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Abstract
In this work we study the problem of rope sway dynamics control for elevator systems.
We choose to actuate the system with a semi-active damper mounted on the top of the
elevator car. We propose nonlinear controllers based on Lyapunov theory, to actuate the
semi-active damper and stabilize the rope sway dynamics. We study the stability of the
proposed controllers, and test their performances on a numerical example.
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Semi-Active Control of the Sway Dynamics for Elevator Ropes

Mouhacine Benosman

Abstract—In this work we study the problem of rope force applied to the cable. In [5], the authors proposed
sway dynamics contro! for elevat_or systems. We choose to a novel idea to dissipate the transversal energy of
actuate the system with a semi-active damper mo_unted an elevator rope. The authors used a passive damper
on the top of the elevator car. We propose nonlinear aiiached between the car and the rope. Numerical
controllers based on Lyapunov theory, to actuate the analysis of the transverse motion average energy was

semi-active damper and stabilize the rope sway dynamics. . .
We study the stability of the proposed controllers, and conducted to find the optimal value of the damper

test their performances on a numerical example. coefficient. In [7], [8], [9], the present author studied
the problem of an elevator system using a force
|. INTRODUCTION actuator pulling on the ropes to add control tension

to the ropes. The force actuator was controlled based

Modern elevators installed in high-rise buildings are, Lyapunov theory. Although, the sway damping

required to travel fast and ensure comfort and_ safe erformances obtained in [7], [8], [9] were satisfactory,
for the passengers. Unfortunately, the dimensions

. . o > Wwe decided to investigate other forms of actuation and
such hlgh—rlse buildings make them more Suscept'bl?ontrol. Indeed, in [7], [8], [9] we proposed a force

toh the impact Ofl b(‘;d Wbeather CIF’I:‘d'“Q”Z- InOIeecjcontrol algorithm to modulate the ropes tensions, using
when an ext_erna '?“?r ances, like win gust 0L, external force actuator, which was introduced at
earthquake, hits a building it can lead to large ropg,q pottom of the elevator shaft to pull on the ropes.
sway amplitude within the elevator shaft. I‘argq-mwever, retrofitting existing elevators with such a

amplitudes of rope sway might lead to Important,, nhersome actuator, can prove to be challenging

damages to the equipments that are installed in thél%d expensive. Instead, we propose to investigate here

elevator shaft and to the elevator shaft structure itself,) .. . 4 tuation method namely, using semi-active
without mentioning the po,te’?“a' danger caused fq ampers mounted between the elevator car and the
the elevator passengers. It is important then to be a S’pes. These actuators are less cumbersome than the
to controlithe' elevator system and damp out thest's?pical force actuators and thus can be easier/cheaper
_“’Pes oscillations. However, due to cos_,t cor_15_tramt§0 install. This type of actuation has already been
It is p.referable f[(_)_be able t(_) do SO, _W'th mlnlmumproposed in [5]. The difference between the present
actu_atlon capabilities. Many mvestlga_tlons have beeWork and [5], is that instead of using a static damper
dfedlfated to the problezm %f modelling 6and CoNtrajith constant damping coefficient tuned off-line, we
of elevator ropes [1], [ ] [ ] [4]’. 5] 18], [7]. In use a semi-active damper, and use nonlinear control
[4], & scaled model for high-rise, high-speed elevato%eory to design a feedback controller to compute
W:S deveI0|foe(rj]. The mod_el was f_L:sed to ?]nallyze t%ﬁline the desired time-varying damping coefficient
influence o the car motion profiles on the "_’Iter hat reduces the rope sway. We study the stability of
vibrations of the .elevator cables. The author in e closed-loop dynamics, and show the performances
proposed a nonlinear modal feedback to drive 2&}: these controllers on a numerical example. One
r

aC“f’ator pulling on one end gf ghe rOpe-_ThIe contrghore noticeable difference with the work in [7], [8],
performance was Investigated by numerical tests. , is that due to the semi-active actuation, the model

[6], a simple model of a cable attached to an actuator the actuated system is quite different from the
its free end was used to investigate the stiffening effect presented in [7], [8], [9]. Indeed, in [7], [8], [9]

of the _control force on the cable. An off-line energYine model of the actuated system exhibited terms
analysis was used to tune an open-loop S"nuso'd\‘?\’zlnere the control variable was multiplied by the

Mouhacine Benosman (benosman@ieee.org) is with Mit sway position variable only. In this work, the actuated

subishi Electric Research Laboratories, 201 Broadway Street, caiodel, ‘?Xhipits terms where _the CoerI Va_lri?ble’ i.e.
bridge, MA 02139, USA. the semi-active damper coefficient, is multiplied both



by the sway position and the sway velocity variables,
furthermore, the control variable term appears in the
right hand side of the dynamical equations of the
system, i.e. as part of an external disturbance on the
system (refer to Section Il). These differences in the
model, make the controller design and analysis more
challenging than in [7], [8], [9].

Main sheave

Counter
weight

The paper is organized as follows: In Section I,

we recall the model of the system when actuated
with a semi-active damper mounted between the ropes
and the elevator car. Next, in Section Ill, we present
the main results of this work, namely, the nonlinear

Lyapunov-based semi-active damper Contm”er%ig. 1. Schematic representation of an elevator shaft showing the
together with their stability analysis. Section IV isdifferent variables used in the model

dedicated to some numerical results. Finally, we

conclude the paper with a brief summary of the results

in Section V. whereu(y, t) is the lateral displacement of the rope.
Throughout the papei, R denotes the set of real, js the mass of the rope per unit lengthis the tension

and the set of nonnegative real numbers, respectivejy. ihe rope, which varies depending on which rope in

N : _ /T ) )
Forz € R™ we define|z| = va'z, and we denote he elevator system we are modelling, i.e. main rope,

by Aij, i =1,...n, j =1,...m the elements of the ;,mpensation rope, ete, is the damping coefficient

matrix A. of the rope per unit lengthy = %f) is the elevator

rope velocity, wherd : R — R is a function (at least

[I. ELEVATOR ROPEMODELLING i i i _ 22l
C? ) modelling the time-varying rope length.= 5

is the elevator rope acceleration. The last term in the

Compensation
sheave

In this section we first recall the infinite dimension
! on we ' i ! ! righthand-side of (1) has been added to model the semi-

model, i.e partial differential equation (PDE), of a ive I q ftact th t th tact
moving hoist cable, with non-homogenous boundar ctive linear damper etiect on the rope at the contac
int 5(y — I + l4p), Where§ is the Dirac impulse

conditions. Secondly, to be able to reduce the PD . . . .
unction, kg4, is the damping coefficient (the control

model to an ODE model using a Galerkin reduction™ . . i
ariable) andlg, is the distance between the car-top

method, we introduce a change of variables and rd .
write the first PDE model in a new coordinates, Whergmd the point of attach of the damper to the controlled

the new PDE model has zero boundary conditions. L pe, e.g. [5]. . . . .

us first enumerate the assumptions under which o e PDE (1) ” as§00|ated with the following two
model is valid: 1) The elevator ropes are mode”eﬁoundary conditions:

within the framework of string theory, 2) The elevator u(0,t) = f1(t) 5

car is modelled as a point mass, 3) The vibration in u(l(t),t) = fa(t) (2)
the second lateral direction is not included, 4) The

suspension of the car against its guide rails is assumégiere f1(t) is the time varying disturbance acting on
to be rigid, 5) The mass of the semi-active damper € rope at the level of the machine room, due to

considered to be negligible compared to the elevat§xternal disturbances, e.g. wind gugi(?) is the time
car mass. varying disturbance acting at the level of the car, due

Under the previous assumption, following [3], [1]to external disturbances. In this work we assume that

and [5], the general PDE model of an elevator ropéhe two poundary d.isturbances acting on the rope are
depicted on Figure 1, is given by related via the relation:

2 2 . . W(H - l)
p(% + U2(?a%i + 2v(t)ﬁ + aa%)u(y,t) fa(t) = fl(t)sm(T)v HeR (3)
— 5Ty, 1) “a(Z Lt ep(5+ v(t)2)u(y,t) (1)  whereH is the height of the building. This expression
hap (5 +v() &) uly, 1)y — 1L+ lap) = 0 is an approximation of the propagation of the boundary



disturbancef; along the building structure, based on associated with the two-point boundary conditions
the lengthl, it leads tof, = f; for a lengthO (which

is expected), and a decreasing force along the building w(0,) =0, w(i(?)t) =0. ©)
until is vanishes at = H, fo = 0 (which makes sense, Now instead of dealing with the PDE (1) with non-zero
since the effect of any disturbancg, for example boundary conditions, we can use the equivalent model,
wind gusts, is expected to vanish at the bottom dfiven by equation (7) associated with trivial boundary
the building). As we mentioned earlier the tension otonditions (9).

the ropeT'(y) depends on the type of the rope thaFollowing the assumed-modes technique, the solution
we are dealing with. In the sequel, we concentrate aof the equation (7), (9) writes as

the main rope of the elevator, the remaining ropes are j=N

modelled using the same steps by simply changing the w(y,t) = Z 0;(t)éi(y,t), NeN (10)
rope tension expression. =

For the case of the main rope, the tension is given b\X/hereN is the number of bases (modes), included in

T(y,t) = (me + p(I(t) — —a(t))+0.5M,.,qg (4) the discretizationg;, j = 1,.., N are the discretiza-
(1) = (me +p((H) =y)){g — alt)) g (4) tion bases and;, j = 1,..,N are the discretization
whereg is the standard gravity constant,, M., are coordinates. In order to simplify the analytic manipu-
the mass of the car and the compensating sheal@tion of the equations, the base functions are chosen

respectively. Next, we reduce the PDE model (1) t&# satisfy the following normalization constraints

a more tractable model for control, using a projection /'® | 1) o
Galerkin method or assumed mode approach, e.g. [10}, o5y, t)dy = 1, ; Gi(y, )¢5y, t)dy =0, Vi#j
[11]. (11)

To be able to apply the assumed mode approacTP further simplify the base functions, we define the nor-
- , alized variable, e.g. [5], [3K(t) = %Y, and the nor-
let us first apply the following one-to-one change of" . e B w(g)z(t)’ .
coordinates to the equation (1) malized base fUnCtlong)j(y,t) = \/JE, ] = 1,...7N.
I(t) — In th{ase new coordin?tes the normalization constraints write
u(y,t) = w(y, t) + V) + L fo(t)  (5) asfy v3O)ds = 1, [ vi(&w;(€)ds =0, Vi # j. After
I(t) I(t) discretization of the PDE-based model (7), (8) and (9) (e.g.

One can easily see that this change of coordinat&efer to [3]), we can write the reduced ODE-model based on
. . . " N-modes as
implies trivial boundary conditions

w(0,t) =0

Mi+ (C+CU)j+ (K + KU)qg= F(t)+ F(t)U, ¢ € RN

(6) (12)
w(l(t),t) =0 where
After some algebraic and integral manipulations, theU=ka,
PDE model (1) writes in the new coordinates as Mij=pdis ,
o2 o2 ) . Cig=pl~Hi(2 [ A=) 0i ()] (€)de—31; ) +epdi;
P + 2v(t)pﬁ + (pv —T(y, t)) 83}5 Cig=1 s (22 Yy (22
+(G(t) + vkgpo(x — 1 + ldp))%—z’ Kij=5pl 22655 —pl 212 [ (1-6)0; ()9 (£)dé

B ow ol M (g—a(t) [ (1=, ()] (E)de+mel2(g—a(t)) [& by (E)w) (€)dE
‘l‘(Cp + kdp5($ [+ ldp)) ot (7) +p(l*2i2—l*11')(0.55,_7—1'01(1—5)%(5);&;(5)(15) _

2
= g (l—_;;sl(t) - c;,s2(t)) —pfP + sa(t) epll = (J3 wi(ls)vﬁ; (E)€dE+0.5015)+0.5Mz. g1~ fc;j:;’(ﬁ)w; (&)de
=5t (FLA) + 1 f2(8)) kapd (2 — 1+ Lap) g =120 (=) (g, (e (g .59, (pe g, (iaz)
kg 2T (2 — T+ 1gp) (2 ) (e
F;()=—1V1(ps1(t)+cpsa(t)) [y i(£)ede
whereG(t) = pa(t) — %—5 +cpu(t), and thes; variables  +vi(si()—ps ®)) f3 vi(€)de

are defined as Fi(6) =L g (22 )+ s (22 ) (02 (1= o)+ (fa— 1)
2 12 I 0, ¢ 75]

u® —2i i - ’
81(t)2:l732f1.(t)+2ﬁf1 , 6”_{ 1,i=y
+(l3f2< )—f2l2l<2)l;|-2ll2f2—2l2lf2) _ # (13)

i 3 ) i wherei,j € {1,..., N}, ands, kK = 1,2,3,4 are given in
sat) = ph — 4+ 1 — fors (®) ®). { } '
s3(t) = f2;f1 ) Remark 1: The model (12), (13) has been obtained for the
sa(t) = —2v(t)psa(t) — G(t)s3(t) — cpfi(t) general case of time-varying rope length), however, in this



paper we only consider the case of stationary rdpescte, along the dynamics (12), without disturbances, i) =
which is directly deduced from (12), (13), by settihgge I = 0, F(t) = 0Vt

0, Vt. The case where the car is static and the control system . o . o
V(z)=q¢"(-Cq—CUG— Kq)+q" Kq

has to reject the ropes’ oscillations is of interest in practical P S (16)
setting. Indeed, besides the case of commercial buildings at =—q¢ Cq—q CqU

night (where the elevators are not in use), in many situatiorﬁext’ usingU defined in (14), we have

where the building is swaying due to external strong weather i

conditions, the elevators are stopped, for the security of the V(z) < —tmaz 4’ cq) (17)

passengers. The control system is then used to damp out the V14T C)?
ropes sway, to avoid the ropes from damaging the elevatgsing LaSalle theorem, e.g. [12], and the fact tigatis

system, and be still functional after the external disturbanc%.?/mmetriC positive definite we can conclude that the states

have passed. of the closed-loop dynamics converge to the Set {z =
(qT,¢T)T € R?N| sit. ¢ = 0 }. Next, we analyze the
closed-loop dynamics: Since the boundednes¥ afmplies
boundedness of, ¢ and by equation (12), boundedness of
The first controller deals with the case where the buildingj. Boundedness of, ¢ implies the uniform continuity of
hosting a stationary elevator (stopped at a given floor), ¢, which again by (12), implies the uniform continuity
sustains a brief (impulse-like) external disturbance. Faof §. Next, sinceq — 0, and using Barbalat's Lemma,
example, an earthquake impulse with a sufficient force te.g. [12], we conclude thaj — 0, and by invertibility
make the top of the building oscillate, or a strong windf the stiffness matrix’ + U we conclude thaty — 0.
gust that happens over a short period of time, excitinginally, the fact thatV is a radially unbounded function,
the building structure and implying residual vibrationsensures that the equilibrium poify, ¢) = (0,0) is globally
of the building even after the wind gust interruption. Inasymptotically stable. Furthermore the fact tHat < wmaz,
these cases, the elevator ropes will vibrate, starting fromand the decrease (if| as function ofj” Cq is deduced from
non-zero initial conditions, due to the impulse-like externagéquation (14), since—4%4__ <1 and ——L__ <
disturbances (i.e., happening over a short time interval), and Vit@rca? +(@"C9?
this case correspond to the model (12), (13) with non-zero pemark 2:1t is clear from equation (16) that the trivial
initial conditions an_d zero external disturbances. We cafhoice of a constant positive damping conttd) will also
now state the following theorem. imply a convergence of the sway dynamics to zero. However,
the controller (14) has the advantage to require less control
] . _energy comparatively to a constant damping, since by con-
Theorem 1: Consider the rope dynamics (12), (13), withgtryction of the control law (14), the stabilizing damping
non-zero initial conditions, with no external disturbancesiy,ce decreases together with the decrease of the sway.

IIl. M AIN RESULT: LYAPUNOV-BASED SEMI-ACTIVE
DAMPER CONTROL

Le., f1(t) = f2(t) = 0,1, then the feedback control The controller U given by (14) does not take into
per account the disturbancE(t) explicitly. Next, we present a
U(2) = Umar —F———— (14) controller which deals with the case of a static elevator in a
14+ (¢TCq)? building under sustained external disturbances, e.g. sustained

wind forces on commercial buildings at night where the
wherez = (¢7,¢")", implies thatq(t) — 0, for t — 0, cars are static. In this casB(t) # 0, F(t) # 0 over a
furthermore|U| < wq., V¢, and [U| deceases with the non-zero time interval, and satisfy the following assumption.
decrease of’ (4.
Assumption 1:The time varying disturbance functions
f1, fo are such that, the function(t), F(t) are bounded,
Proof: We define the control Lyapunov function as  i.e. 3(Fu0, Fas), st |[F(t)] < Fuae, |F(t)] <
Fras, V.
V(z) = %QT(t)MQ(t) + %QT(t)K(t)Q(t) (15) Theorem 2: Consider the rope dynamics (12), (13), un-
der non-zero external disturbances, ife(¢) # 0, f2(t) #0
wherez = (¢7,¢")". satisfying Assumption 1, with the feedback control
First we compute the derivative of the Lyapunov function

.TC—,.
U(Z):umaxp\/ﬁ
1Of course, there are also practical cases were the cars are in 147 ¢g—ttmes(marldvimaezt Fmaslilumary) (18)

motion and an external disturbance occurs. These cases correspond VIHETCD? (Frmazldlvimas + Fmaz |l umazy)?
vomaz U4 Fmaz+vamaz Fmaaldl)

to a time-varying rope length, which we have also studied, however, +37Cq VIHT CO2 (14| Frnan +v2man Fraz D2

due to space limitation, we could not include all the results in this

paper. The case of time-varying rope length will be presented Wher€u,az,, Vimaz, V2maz > 0, are chosen s.{umaz, +
another report. Vimaz + V2maz) < Umaez andz = (¢7,¢1)T. Then, if we




define the two invariant sets: total control ad/ = pom, +v1 +v2. Now the upper-bound

Sy = {(qT,¢T)T e R?N, s of the Lyapunov function derivative (along the total control)
) b A .
(4T C¢)? writes as
\/1+(QTC~'Q)2(ﬁ7nam|q‘111WLam+Fm,am‘(ﬂum,amp)z S Bl — q.Téq./UZ + qTﬁvz + qTF
1 = L= )
S vlmam} S Bl - chqu + |q|FmamU2max + |q|Fma:v
, and Next, if we define the term
S2 = {(qT’ qT)T ~E R2N7 s.. T2 = |q‘Fmazv2mam + |q|FnLam
(QTCQ)Z < 1 } .
V1T G2 (14| Frras +v2mas Emas )2~ V2mas and if we choose the controller
, the controller (18) ensures that the state veetoonverges vy = VamaeT2G" Cq

to the the invariant sef; or S, and that|U| < wmaq, Vi. 2( T ') 2
. . _ 1+T5(¢"Cq)
Proof: Let us consider again the Lyapunov function _ ' o
(15). Its derivative along the dynamics (12), with non-zerd his leads to the following Lyapunov function derivative

disturbance, i.eF(t) # 0, F # 0, writes as upper-bound

y . . CR— - Vamax (4 C4)°

Vi(z) = qT(-fC'q —CUG— Kq+ FU) < B+ T(1- 21+T22((1(1TC‘1()1)2)

+¢"Kq+ 4" F(t) i (19) < By + B,

=—¢"Cq—¢"CUG+¢"FU + ¢"F(t) PR

< —TCU¢+{TFU + T F(t) where B, = Ty (1 — el Ch),

. 2 .
Now, we use the concept of Lyapunov reconstruction, e.§Y Ch00SING v1paz, v2max high enough the two terms
[13], we write the control By, B, will be made negative. We can then analyze two
cases:
U = tnom, +v1 + v2 (20)  1- First, the trajectories keep decreasing until they reach the

Where, .o, is the nominal controller, given by (14) with Mvarant set

Umaz = Umaz,, designed for the case wher§t) = F(t) = Sy ={(¢",¢") " e R*N, s.t. By >0}
0, Vt. The remaining terms;, v, are added to compensate
for the effect of the disturbances and F, respectively. We
designv; andwv, in two steps:
- First step: We assume thdt # 0, F(t) = 0, V¢, and So ={(¢",¢"T e R?*N, s.t. By > 0}
dUeigunvl to+cvcimpensate for the effect df. In this case or they get stuck as.

oy y 2- Second, the trajectories decrease until they reach the

In thi he L nov function derivative i n ) . . .
this case, the Lyapunov function derivative is bounded 6}ﬁvarlant setS, first, and stay there, or keep decreasing until

Then, the trajectories can either keep decreasingBif >
B7) until they enter the invariant set

as fo,”OWS . - they reach the invariant séf; .
V(z) < =47 C(tnom, +v1)4 + ¢" F(tnom, +v1) In both cases, the trajectories will end up in eitigror Ss.
< —4"CviG + ¢" F(tnom, +v1) Finally, the fact thatU| < . iS Obtained by construction
< —¢"Cqvy + 47 Funom, + ¢" Foy of the three terms, since from (14), we can wiitg,,, | <

unLamp and by COﬂStrUCtiOdvﬂ S Vimazx> ‘U2| S V2max»

~ R ) which leads tQU| < Umaz, + Vimaz + V2mac < Umae. W

< —¢TCqvy + |4l Frnaztmaz, + 14| FnazVimae Remark 3: We want to underline here the fact that, con-
trary to the previous case of impulse disturbances, in this
case of sustainable external disturbances, the use of a simple

which under Assumption 1, gives

Now, if we define (to simplify the notations), the term

T = +|q'|ﬁmwumwp + |q|Fmawv1max passive damper, i.é/ = cte, might actually destabilize the
_ system. Indeed, by examining equation (19), we can see that
and if we choose the controller if the U is constant the positive term-¢” U, which is
Vimaz T1GT CG due the external disturbance, could overtake the damping
v =

o T g negative term-¢” CUj, leading to instability of the system.
L+ TH(¢"Cq) Remark 4:The controllers (14), (18) are state feedbacks

This leads to the following Lyapunov function derivativePased ong, ¢, these states can be easily computed from

upper bound the sway measurements]ﬁtgiven positiongy(1), ..., y(N),
s via equation (10). The swaw(y,t) can be measured by
<Ti(1- &%) = B laser displacement sensors placed at the positjéi)s i =
1

. 1,2,...N, along the rope, e.g.[14], subsequenilycan be
- Second step: We assume thaft) # 0, F(t) # 0, and computed by simple algebraic inversion of (10), ahdan
designv, to compensate fof'. In this case we write the be obtained by direct numerical differentiation f
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Parameters | Definitions Values
n Number of ropes 8[—]
Me Mass of the car 3500[kg]
P Main rope linear mass density 2.11[kg/m]
l Rope maximum length 390[m]
H Building height 402.8[m)]
Cp Damping coefficient 0.0315[N.sec/m]
2
TABLE |
NUMERICAL VALUES OF THE MECHANICAL PARAMETERS 1'5 i ||| |
AR
E ] LA l
o o5l IHithi it
\
B
IV. NUMERICAL EXAMPLE %—0-5 ‘ ‘ll ,‘ it .w--
A

In this section we present some numerical results obtained
on the example presented in [1]. The case of an elevator -is
system with the mechanical parameters summarized on Table ‘ ‘ ‘ ‘ ‘ ‘
| has been considered for the tests presented hereafter. We ~ ° 200 400 S8 F90 1000 1200 1400
write the controllers based on the model (12), (13) with one
mode, but we test them on a model with two modes. ThEig. 2. Rope sway ay = 195 m: No control (thin line)- With
fact is that one mode is enough since when comparing ti§éntroller (14) (bold line)
solution of the PDE (7) to the discrete model (12) the higher
modes shown to be negligible, and a discrete model with one
mode showed a very good match with the PDE model, but to 1t
make the simulation tests more realistic we chose to test the
controllers on a two modes model. Furthermore, to make
the simulation tests more challenging we added a random
white noise to the states fed back to the controller (equivalent
to about+1 c¢m of error on the rope sway measurement
from which the states are computed, see Remark 1), and
we filtered the control signal with a first order filter with
a cut frequency ofl0 hz and a delay term o6 sampling -1.5¢ ‘ ‘ ‘ ‘ ‘ ‘ i
times, to simulate actuator dynamics and delays due to ~ *?10 1220 1230 120 LSS0 1260 1270 1280
signal transmission and computation time. First, to validate
Theorem 1, we present the results obtained by applyirfgg- 3. Zoom of rope sway af = 195 m: No control (thin line)-
the controller (14), to the model (12), (13), with non-zerdVith controller (14) (bold line)
initial conditions ¢(0) = 20, ¢(0) = 5, and zero external
disturbances, i.efi(t) = f2(t) = 0, Vt. In these first tests,
to show the effect of the controller (14) alone, without the . .

‘help’ of the system’s natural damping, we fix the dampingTheorem 1, the control amplitude decreases with the decrease
coefficient to zero, i.ec, = 0. We apply the controller (14), ©f the sway.
With 4, = 10° Nsec/m. Figures 2, 3 show the rope Next, we consider the model (12), (13) with no-zero
sway obtained at half rope-length = 195 m with and disturbance signalsf; (t) = 0.2sin(27.0.08t), and f, being
without control. Without control the rope sway reaches aeduced fromy; via equation (3). We underline that we have
maximum value of about.5 m. With control we see clearly purposely selected the disturbance frequency to be equal to
the expected damping effect of the controller, which reducdbe first resonance frequency of the rope, to simulate the
the sway amplitude by half. The corresponding control forcavorst-case scenario’. In this case we apply the controller
is depicted on Figures 4, 5. We see that, as expected fro@#8), with the parameters, ..., = 10° Nsec/m, vimaer =
the theoretical analysis of Theorem 1, the control forcesma.. = 10° Nsec/m, Fpar = Fiae = 1. We show on
remains bounded by a maximum value #6kNsec/m, Figures 6, 7 the sway signal in the uncontrolled and the
which is easily realizable by existing semi-active dampegontrolled case. We see that the sway steady state maximum
e.g. magnotorheological damper. Furthermore, as proven amplitude is reduced fror8.4 m in the uncontrolled case
to 2.4 m with control. The noisy (due to the simulated

2The figures’ zoom is included for the reader to have a bettgheasurements noise) bounded and continuous control signals

idea about the signals shape. are reported on Figures 8, 9.
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V. CONCLUSION o L
[2] S. Kaczmarczyk, R. lwankiewicz, and Y. Terumichi, “The

In this paper we have studied the problem of semi active  dynamic behavior of a non-stationary elevator compensating
control of elevator rope sway dynamics occurring due to  rope system under harmonic and stochastic excitations,” in
external force disturbances acting on the elevator system. Journal of Physics: Conference Series 1810P Publishing,
We have considered the case of a static car, i.e. constant rope Sgggvzﬁg-aﬁfé ‘w. “Vibration of elevator cables with sl
length and have proposed two nonlinear contr.o.llers basgd 0 bending stiffness,Journal of Sound and Vibratigrvol. 263,
Lyapunov theory. We have presented the stability analysis of bp. 679-699, 2003
these controllers and shown their efficiency on a numericajy W.D.Zhu and L. Téppo, “Design and analysis of a scaled
example. The semi-active stabilization problems related t0 = model of a high-rise high-speed elevataigurnal of Sound
time-varying rope lengths, i.e. moving car, will be presented  and Vibration vol. 264, pp. 707-731, 2003.
in a future report. W.D.Zhu and Y. Chen, “Theoretical and experimental inves-
tigation of elevator cable dynamics and contraldurnal of
Sound and Vibrationvol. 128, pp. 66—78, 2006.
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