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Coordinating controllers for constrained linear systems

by virtual state governors
Stefano Di Cairano, Ilya V. Kolmanovsky

Abstract—Constrained control is often applied to systems with redun-

dant actuation. Often, the usage of a specific group of actuators is to be
minimized because of its operating cost and/or undesired side-effects, and,

sometimes, controllers for each single actuator may have been previously

designed. Thus, for cost or organizational considerations, redesigning

the entire control strategy may be impractical. Instead, a coordination
scheme for regulating the interaction between the existing controllers

while enforcing constraints and minimizing the usage of specific actuators

can be developed. We propose a coordination strategy for the case
when two groups of actuators, each with a non-modifiable state-feedback

controller, are available. By using the maximum constraint admissible set

for each controller in closed-loop with the plant, the coordination scheme

modulates the action of the assigned controllers and minimizes the usage
of the “expensive” actuators. The proposed control strategy enforces

constraints, stabilizes the system, and uses the expensive actuators for

finite time and only to avoid constraint violation.

I. INTRODUCTION

Today, redundant actuation is being used in several applications.

Some examples in automotive include engine idle speed control [1],

hybrid electric vehicle energy management [2], and vehicle cornering

control by active steering and braking [3]. Aerospace applications

include aircraft control by multiple aerodynamic surfaces [4], and

spacecraft attitude control [5]. As a specific example of the latter,

the International Space Station (ISS) has a cluster of four control

moment gyroscopes and 32 attitude control thrusters, and it may rely

on attitude control capability from docked service vehicles.

Thus, the coordination of several constrained actuators is a major

research area in control. Often, the use of an “expensive” group

of actuators has to be minimized, due to high operating cost, or

undesired side effects. For instance, in vehicle cornering the use

of differential braking shall be avoided when possible due to the

longitudinal deceleration that is perceived negatively by the driver, to

the noise, and to the increased fuel consumption. In spacecraft attitude

control, the use of solar powered momentum exchange actuators is

preferred to the use of fuel powered thrusters.

Several techniques have been proposed for designing control sys-

tems with redundant actuators, including loop shaping, H∞ control,

and model predictive control, each resulting in a single controller

that commands all the actuators. A two stages architecture is used in

control allocation [6], which allocates to the physical actuators the

virtual commands generated by a higher level controller.

However, in several applications the control strategies and software

for the individual actuators may already be available and should be

combined without full redesign, for organizational or cost considera-

tions. These cases lead to the approach pursued in this paper, which

starts from available non-modifiable controllers for each actuator, and

implements a coordination scheme. For instance, in vehicle cornering

control [3], the legacy active steering and braking algorithms can be

retained, while only the coordination scheme is introduced anew. In

the example of the ISS, the actuator configuration may be changing

depending on the current service vehicles, and a complete redesign
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for each system configuration is clearly impractical. The coordination

scheme may also be made responsible for enforcing pointwise-in-

time state and control constraints. In this way, should the constraints

change during the system life cycle or due to particular external

conditions, only the coordination scheme is modified. While actu-

ator integration can be achieved by switched control [7], switching

between individual actuators often yields suboptimal performance,

since only one actuator is active at any time.

In this paper1 we consider two groups of actuators, one of which is

to be used only when strictly necessary because of higher operating

cost, efficiency losses, or undesired side-effects. For each group,

a non-modifiable state-feedback controller designed without specif-

ically taking into account control and state constraints is assigned.

We develop a coordination strategy that propagates to the assigned

controllers “virtual” states, obtained by decomposing the system

state based on the constraint admissible sets [9] for the dynamics

of the plant in closed loop with each controller. The proposed

coordination strategy achieves constraint satisfaction, closed-loop

asymptotic stability, enlarged domain of attraction with respect to

single actuators, and uses the expensive actuator only when otherwise

the constraints would be violated, and only for a finite time.

The proposed control strategy is related to some previously devel-

oped approaches, yet it provides unique features. Switching multi-

mode controllers based on constraint admissible sets are proposed

in [9], [10], but without actuator coordination. Reference and com-

mand governors [11], [12] and extended command governors [13]

generate virtual commands for enforcing constraints, but do not

coordinate multiple actuators. The proposed control strategy also

shares features with reset control systems [14].

The paper is structured as follows. Section II introduces the con-

troller coordination problem, and Section III describes a a design that

achieves constraint satisfaction. Asymptotic stability and finite time

usage of expensive actuators are obtained as described Section IV.

A case study in spacecraft attitude control is presented in Section V.

Conclusion and extensions are summarized in Section VI.

Notation: Z, Z+, Z0+, and R, R+, R0+ denote the sets of integers,

positive and non-negative integers, and the sets of reals, positive and

non-negative reals, respectively. For sets A and B, A ⊕ B is the

Minkowski sum, int(A) is the interior of A, and Projx[A], where x
is a vector, is the projection of A on the subspace of x. ‖·‖ denotes the

Euclidean norm. Relational operators between vectors are intended

componentwise, while for matrices denote (semi)definiteness. [A]k
where A is a matrix indicates the kth row, while if A is a vector,

indicates the kth component. 0 indicates the “all-zeros” matrix of

appropriate dimensions. For a matrix P > 0, λPmax, λPmin, κ(P ) are

the smallest and largest eigenvalue, and their ratio, respectively.

II. PRELIMINARIES AND PROBLEM DEFINITION

First, we recall some basic definitions and results in invariance and

stability that are useful for the subsequent developments.

Definition 1: The set X ⊆ R
n is positive invariant (PI) for x(k+

1) = f(x(k)), if for all x ∈ X , f(x) ∈ X .

1Preliminary results related to this research were presented in [8].
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Definition 2: For x(k + 1) = f(x(k)), y(k) = h(x(k)) subject

to y(k) ∈ Y , the maximum constraint admissible set O∞ [9] is the

largest set such that if x(k) ∈ O∞, then y(t) ∈ Y for all t ≥ k.

Note that a system x(k+1) = f̃(x(k), u(k)) controlled by u(k) =
κ(x(k)) subject to u(k) ∈ U can be reformulated as in Definition 2

by taking f(x) = f̃(x, κ(x)), h(x) = κ(x), Y ≡ U .

Theorem 1 ( [9]): Given an asymptotically stable discrete-time sys-

tem x(k+1) = Ax(k), y(k) = Cx(k), where (A,C) is observable,

and constraints y ∈ Y , where Y is a polytope and 0 ∈ int(Y), O∞

is a polytope, is finitely determined, and 0 ∈ int(O∞).
Definition 3: A function α : R0+ → R belongs to class K if it is

continuous, strictly increasing and α(0) = 0. It belongs to class K∞

if α ∈ K and α(s) → ∞ when s→ ∞.

Definition 4: A function V : Rn → R0+ is a Lyapunov function

for x(k + 1) = f(x(k)) in the PI set X ⊆ R
n, 0 ∈ int(X ), if there

exist α, α, α∆ ∈ K∞ such that for all x ∈ X ,

α(‖x‖) ≤ V(x) ≤ α(‖x‖),

∆V(x) = V(f(x))− V(x) ≤ −α∆(‖x‖).

Theorem 2 (e.g., [15]): Let V : Rn → R0+ be a Lyapunov function

for x(k + 1) = f(x(k)) in the PI set X ⊆ R
n, 0 ∈ int(X ). Then,

x = 0 is asymptotically stable (AS) in X for x(k + 1) = f(x(k)).
Next, we formulate the problem addressed in this paper. Consider

the discrete-time system

x(k + 1) = Ax(k) +B1u1(k) +B2u2(k), (1a)

y(k) = Cx(k), (1b)

where x ∈ R
n is the state vector, u1 ∈ R

m1 , u2 ∈ R
m2 are input

vectors, y ∈ R
p is the output vector. Even though we often refer

to ui as ith actuator input, u1, u2 may each represent a group of

inputs (and hence a group of actuators). This observation allows to

generalize the developments to the case of N ∈ Z+ actuators.

System (1) is subject to constraints

ui ∈ Cu,i, i = {1, 2}, (2a)

y ∈ Cy, (2b)

where Cy, Cu,i, i = {1, 2} are given (convex) polyhedra.

The inputs to (1) are generated by two independently designed,

non-modifiable controllers

u1 = K1x, u2 = K2x. (3)

We make the following assumptions.

Assumption 1: (A,Bi) is controllable for i = 1, 2, and (A,C) is

observable. ✷

Assumption 2: Ki is such that x(k+1) = (A+BiKi)x(k) is AS

for i = 1, 2. ✷

Assumption 3: Cu,i is finitely determined, compact and 0 ∈
int(Cu,i) for i = 1, 2. If Cy ⊂ R

p, Cy is finitely determined, compact

and 0 ∈ int(Cy). ✷

Note that Assumption 2 does not guarantee that x(k + 1) =
Ax(k) + B1K1x(k) + B2K2x(k) is AS. Neither the pre-assigned

controllers (3) guarantee that (2) is satisfied.

In this paper we aim at solving the following problem.

Problem 1: Given (1) and controllers (3) where the gains cannot be

modified and the state x is known, design the virtual state governor

(VSG) g : Rn → R
2n,

g(x) =

[

g1(x)
g2(x)

]

=

[

x1

x2

]

, (4)

that provides “virtual states” to (3) resulting in inputs

u1 = K1x1, u2 = K2x2, (5)

such that the closed-loop system

x(k + 1) = Ax(k) +B1K1x1(k) +B2K2x2(k), (6)

(i) enforces constraints (2), (ii) is asymptotically stable, (iii)
u2(k) 6= 0 only if (2) cannot be satisfied for every h ≥ k by

u1(h) = K1x(h), u2(h) = 0. ✷

At any time k ∈ Z0+, the control architecture (4), (5) computes

xi(k) = xi, i ∈ {1, 2}, from x = x(k), and assigns ui(k) = ui,
i = {1, 2}, so that (1) evolves as

x(k + 1) = Ax(k) +B1K1g1(x(k)) +B2K2g2(x(k)). (7)

Thus (4), (5) is a (nonlinear) static state feedback that modulates

the control action of each actuator in order to enforce the constraints,

to guarantee asymptotic stability, and to minimize the use of the

“expensive” actuator group, u2, in the sense that u2 6= 0 only when

needed for guaranteeing that the constraints are satisfied.

III. COORDINATION BY VIRTUAL STATE GOVERNOR

First, we construct a design for g(·) in (4) that ensures (i) in

Problem 1, and later we specialize it to also ensure (ii), (iii). We

rewrite (6) as

x(k + 1) = (A+B1K1)x1(k) + (A+B2K2)x2(k), (8)

which can be decomposed into two subsystems

Σ1 : x1(k + 1) = Ax1(k) +B1K1x1(k), (9a)

Σ2 : x2(k + 1) = Ax2(k) +B2K2x2(k). (9b)

Consider first the case when Cy ≡ R
p, and let Oi

∞ be the maxi-

mum constraint-admissible set for system Σi, subject to ui ∈ Cu,i,
for i = 1, 2. Given x(k), consider the optimization problem,

min
x1,x2

J(x1, x2) (10a)

s.t. x1 + x2 = x(k) (10b)

xi(k) ∈ Oi
∞, i = 1, 2, (10c)

where J : R
n × R

n → R0+ is a cost function. Constraint (10b)

decomposes x in two vectors, x = x1 + x2, each to be provided

to one of the predefined controllers, i.e., each used for feedback

through one of the actuators. Cost function (10a) may be defined

to minimize the use of the expensive actuator, while (10c) ensures

that the decomposition (10b) satisfies the constraints at every future

time instant. The effect of (10b), (10c) is to decompose the state

vector x into x1 ∈ O1
∞, x2 ∈ O2

∞ such that x1 + x2 = x. Among

all admissible decompositions, the one that minimizes the value of

the cost function (10a) is selected.

Let [ x∗1(x(k))
′ x∗

2
(x(k))′ ]′ be the optimizer of (10), and define

g(x(k)) =

[

x∗
1(x(k))
x∗
2(x(k))

]

, (11)

so that xi(k) = x∗
i (x(k)) = gi(x(k)), and indeed if x∗

1(x(k)) =
x(k), u2(k) = 0. Let Xf be the set of states such that (10) is feasible,

i.e., Xf ≡ {x ∈ R
n : ∃xi ∈ Oi

∞, i ∈ {1, 2}, x1 + x2 = x}.

Theorem 3: For all x(k) ∈ (O1
∞ ⊕ O2

∞), (10) admits a feasible

solution. For (7), if (10) is feasible at k ∈ Z0+, then it is feasible

for all t ∈ Z0+, t ≥ k, i.e., Xf is PI for (7), (11).

Proof: If (x1, x2) ∈ R
n×R

n is feasible for (10), then xi ∈ Oi
∞,

i = {1, 2}, and x1 + x2 = x. Hence, Xf ≡ (O1
∞ ⊕ O2

∞). Assume

that x(k) is feasible and let x1(k), x2(k) be a solution of (10). Then,

(7) evolves according to (8). Thus, x̃i(k + 1) = (A+ BiKi)xi(k),
i ∈ {1, 2}, are such that x(k + 1) = x̃1(k + 1) + x̃2(k + 1). Since

xi(k) ∈ Oi
∞, (A+BiKi)

jxi(k) ∈ Oi
∞ for any j ∈ Z0+, and hence

xi(k + 1) ∈ Oi
∞, for any i ∈ {1, 2}. Hence, the decomposition
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x̃i(k + 1) = (A + BiKi)xi(k), i ∈ {1, 2} is feasible. Then, the

claim follows by induction.

From Theorem 3 the VSG-controlled system has larger domain

of attraction (O1
∞ ⊕ O2

∞) than the ones achieved when the single

actuators are used (Oi
∞, i = 1, 2), and when a switching control law

based on Oi
∞ is used (O1

∞ ∪ O2
∞).

When Cy ⊂ R
p the output constraints couple the subsystems

requiring a slightly more complex decomposition in (8). Let Cy ≡
{x ∈ R

n : HCx ≤ h}, where H ∈ R
ℓ×p, h ∈ R

ℓ, and for

i = 1, 2 introduce the additional state vector εi ∈ R
ℓ, representing

the constraint range allocated to Σi. Then, compute the maximum

constraint admissible set Ōi
∞ for

xi(k + 1) = (A+BiKi)xi(k), (12a)

εi(k + 1) = εi(k), (12b)

HCxi(k) ≤ φ+ εi(k), (12c)

0 ≤ εi(k) ≤ h− φ, (12d)

for i ∈ {1, 2}, where φ ∈ R
ℓ, such that [φ]j ∈ (0, [h]j), for all

j = 1, . . . ℓ is a fixed constant vector, finite yet possibly arbitrarily

small, and 0 ∈ int(H), H = {x ∈ R
n : HCx ≤ φ}. Note that Ōi

∞

is defined on (xi, εi) ∈ R
n+ℓ. Given εi, Oi

∞(εi) ≡ {xi ∈ R
n :

(xi, εi) ∈ Ōi
∞}, i.e., the cross-section of Ōi

∞ for given εi.

Theorem 1 does not apply to (12), since (12b) is not AS. However,

under appropriate assumptions, a similar result holds.

Lemma 1: Given x(k + 1) = Ax(k), y(k) = Cx(k), let A be

strictly Schur, and (A,C) observable. Let the output constraint set

Y ≡ {y ∈ R
ℓ : Hy ≤ φ}, where H ∈ R

ℓ×p, φ ∈ R
ℓ, be compact

and 0 ∈ int(Y). For every finite εmax ∈ R+, the maximum constraint

admissible set of (12), Ō∞ ≡ {(x, ε) ∈ R
n+ℓ : HCAkx ≤ φ +

ε, 0 ≤ ε ≤ εmax, k ∈ Z0+}, is compact and finitely determined.

Proof: Consider ε > 0, and Yε ≡ {y ∈ R
p : Hy ≤ φ + ε}.

For n ∈ Z+, let Ōn ≡ {(x, ε) ∈ R
n+ℓ : CAkx ∈ Yε, 0 ≤ ε ≤

εmax, k = 0, . . . , n−1}. Clearly, Ō∞ ⊂ Ōn. We prove that: (a) Yε
is compact, (b) Ō∞ is bounded, (c) Ō∞ is finitely determined and

closed, and hence compact.

(a) Clearly, Yε is closed, so we need to show that Yε is bounded.

If Yε is unbounded, by convexity, compactness of the unit sphere,

and 0 ∈ Yε there must exist e ∈ R
p with ‖e‖ = 1 such that λe ∈ Yε,

for all λ ≥ 0. Since Y is compact, there exists λ̄ > 0 such that for

all λ > λ̄, λe 6∈ Y . Thus, there exists ı̄ ∈ Z+, 1 ≤ ı̄ ≤ ℓ, such

that [H ]̄ıλe > [h]̄ı for all λ > λ̄. Since 0 ∈ int(Y), [h]̄ı > 0 and

[H ]̄ıe > 0. Then, there exists λ̂ > 0 such that [H ]̄ıλe > [h]̄ı+ εmax

for all λ > λ̂, which is contradicting λe ∈ Yε for all λ > 0.

(b) By assumption, the observability matrix Γ ∈ R
np×n =

[C′ (CA)′ ... (CAn−1)′ ] has rank n, thus Γ′Γ > 0. Hence, Ōn =
{(x, ε) : Γx ∈ Yε × . . . × Yε ⊂ R

np, 0 ≤ ε ≤ εmax}, is bounded

since Yε is bounded for any 0 ≤ ε ≤ εmax. Hence, Ō∞ ⊂ Ōn is

bounded.

(c) By assumption, limk→∞ ‖Ak‖ = 0. Since Ōk is bounded for

k ≥ n, there exists k∗ such that for all x ∈ Ōk∗ , HCAkx < φ
for all k ≥ k∗. Thus, HCAkx ≤ φ + ε, 0 ≤ ε ≤ εmax, for all

k = 0, . . . , k∗ implies HCAkx ≤ φ + ε, for all k ≥ k∗. Hence

Ōk∗ = Ō∞, and since Ōk∗ is the intersection of a finite number of

closed sets, Ō∞ is finitely determined, closed and hence compact.

Given x(k), consider the optimization problem

min
x1,x2,ε1,ε2

J(x1, x2, ε1, ε2) (13a)

s.t. x1 + x2 = x(k) (13b)

xi ∈ Oi
∞(εi), i = 1, 2 (13c)

ε1 + ε2 ≤ h− 2φ (13d)

let [ x∗1(x(k))′ x∗2(x(k))′ ε∗1(x(k))′ ε∗2(x(k))′ ]
′

be the optimizer, and de-

fine g(x(k)) by (11), where ε∗1, ε∗2 do not (explicitly) appear.

By (13), the controller decomposes not only the state between the

different subsystems, but also the constraint bounds. Constraint (13c)

ensures HCxi(k) ≤ φ + εi(k), i ∈ {1, 2}, and, by (13b), (13d),

HCx(k) = HC(x1(k)+x2(k)) ≤ ε1(k)+ ε2(k)+2φ ≤ h. If (13)

is used in place of (10), the set of feasible states is Xf ≡ {x ∈ R
n :

∃(xi, εi) ∈ Ōi
∞, i ∈ {1, 2}, x1 + x2 = x, ε1 + ε2 ≤ h− 2φ}.

Theorem 4: Under the assumptions of Lemma 1, Xf is convex,

compact and finitely determined. For (7), if (13) is feasible at k ∈
Z0+, then the constraints are satisfied at any time instant t ≥ k,

t ∈ Z0+, i.e., Xf is PI for (7), (11).

Proof: The sets Ōi
∞, i ∈ {1, 2} are convex, and so are the

sets defined by (13b), (13d). Hence, Xf is convex. By Lemma 1,

Ōi
∞, i ∈ {1, 2} is compact and finitely determined. Since Xf is

the intersection of the sets defined by (13b), (13c), (13d), which are

compact and finitely determined, so is Xf . Let (13) be feasible at time

k ∈ Z0+ for x(k), and let xi(k) ∈ R
n, εi(k) ∈ R

ℓ, i ∈ {1, 2} be

selected. Then, at time k+1, ((A+BiKi)xi(k), εi(k)), i ∈ {1, 2}
is a feasible solution for (13), since (xi(k), εi(k)) ∈ Ōi

∞ implies

((A + BiKi)xi(k), εi(k)) ∈ Ōi
∞ by invariance of Ōi

∞. Then, the

claim follows by induction.

Theorems 3 and 4 ensure that (11) and (10) or (13) satisfy (i) in

Problem 1. Next, we show that (ii) and (iii) can be obtained through

a proper choice of J in (10a) or (13a).

IV. CLOSED-LOOP STABILITY

Consider the Lyapunov functions Vi(xi) = x′
iPixi for Σi, i =

1, 2, where Pi > 0 is such that (A+BiKi)
′Pi(A+BiKi)− Pi =

−Qi, for some Qi > 0, for i ∈ {1, 2}. In what follows, µi =
‖A + BiKi‖ is the induced norm of the state update matrix of Σi,
for i ∈ {1, 2}.

In order to achieve (ii) and (iii) in Problem 1 we propose to use

as the cost function in (10), (13)

J(x1, x2) = J(x2) = ‖P
1/2
2 x2‖

2 = x′
2P2x2, (14)

where P2 is such that x′
2P2x2 is a Lyapunov function for x2(k +

1) = (A + B2K2)x2(k). By (14), (11) selects x2 that belongs to

the minimum achievable level set of a Lyapunov function for Σ2.

Thus, by (14), (11) minimizes the value of the Lyapunov function of

the closed-loop system x2(k + 1) = (A+ B2K2)x2(k), that is the

closed-loop subsystem associated with the expensive actuator, which

could be regarded as a measure of “energy” in Σ2.

Remark 1: With (14), (10) and (13) result in convex quadratic

programs, since for (1), (2), Oi
∞, Ō

i
∞ are polyhedra for i = 1, 2.

Several efficient algorithms for solving QP exist (see e.g., [16] and

references therein). For these cases, the VSG control law (11) can also

be explicitly computed by multiparametric programming resulting

in a piecewise affine control law [17]. Thus, online optimization

can be avoided. The complexity of the VSG control law can be

further reduced by storing only g1(x), from which g2(x) can be

reconstructed, and consequently merging the regions of the control

law with equal g1(x), see, e.g., [18].

Next, we show that, (11), with (10) (or (13)) and (14) achieves (ii)
of Problem 1, i.e., the origin is asymptotically stable for the closed-

loop system. In what follows we explicitly refer to (10), while it is

understood that (13) is to be used when output constraints are present.

Given the Lyapunov functions Vi(xi) for Σi, i = 1, 2, we prove

that there exists γ > 0 such that V(x) = V1(x1) + γV(x2) is

a Lyapunov function for x(k + 1) = Ax(k) + B1K1g1(x(k)) +
B2K2g2(x(k)), for gi(x(k)), i = 1, 2, defined by (11).

Assumption 4: Either at least one of Oi
∞, i = 1, 2, is bounded or

the minimum of (10) is bounded at k = 0.
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Lemma 2: Along the closed-loop trajectories of (7) with g(·)
defined by (11), (14), there exists ci > 0, i = 1, 2, such that

‖xi(k)‖ ≤ ci‖x(k)‖, i = 1, 2.

Proof: We prove only the cases when the minimum of (10) is

bounded at k = 0, and O2
∞ is bounded. The proof for when O1

∞

is bounded is similar. Since 0 ∈ int(Oi
∞), i = 1, 2, there exists

ρ > 0 such that {x1 ∈ R
n : ‖x1‖ ≤ ρ} ⊆ O1

∞, and since x2(k) is

selected by (10), (14), whenever ‖x(k)‖ ≤ ρ, we have x1(k) = x(k),
x2(k) = 0.

Let ‖x(k)‖ ≥ ρ. Suppose that the minimum of (10) is bounded at

k = 0, i.e., x2(0)
′P2x2(0) ≤ β̃. Since V2(x2) = x′

2P2x2 is a Lya-

punov function for Σ2, V2((A+B2K2)x2(0)) ≤ β̃, and given that

for all k ∈ Z0+, x2(k) is the optimum of (10) with (A+B2K2)x2(k)
being a feasible solution, V2(x2(k + 1)) ≤ V2(x2(k)) ≤ β̃.

Since V2(x2) is a Lyapunov function, α2(‖x2(k)‖) ≤ V(x2(k)) ≤
V(x2(0)) ≤ β̃. Given that β̃ is finite and α2 ∈ K∞, for some β > 0,

‖x2(k)‖ ≤ β for all k ∈ Z0+.

Instead of the minimum of (10) being bounded at k = 0, suppose

O2
∞ is bounded. Then, along any feasible trajectory there exists β >

0 such that ‖x2(k)‖ ≤ β for all k ∈ Z0+.

Thus, for all k ∈ Z0+, when ||x(k)|| ≥ ρ, ‖x1(k)‖ ≤ ‖x(k)‖+
‖x2(k)‖ ≤ ‖x(k)‖+β ≤ ‖x(k)‖+β ‖x(k)‖

ρ
= (1+ β

ρ
)‖x(k)‖. Since

‖x2(k)‖ ≤ ‖x(k)‖+‖x1(k)‖, c1 = (1+ β
ρ
) and c2 = (2+ β

ρ
) satisfy

the statement, including when ‖x(k)‖ ≤ ρ.

Lemma 3: Let xi(k) ∈ Oi
∞, i = 1, 2 be given, let x̃2(k +

1) = (A + B2K2)x2(k), and let x2(k + 1) be obtained by

solving (10), (14). There exists c ∈ R+ such that ‖x2(k + 1) −
x̃2(k + 1)‖ ≤ c‖x2(k)‖.

Proof: By optimality of x2(k+1) and feasibility of x̃2(k+1),
we have that x2(k + 1)′P2x2(k + 1) ≤ x̃2(k + 1)′P2x̃2(k + 1) ≤
λP2
max‖x̃2(k + 1)‖2. Since x2(k + 1)′P2x2(k + 1) ≥ λP2

min‖x2(k +
1)‖2, it holds that ‖x2(k+1)‖ ≤

√

κ(P2)‖x̃2(k+1)‖ = c̃‖x̃2(k+
1)‖. Thus, ‖x2(k+1)− x̃2(k+1)‖ ≤ ‖x2(k+1)‖+‖x̃2(k+1)‖ ≤
(c̃+ 1)‖x̃2(k + 1)‖ ≤ (c̃+ 1)µ2‖x2(k)‖ = c‖x2(k)‖.

Theorem 5: Let Vi(xi) = x′
iPixi be a Lyapunov function for

xi(k+1) = (A+BiKi)xi(k), i ∈ {1, 2}. Then, there exists γ ∈ R+

such that V(x) = V1(x1) + γV2(x2) is a Lyapunov function within

Xf for (7) in closed-loop with g(x(k)) defined by (11), (10), (14).

Proof: First note that because of Theorem 3/ Theorem 4, Xf

is PI for the closed-loop dynamics. In order to prove that V(x) is a

Lyapunov function, we first need to prove that there exists α, α ∈ K∞

such that α(‖x‖) ≤ V(x) ≤ α(‖x‖). For any γ > 0, V(x) ≤
α1(‖x1‖) + γα2(‖x2‖), and, by Lemma 2, V(x) ≤ α1(c1‖x‖) +
γα2(c2‖x‖). Hence, α(‖x‖) = α1(c1‖x‖) + γα2(c2‖x‖) is an

upper bound on V(x), and indeed α(‖x‖) ∈ K∞ since γ > 0, and

α1(‖x‖), α2(‖x‖) ∈ K∞. By the definition of V(x), for any γ > 0,

V(x) ≥ α1(‖x1‖) + γα2(‖x2‖). Consider the case ‖x2‖ ≤ ‖x1‖.

Then, α1(‖x1‖)+γα2(‖x2‖) ≥ α1(‖x1‖) ≥ α1(
1
2
‖x1‖+

1
2
‖x2‖) ≥

α1(
1
2
‖x‖). Consider the case ‖x1‖ ≤ ‖x2‖. Then, α1(‖x1‖) +

γα2(‖x2‖) ≥ γα2(‖x2‖) ≥ γα2(
1
2
‖x1‖ + 1

2
‖x2‖) ≥ γα2(

1
2
‖x‖).

Thus, V(x) ≥ min(α1(
1
2
‖x‖), γα2(

1
2
‖x‖)) = α(‖x‖) and for any

γ > 0, α(‖x‖) ∈ K∞.

Next, to prove that there exists α∆(‖x‖) ∈ K∞ such that

∆V(x) ≤ −α∆(‖x‖). Let x, xi ∈ R
n, i = 1, 2, be given, where

x = x1+x2, and consider the evolution as composed of two stages:

(i) continuous evolution of (9) resulting in x̃i = (A+BiKi)xi, i =
1, 2, (ii) reset of the subsystem states2 by (11), i.e, x+

i = gi(x̃1, x̃2),
i = 1, 2, where x+ = x+

1 + x+
2 = x̃1 + x̃2, by (10b). Thus,

∆V(x) = ∆Ṽ(x1, x2, x̃1, x̃2) + φ(x̃1, x̃2, x
+
1 , x

+
2 ) (15)

2Since the reset does not change the actual system state, and at every step
the closed-loop dynamics evolve by a continuous evolution and a reset, we
can arbitrarily choose which of the two actions is considered first.

where ∆Ṽ(x1, x2, x̃1, x̃2) is the change of V(x) during the con-

tinuous execution of the subsystems, while φ(x̃1, x̃2, x1, x2) is the

change of V(x) caused by the reset due to (11).

Since Vi(x), i = 1, 2, is a Lyapunov function for (9), x̃′
iPix̃i −

x′
iPixi = −x′

iQixi, Qi > 0, i = 1, 2. Thus in (15), for any γ > 0,

whenever ‖x1‖+ ‖x2‖ > 0,

∆Ṽ(x1, x2, x̃1, x̃2) = −x′
1Q1x1 − γx′

2Q2x2 < 0.

In (15), the term related to the reset is

φ(x̃1, x̃2, x
+
1 , x

+
2 ) = (V1(x

+
1 )− V1(x̃

+
1 )) +

γ(V2(x
+
2 )− V2(x̃

+
2 )).

Since x̃i, i = 1, 2 is feasible for (10) with cost function (14), while

x+
i , i = 1, 2 is the optimizer, V2(x

+
2 )−V2(x̃2) ≤ 0. Thus, we have

a bound on (15),

−∆V(x) ≥ ϕ(x1, x2, x̃1, x
+
1 ) =

x′
1Q1x1 + γx′

2Q2x2 − (V1(x
+
1 )− V1(x̃1)).

Next, we show ϕ is lower bounded by a class-K function. Let us

call δ = x+
1 − x̃1, then

V1(x
+
1 )− V1(x̃1) = δ′P1δ + 2δ′P1(A+B1K1)x1. (16)

We have x′
1Q1x1 + γx′

2Q2x2 ≥ ‖x1‖
2λQ1

min + γ‖x2‖
2λQ2

min, and

δ′P1δ + 2δP1(A+B1K1)x1 ≤ ‖δ‖2λP1

max + 2µ1λ
P1

max‖δ‖ ‖x1‖.

Hence, ϕ1(x1, x2, δ) ≤ ϕ(x1, x2, δ) where

ϕ1(x1, x2, δ) = ‖x1‖
2λQ1

min + γ‖x2‖
2λQ2

min

−(‖δ‖2λP1

max + 2µ1λ
P1

max‖δ‖ ‖x1‖).

It also follows that ϕ2(x1, x2) ≤ ϕ1(x1, x2, δ), where

ϕ2(x1, x2) = ‖x1‖
2λQ1

min + γ‖x2‖
2λQ2

min

−c2‖x2‖
2λP1

max − 2cµ1λ
P1

max‖x2‖ ‖x1‖,

because −(x+
2 − x̃2) = x+

1 − x̃1 = δ and hence ‖δ‖ ≤ c‖x2‖, by

Lemma 3. Since for any a, b ∈ R, q ∈ R+, |ab| ≤ a2

2q
+ b2q

2
,

ϕ2(x1, x2) ≥ ‖x1‖
2

(

λQ1

min −
2cµ1λ

P1
max

2q

)

+‖x2‖
2

(

γλQ2

min − c2λP1

max −
2cµ1λ

P1
maxq

2

)

,

where, q, γ ∈ R+ are arbitrary. Thus, we can find q > 0 such

that
(

λQ1

min − 2cµ1λ
P1
max

2q

)

= β1 > 0, and γ > 0 such that
(

γλQ2

min − c2λP1
max − 2cµ1λ

P1
maxq

2

)

= β2 > 0. By defining β =

min{β1, β2},

−∆V(x) ≥ ϕ2(x1, x2) ≥ β(‖x1‖
2 + ‖x2‖

2).

Consider the case ‖x1‖ ≥ ‖x2‖. Then, ‖x1‖
2 + ‖x2‖

2 ≥ ‖x1‖
2 ≥

( 1
2
‖x1‖+

1
2
‖x2‖)

2 ≥ 1
4
‖x‖2. Consider the case ‖x2‖ ≥ ‖x1‖. Then,

‖x1‖
2 + ‖x2‖

2 ≥ ‖x2‖
2 ≥ ( 1

2
‖x1‖ + 1

2
‖x2‖)

2 ≥ 1
4
‖x‖2. As a

consequence, −∆V(x) ≥ β(‖x1‖
2 +‖x2‖

2) ≥ β
4
‖x‖2 = α∆(‖x‖),

and α∆(‖x‖) ∈ K∞ which concludes the proof.

Finally, we show that (11), with (10) (or (13)), and (14), achieves

(iii) in Problem 1.

Corollary 1: Consider system (7) where g(·) is defined

by (11), (10), (14). Let x(0) ∈ Xf , then the closed-loop trajectory is

such that there exists a finite k̄ ∈ Z0+ such that x2(k) = 0, for all

k ≥ k̄.

Proof: By Theorem 5 we have that ∆V(x) ≤ −α∆(‖x‖),
α∆(‖x‖) ∈ K∞. Since 0 ∈ int(O1

∞), there exists ρ > 0 such that

{x ∈ R
n : ‖x‖ ≤ ρ} ⊆ O1

∞, and αρ such that α∆(‖x‖) ≥ αρ, for
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‖x‖ > ρ. Since Xf is compact, ‖x(0)‖ is finite, and hence V(x(0))
is finite. Thus, there exists k̄(x(0)) such that ‖x(k̄(x(0)))‖ ≤ ρ.

Assume this is false. Then, V(x(k)) ≤ V(x(0)) − kαρ, and

limk→∞ V(x(k)) = −∞, which contradicts V(x) ≥ 0 for all

x ∈ R
n. Then, there must exist k̄(x(0)) such that x(k̄(x(0))) ∈

{x ∈ R
n : ‖x‖ ≤ ρ} ⊆ O1

∞, and hence x1(k̄(x(0))) = x(k̄(x(0))),
x2(k̄(x(0))) = 0. Since cost function (14) is used, O1

∞ is invariant

for A + BiKi, and x1(k̄(x(0))) = x(k̄(x(0))), x(k) ∈ O1
∞ for all

k ≥ k̄(x(0)), and thus x2(k) = 0, u2(k) = 0 for all k ≥ k̄(x(0)).

By summarizing the results of Sections III and IV, the following

theorem shows that the proposed VSG solves entirely Problem 1.

Theorem 6: Given (1) subject to constraints (2) and initial state

x0 ∈ Xf , control strategy (11), (10) (or (13)), (14) solves Problem 1,

and ensures that u2 6= 0 for a finite time.

Proof: By Theorem 3 (Theorem 4) Xf is PI for (1) in closed loop

with (10) (or (13)), (11), and for x ∈ Xf , xi ∈ Oi
∞ (xi ∈ Oi

∞(εi))
and hence (2) is satisfied along the trajectories of the closed-loop

system. Hence, (i) holds. By Theorem 5 the closed-loop system is

AS, hence (ii) holds. Finally, by using (14) in (10)/(13), if x(k) ∈
O1

∞, for some k ∈ Z0+, u1(h) = Kx(h), u2(h) = 0 for all h ≥ k.

Instead, by the definition of O∞, if x(k) /∈ O1
∞ and u1(h) = Kx(h),

u2(h) = 0 for all h ≥ k, there exists k̄ ≥ k such that (2) is violated.

Thus, (iii) holds. In addition, since Xf is compact, by Corollary 1,

if x(k) /∈ O1
∞, there exists a finite h ∈ Z0+ such that x(h̄) ∈ O1

∞,

and u2(h) = 0, for all h ≥ h̄.

V. CASE STUDY IN ATTITUDE CONTROL

We apply VSG to attitude regulation of a spacecraft equipped

with reaction wheels and thrusters. Reaction wheels are powered by

solar energy, and hence inexpensive to use, but have small authority.

Thrusters have larger authority but consume fuel, so their usage must

be minimized. We consider a body fixed frame aligned with the

principal axes and with the origin at the satellite center of mass.

We call ϑ, ς , ψ the three Euler angles (roll, pitch, yaw) determining

the spacecraft attitude, and ϑ̇, ς̇ , ψ̇ the related angular rates. For small

angles, the linearized attitude dynamics are described by

Jscω̇(t) = −Jrwα(t) + τ (t), (17)

where θ = [ ϑ ς ψ ]′ ∈ R
3 is the vector of Euler angles, θ̇ = ω =

[ ϑ̇ ς̇ ψ̇ ]′ ∈ R
3 is the vector of angular rates, τ = [ τϑ τς τψ ]′ ∈ R

3 is

the vector of torques by the thrusters, and α = [ αϑ ας αψ ]′ ∈ R
3 is

the vector of angular accelerations from the reaction wheels. In (17),

Jsc,Jrw ∈ R
3×3 are the matrices of the moments of inertia of the

spacecraft and of the reaction wheels, respectively. By choosing the

principal axes as reference frame and having the reaction wheels

aligned with the principal axes, Jsc,Jrw are diagonal.

For x = [θ′ θ̇′]′, u1 = α, u2 = τ , two discrete-time LQR

controllers with Ts = 1s are given for reaction wheels and thrusters,

respectively, and cannot be modified. Thus, we implement a VSG to

coordinate the thrusters and the reaction wheels, and to enforce con-

straints. Simulations of the VSG that enforces the actuator constraints

−0.2 ≤ [u1]i ≤ 0.2, −0.9 ≤ [u2]i ≤ 0.9, for i = 1, 2, 3, are shown

in Figure 1, where V1(x1) = x′
1P1x1, V2(x2) = x′

2P2x2 and P1,

P2 are the solutions of the Riccati equations for the LQR controllers

of reaction wheels and thrusters, respectively. The trajectory in a

simulation with initial state x0 = [ 0.35 −0.25 0.6 0.2 −0.1 0.05 ]′ is

shown in Figure 1(a), demonstrating that the input constraints are

enforced and the thrusters are used only for a (short) finite period.

Figure 1(b) shows that along the trajectory from x0, V1 is not

monotonically decreasing, but there exists γ > 0, such that V(x) =
V1(x1) + γV2(x2) is decreasing. In Figure 1(c) the trajectories for
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Figure 1. Simulations of attitude control with input constraints by VSG.

several initial conditions, superimposed to the projections of Oi
∞,

i = 1, 2 and O1
∞ ⊕O2

∞, on the plane [x]1,4 = ([x]1, [x]4) = (ϑ, ϑ̇),
are shown, where, by Theorem 3, Xf ≡ (O1

∞ ⊕O2
∞).

Next, we add the inclusion zone constraint −0.5 ≤ ϑ ≤ 0.5,

which, by defining y = ϑ, is reformulated as output constraints.

The trajectory of ϑ in a simulation with initial state x0 =
[−0.2 0 0 0.275 0.1 −0.1 ]′ is shown in Figure 2(a), demonstrating that

input and output constraints are enforced. In Figure 2(b) the trajec-

tories for several initial conditions are shown, superimposed to the

projections of Ōi
∞, i = 1, 2 and Ō1

∞⊕Ō2
∞, on the plane ([x]1, [x]4),
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i.e., (ϑ, ϑ̇), where according to Theorem 4, Xf ⊆ Projx(Ō
1
∞⊕Ō2

∞).
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Figure 2. Simulations of attitude control with input and output constraints
by VSG

The VSG control law as obtained from multiparametric program-

ming consists of 424 regions, reduced to 123 by the merging algo-

rithm in [18]. To further assess the performance, we have compared

the VSG with a single (saturated) LQR re-designed to control all

actuators. We use as performance metrics the cumulative squared

2-norm of thruster input and state. From the initial conditions as

in Figure 2(b), the VSG performance is within 5% of the single

LQR controller tuned to have approximately the same thrusters usage.

Thus, even without modifying the existing controllers, VSG achieves

a performance close to a full multivariable controller. Furthermore,

VSG avoids output constraints violations, while in the simulations

from initial conditions as above, the single LQR violates the inclusion

zone constraints.

VI. CONCLUSION AND FUTURE RESEARCH

We have proposed a control design for coordinating two groups of

actuators, in the case when the controllers for each actuator group are

pre-designed, and one group of actuators is “expensive” to operate.

We have shown that the resulting closed-loop system satisfies the

constraints, is asymptotically stable, and uses the expensive actuators

only when otherwise the constraints would be violated, and only for

a finite time.

The design can be generalized to the case of N ∈ Z+ actuator

groups. At each control cycle, first, the virtual state xN for the most

expensive actuator and the cumulative virtual state x(1,...,N−1) for the

remaining N − 1 actuators are generated. Then from x(1,...,N−1),

the virtual state xN−1 for the second most expensive actuator is

obtained, together with x(1,...,N−2), and so on, until all the virtual

states have been generated. Note that N − 1 optimization problems

are solved, all with the same number of variables. Hence, the

numerical complexity scales linearly with the number of actuator

groups. The results of Section IV can be extended to this case with

some modifications, for instance due to the fact that the Lyapunov

functions are not necessarily quadratic. Future research will explore

different splits replacing (10b), the extensions to other classes of pre-

assigned controllers, and to the case of partial state information.
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