for t → 0,
furthermore |U | ≤ umax, ∀t, and |U | deceases with the
decrease oḟqT C̃q̇.

Proof: We define the control Lyapunov function as

V (z) =
1
2
q̇T (t)Mq̇(t) +

1
2
qT (t)K(t)q(t) (15)

wherez = (qT , q̇T )T .
First we compute the derivative of the Lyapunov function

1Of course, there are also practical cases were the cars are in
motion and an external disturbance occurs. These cases correspond
to a time-varying rope length, which we have also studied, however,
due to space limitation, we could not include all the results in this
paper. The case of time-varying rope length will be presented in
another report.

along the dynamics (12), without disturbances, i.e.,F (t) =
0, F̃ (t) = 0∀t

V̇ (z) = q̇T (−Cq̇ − C̃Uq̇ −Kq) + qTKq̇

= −q̇TCq̇ − q̇T C̃q̇U
(16)

Next, usingU defined in (14), we have

V̇ (z) ≤ −umax (q̇T C̃q̇)2√
1+(q̇T C̃q̇)2

(17)

Using LaSalle theorem, e.g. [12], and the fact thatC̃ is
symmetric positive definite we can conclude that the states
of the closed-loop dynamics converge to the setS = {z =
(qT , q̇T )T ∈ R2N , s.t. q̇ = 0 }. Next, we analyze the
closed-loop dynamics: Since the boundedness ofV implies
boundedness oḟq, q and by equation (12), boundedness of
q̈. Boundedness oḟq, q̈ implies the uniform continuity of
q, q̇, which again by (12), implies the uniform continuity
of q̈. Next, since q̇ → 0, and using Barbalat’s Lemma,
e.g. [12], we conclude thaẗq → 0, and by invertibility
of the stiffness matrixK + βU we conclude thatq → 0.
Finally, the fact thatV is a radially unbounded function,
ensures that the equilibrium point(q, q̇) = (0, 0) is globally
asymptotically stable. Furthermore the fact that|U | ≤ umax,
and the decrease of|U | as function ofq̇T C̃q̇ is deduced from
equation (14), since q̇T C̃q̇√

1+(q̇T C̃q̇)2
≤ 1 and 1√

1+(q̇T C̃q̇)2
≤ 1.

Remark 2: It is clear from equation (16) that the trivial
choice of a constant positive damping controlU , will also
imply a convergence of the sway dynamics to zero. However,
the controller (14) has the advantage to require less control
energy comparatively to a constant damping, since by con-
struction of the control law (14), the stabilizing damping
force decreases together with the decrease of the sway.

The controller U given by (14) does not take into
account the disturbanceF (t) explicitly. Next, we present a
controller which deals with the case of a static elevator in a
building under sustained external disturbances, e.g. sustained
wind forces on commercial buildings at night where the
cars are static. In this caseF (t) 6= 0, F̃ (t) 6= 0 over a
non-zero time interval, and satisfy the following assumption.

Assumption 1:The time varying disturbance functions
f1, f2 are such that, the functionsF (t), F̃ (t) are bounded,
i.e. ∃(Fmax, F̃max), s.t. |F (t)| ≤ Fmax, |F̃ (t)| ≤
F̃max, ∀t.

Theorem 2: Consider the rope dynamics (12), (13), un-
der non-zero external disturbances, i.e.,f1(t) 6= 0, f2(t) 6= 0
satisfying Assumption 1, with the feedback control

U(z)=umaxp
q̇T C̃q̇√

1+(q̇T C̃q̇)2

+q̇T C̃q̇
v1max(F̃max|q̇|v1max+F̃max|q̇|umaxp )√

1+(q̇T C̃q̇)2(F̃max|q̇|v1max+F̃max|q̇|umaxp )2

+q̇T C̃q̇
v2max(|q̇|Fmax+v2maxF̃max|q̇|)√

1+(q̇T C̃q̇)2(|q̇|Fmax+v2maxF̃max|q̇|)2

(18)

whereumaxp , v1max, v2max > 0, are chosen s.t.(umaxp +
v1max + v2max) ≤ umax and z = (qT , q̇T )T . Then, if we



define the two invariant sets:

S1 = {(qT , q̇T )T ∈ R2N , s.t.
(q̇T C̃q̇)2√

1+(q̇T C̃q̇)2(F̃max|q̇|v1max+F̃max|q̇|umaxp )2

≤ 1
v1max

}

, and

S2 = {(qT , q̇T )T ∈ R2N , s.t.
(q̇T C̃q̇)2√

1+(q̇T C̃q̇)2(|q̇|Fmax+v2maxF̃max|q̇|)2
≤ 1

v2max
}

, the controller (18) ensures that the state vectorz converges
to the the invariant setS1 or S2, and that|U | ≤ umax, ∀t.

Proof: Let us consider again the Lyapunov function
(15). Its derivative along the dynamics (12), with non-zero
disturbance, i.e.F (t) 6= 0, F̃ 6= 0, writes as

V̇ (x) = q̇T (−Cq̇ − C̃Uq̇ −Kq + F̃U)
+qTKq̇ + q̇TF (t)
= −q̇TCq̇ − q̇T C̃Uq̇ + q̇T F̃U + q̇TF (t)
≤ −q̇T C̃Uq̇ + q̇T F̃U + q̇TF (t)

(19)

Now, we use the concept of Lyapunov reconstruction, e.g.
[13], we write the control

U = unomp + v1 + v2 (20)

where,unomp is the nominal controller, given by (14) with
umax = umaxp , designed for the case whereF (t) = F̃ (t) =
0, ∀t. The remaining termsv1, v2 are added to compensate
for the effect of the disturbances̃F andF , respectively. We
designv1 andv2 in two steps:
- First step: We assume that̃F 6= 0, F (t) = 0, ∀t, and
designv1 to compensate for the effect of̃F . In this case
U = unomp + v1.
In this case, the Lyapunov function derivative is bounded as
as follows

V̇ (x) ≤ −q̇T C̃(unomp
+ v1)q̇ + q̇T F̃ (unomp

+ v1)
≤ −q̇T C̃v1q̇ + q̇T F̃ (unomp

+ v1)
≤ −q̇T C̃q̇v1 + q̇T F̃ unomp + q̇T F̃ v1

which under Assumption 1, gives

≤ −q̇T C̃q̇v1 + |q̇|F̃maxumaxp
+ |q̇|F̃maxv1max

Now, if we define (to simplify the notations), the term

T1 = +|q̇|F̃maxumaxp
+ |q̇|F̃maxv1max

and if we choose the controller

v1 =
v1maxT1q̇

T C̃q̇√
1 + T 2

1 (q̇T C̃q̇)2

This leads to the following Lyapunov function derivative
upper bound

≤ T1

(
1− v1max(q̇T C̃q̇)2√

1+T 2
1 (q̇T C̃q̇)2

)
= B1

- Second step: We assume thatF̃ (t) 6= 0, F (t) 6= 0, and
designv2 to compensate forF . In this case we write the

total control asU = unomp + v1 + v2. Now the upper-bound
of the Lyapunov function derivative (along the total control)
writes as

≤ B1 − q̇T C̃q̇v2 + q̇T F̃ v2 + q̇TF

≤ B1 − q̇T C̃q̇v2 + |q̇|F̃maxv2max + |q̇|Fmax
Next, if we define the term

T2 = |q̇|F̃maxv2max + |q̇|Fmax
and if we choose the controller

v2 =
v2maxT2q̇

T C̃q̇√
1 + T 2

2 (q̇T C̃q̇)2

This leads to the following Lyapunov function derivative
upper-bound

≤ B1 + T2

(
1− v2max(q̇T C̃q̇)2√

1+T 2
2 (q̇T C̃q̇)2

)
≤ B1 +B2

whereB2 = T2

(
1− v2max(q̇T C̃q̇)2√

1+T 2
2 (q̇T C̃q̇)2

)
.

By choosing v1max, v2max high enough the two terms
B1, B2 will be made negative. We can then analyze two
cases:
1- First, the trajectories keep decreasing until they reach the
invariant set

S1 = {(qT , q̇T )T ∈ R2N , s.t. B1 ≥ 0}

Then, the trajectories can either keep decreasing (if|B2| >
B1) until they enter the invariant set

S2 = {(qT , q̇T )T ∈ R2N , s.t. B2 ≥ 0}

or they get stuck atS1.
2- Second, the trajectories decrease until they reach the
invariant setS2 first, and stay there, or keep decreasing until
they reach the invariant setS1.
In both cases, the trajectories will end up in eitherS1 or S2.
Finally, the fact that|U | ≤ umax is obtained by construction
of the three terms, since from (14), we can write|unomp

| ≤
umaxp and by construction|v1| ≤ v1max, |v2| ≤ v2max,
which leads to|U | ≤ umaxp + v1max + v2max ≤ umax.

Remark 3: We want to underline here the fact that, con-
trary to the previous case of impulse disturbances, in this
case of sustainable external disturbances, the use of a simple
passive damper, i.e.U = cte, might actually destabilize the
system. Indeed, by examining equation (19), we can see that
if the U is constant the positive term+q̇T F̃U , which is
due the external disturbance, could overtake the damping
negative term−q̇T C̃Uq̇, leading to instability of the system.

Remark 4: The controllers (14), (18) are state feedbacks
based onq, q̇, these states can be easily computed from
the sway measurements atN given positionsy(1), ..., y(N),
via equation (10). The swayw(y, t) can be measured by
laser displacement sensors placed at the positionsy(i), i =
1, 2, ...N , along the rope, e.g.[14], subsequentlyq can be
computed by simple algebraic inversion of (10), andq̇ can
be obtained by direct numerical differentiation ofq.



Parameters Definitions Values
n Number of ropes 8[−]
me Mass of the car 3500[kg]
ρ Main rope linear mass density 2.11[kg/m]
l Rope maximum length 390[m]
H Building height 402.8[m]
cp Damping coefficient 0.0315[N.sec/m]

TABLE I

NUMERICAL VALUES OF THE MECHANICAL PARAMETERS

IV. N UMERICAL EXAMPLE

In this section we present some numerical results obtained
on the example presented in [1]. The case of an elevator
system with the mechanical parameters summarized on Table
I has been considered for the tests presented hereafter. We
write the controllers based on the model (12), (13) with one
mode, but we test them on a model with two modes. The
fact is that one mode is enough since when comparing the
solution of the PDE (7) to the discrete model (12) the higher
modes shown to be negligible, and a discrete model with one
mode showed a very good match with the PDE model, but to
make the simulation tests more realistic we chose to test the
controllers on a two modes model. Furthermore, to make
the simulation tests more challenging we added a random
white noise to the states fed back to the controller (equivalent
to about±1 cm of error on the rope sway measurement
from which the states are computed, see Remark 1), and
we filtered the control signal with a first order filter with
a cut frequency of10 hz and a delay term of5 sampling
times, to simulate actuator dynamics and delays due to
signal transmission and computation time. First, to validate
Theorem 1, we present the results obtained by applying
the controller (14), to the model (12), (13), with non-zero
initial conditions q(0) = 20, q̇(0) = 5, and zero external
disturbances, i.e.f1(t) = f2(t) = 0, ∀t. In these first tests,
to show the effect of the controller (14) alone, without the
‘help’ of the system’s natural damping, we fix the damping
coefficient to zero, i.e.cp = 0. We apply the controller (14),
with umax = 109 Nsec/m. Figures 2, 32 show the rope
sway obtained at half rope-lengthy = 195 m with and
without control. Without control the rope sway reaches a
maximum value of about1.5 m. With control we see clearly
the expected damping effect of the controller, which reduces
the sway amplitude by half. The corresponding control force
is depicted on Figures 4, 5. We see that, as expected from
the theoretical analysis of Theorem 1, the control force
remains bounded by a maximum value of40kNsec/m,
which is easily realizable by existing semi-active damper,
e.g. magnotorheological damper. Furthermore, as proven in

2The figures’ zoom is included for the reader to have a better
idea about the signals shape.
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Fig. 2. Rope sway aty = 195 m: No control (thin line)- With
controller (14) (bold line)
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Fig. 3. Zoom of rope sway aty = 195 m: No control (thin line)-
With controller (14) (bold line)

Theorem 1, the control amplitude decreases with the decrease
of the sway.

Next, we consider the model (12), (13) with no-zero
disturbance signals:f1(t) = 0.2sin(2π.0.08t), andf2 being
deduced fromf1 via equation (3). We underline that we have
purposely selected the disturbance frequency to be equal to
the first resonance frequency of the rope, to simulate the
‘worst-case scenario’. In this case we apply the controller
(18), with the parametersumaxp = 109 Nsec/m, v1max =
v2max = 105 Nsec/m, Fmax = F̃max = 1. We show on
Figures 6, 7 the sway signal in the uncontrolled and the
controlled case. We see that the sway steady state maximum
amplitude is reduced from8.4 m in the uncontrolled case
to 2.4 m with control. The noisy (due to the simulated
measurements noise) bounded and continuous control signals
are reported on Figures 8, 9.
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Fig. 4. Output of controller (14)
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Fig. 5. Output of controller (14)- Zoom

V. CONCLUSION

In this paper we have studied the problem of semi active
control of elevator rope sway dynamics occurring due to
external force disturbances acting on the elevator system.
We have considered the case of a static car, i.e. constant rope
length and have proposed two nonlinear controllers based on
Lyapunov theory. We have presented the stability analysis of
these controllers and shown their efficiency on a numerical
example. The semi-active stabilization problems related to
time-varying rope lengths, i.e. moving car, will be presented
in a future report.
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