Coordinating controllers for constrained linear systems by virtual state governors

Di Cairano, S.; Kolmanovsky, I.V.

TR2015-011 February 2015

Abstract

Constrained control is often applied to systems with redundant actuation. Often, the usage of a specific group of actuators is to be minimized because of its operating cost and/or undesired side-effects, and, sometimes, controllers for each single actuator may have been previously designed. Thus, for cost or organizational considerations, redesigning the entire control strategy may be impractical. Instead, a coordination scheme for regulating the interaction between the existing controllers while enforcing constraints and minimizing the usage of specific actuators can be developed. We propose a coordination strategy for the case when two groups of actuators, each with a non-modifiable state-feedback controller, are available. By using the maximum constraint admissible set for each controller in closed-loop with the plant, the coordination scheme modulates the action of the assigned controllers and minimizes the usage of the expensive actuators. The proposed control strategy enforces constraints, stabilizes the system, and uses the expensive actuators for finite time and only to avoid constraint violation.

IEEE Transactions on Automatic Control
Abstract—Constrained control is often applied to systems with redundant actuation. Often, the usage of a specific group of actuators is to be minimized because of its operating cost and/or undesired side-effects, and, sometimes, controllers for each single actuator may have been previously designed. Thus, for cost or organizational considerations, redesigning the entire control strategy may be impractical. Instead, a coordination scheme for regulating the interaction between the existing controllers while enforcing constraints and minimizing the usage of specific actuators can be developed. We propose a coordination strategy for the case when two groups of actuators, each with a non-modifiable state-feedback controller, are available. By using the maximum constraint admissible set for each controller in closed-loop with the plant, the coordination scheme modulates the action of the assigned controllers and minimizes the usage of the “expensive” actuators. The proposed control strategy enforces constraints, stabilizes the system, and uses the expensive actuators for finite time and only to avoid constraint violation.

I. INTRODUCTION

Today, redundant actuation is being used in several applications. Some examples in automotive include engine idle speed control [1], hybrid electric vehicle energy management [2], and vehicle cornering control by active steering and braking [3]. Aerospace applications include aircraft control by multiple aerodynamic surfaces [4], and spacecraft attitude control [5]. As a specific example of the latter, the International Space Station (ISS) has a cluster of four control thrusters, and it may rely on attitude control capability from docked service vehicles.

Thus, the coordination of several constrained actuators is a major research area in control. Often, the use of an “expensive” group of actuators has to be minimized, due to high operating cost, or undesired side-effects. For instance, in vehicle cornering the use of differential braking shall be avoided when possible due to the longitudinal deceleration that is perceived negatively by the driver, to the noise, and to the increased fuel consumption. In spacecraft attitude control, the use of solar powered momentum exchange actuators is preferred to the use of fuel powered thrusters.

Several techniques have been proposed for designing control systems with redundant actuators, including loop shaping, H_{∞} control, and model predictive control, each resulting in a single controller that commands all the actuators. A two stages architecture is used in control allocation [6], which allocates to the physical actuators the virtual commands generated by a higher level controller.

However, in several applications the control strategies and software for the individual actuators may already be available and should be combined without full redesign, for organizational or cost considerations. These cases lead to the approach pursued in this paper, which starts from available non-modifiable controllers for each actuator, and implements a coordination scheme. For instance, in vehicle cornering control [3], the legacy active steering and braking algorithms can be retained, while only the coordination scheme is introduced anew. In the example of the ISS, the actuator configuration may be changing depending on the current service vehicles, and a complete redesign for each system configuration is clearly impractical. The coordination scheme may also be made responsible for enforcing pointwise-in-time state and control constraints. In this way, should the constraints change during the system life cycle or due to particular external conditions, only the coordination scheme is modified. While actuator integration can be achieved by switched control [7], switching between individual actuators often yields suboptimal performance, since only one actuator is active at any time.

In this paper\(^1\) we consider two groups of actuators, one of which is to be used only when strictly necessary because of higher operating cost, efficiency losses, or undesired side-effects. For each group, a non-modifiable state-feedback controller designed without specifically taking into account control and state constraints is assigned. We develop a coordination strategy that propagates to the assigned controllers “virtual” states, obtained by decomposing the system state based on the constraint admissible sets [9] for the dynamics of the plant in closed loop with each controller. The proposed coordination strategy achieves constraint satisfaction, closed-loop asymptotic stability, enlarged domain of attraction with respect to single actuators, and uses the expensive actuator only when otherwise the constraints would be violated, and only for a finite time.

The proposed control strategy is related to some previously developed approaches, yet it provides unique features. Switching multimode controllers based on constraint admissible sets are proposed in [9], [10], but without actuator coordination. Reference and command governors [11], [12] and extended command governors [13] generate virtual commands for enforcing constraints, but do not coordinate multiple actuators. The proposed control strategy also shares features with reset control systems [14].

The paper is structured as follows. Section II introduces the controller coordination problem, and Section III describes a a design that achieves constraint satisfaction. Asymptotic stability and finite time usage of expensive actuators are obtained as described Section IV. A case study in spacecraft attitude control is presented in Section V. Conclusion and extensions are summarized in Section VI.

Notation: \mathbb{Z}, \mathbb{Z}_+, \mathbb{Z}_{0+}, and \mathbb{R}, \mathbb{R}_+, \mathbb{R}_{0+} denote the sets of integers, positive and non-negative integers, and the sets of reals, positive and non-negative reals, respectively. For sets A and B, $A \oplus B$ is the Minkowski sum, $\text{int}(A)$ is the interior of A, and $\text{Proj}_x[A]$, where x is a vector, is the projection of A on the subspace of x. $\| \cdot \|$ denotes the Euclidean norm. Relational operators between vectors are intended componentwise, while for matrices denote (semi)definiteness. $[A]_k$ where A is a matrix indicates the kth row, while if A is a vector, indicates the kth component. 0 indicates the “all-zeros” matrix of appropriate dimensions. For a matrix $P > 0$, λ_{max}, λ_{min}, $\rho(P)$ are the smallest and largest eigenvalue, and their ratio, respectively.

II. PRELIMINARIES AND PROBLEM DEFINITION

First, we recall some basic definitions and results in invariance and stability that are useful for the subsequent developments.

Definition 1: The set $\mathcal{X} \subseteq \mathbb{R}^n$ is positive invariant (PI) for $x(k+1) = f(x(k))$, if for all $x \in \mathcal{X}$, $f(x) \in \mathcal{X}$.

\(^1\)Preliminary results related to this research were presented in [8].
Definition 2: For $x(k+1) = f(x(k))$, $y(k) = h(x(k))$ subject to $y(k) \in Y$, the maximum constraint admissible set O_{∞} [9] is the largest set such that if $x(k) \in O_{\infty}$, then $y(t) \in Y$ for all $t \geq k$.

Note that a system $x(k+1) = \bar{f}(x(k), u(k))$ controlled by $u(k) = \bar{\kappa}(x)$ subject to $u(k) \in U$ can be reformed as in Definition 2 by taking $f(x) = \bar{f}(x, \bar{\kappa}(x))$, $h(x) = \bar{\kappa}(x)$, $Y \subseteq U$.

Theorem 1 (9]): Given an asymptotically stable discrete-time system $x(k+1) = Ax(k), y(k) = Cx(k)$, where (A, C) is observable, and constraints $y(k) \in Y$, where Y is a polytope and $0 \in \text{int}(Y)$, O_{∞} is a polytope, is finitely determined, and $0 \in \text{int}(O_{\infty})$.

Definition 3: A function $\alpha : R_{0+} \rightarrow R$ belongs to class K if it is continuous, strictly increasing and $\alpha(0) = 0$. It belongs to class K_{∞} if $\alpha \in K$ and $\alpha(s) \rightarrow \infty$ when $s \rightarrow \infty$.

Definition 4: A function $V : R^n \rightarrow R_{0+}$ is a Lyapunov function for $x(k+1) = f(x(k))$ in the PI set $X \subseteq R^n$, $0 \in \text{int}(X)$, if there exist $\bar{\alpha}, \delta, \Delta \in K_{\infty}$ such that for all $x \in X$,

$$\frac{1}{\bar{\alpha}} \|x\| \leq V(x) \leq \bar{\alpha}(\|x\|),$$

$$\Delta V(x) = V(f(x)) - V(x) \leq -\alpha(\|x\|).$$

Theorem 2 (e.g., [15]): Let $V : R^n \rightarrow R_{0+}$ be a Lyapunov function for $x(k+1) = f(x(k))$ in the PI set $X \subseteq R^n$, $0 \in \text{int}(X)$. Then, $x = 0$ is asymptotically stable (AS) in X for $x(k+1) = f(x(k))$.

Next, we formulate the problem addressed in this paper. Consider the discrete-time system

$$x(k+1) = Ax(k) + B_1u_1(k) + B_2u_2(k),$$

$$y(k) = Cx(k),$$

where $x \in R^n$ is the state vector, $u_1 \in R^{m_1}, u_2 \in R^{m_2}$ are input vectors, $y \in R^p$ is the output vector. Even though we often refer to u_i as i^{th} actuator input, u_1, u_2 may each represent a group of inputs (and hence a group of actuators). This observation allows to generalize the developments to the case of $N \in Z_+$ actuators.

System (1) is subject to constraints

$$u_1 \in C_{u_1}, \quad i = \{1, 2\},$$

$$y \in C_y,$$

where $C_{y, C_{u_i}}, i = \{1, 2\}$ are given (convex) polyhedra.

The inputs to (1) are generated by two independently designed, non-modifiable controllers

$$u_1 = K_1x, \quad u_2 = K_2x.$$

We make the following assumptions.

Assumption 1: (A, B_i) is controllable for $i = 1, 2$, and (A, C) is observable.

Assumption 2: K_i is such that $x(k+1) = (A + B_iK_i)x(k)$ is AS for $i = 1, 2$.

Assumption 3: C_{u_i} is finitely determined, compact and $0 \in \text{int}(C_{u_i})$ for $i = 1, 2$. If $C_y \subseteq R^p, C_y$ is finitely determined, compact and $0 \in \text{int}(C_y)$.

Note that Assumption 2 does not guarantee that $x(k+1) = Ax(k) + B_1K_1x(k) + B_2K_2x(k)$ is AS. Neither the pre-assigned controllers (3) guarantee that (2) is satisfied.

In this paper we aim at solving the following problem.

Problem 1: Given (1) and controllers (3) where the gains cannot be modified and the state x is known, design the virtual state governor (VSG) $g : R^n \rightarrow R^{2n}$,

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

that provides “virtual states” to (3) resulting in inputs

$$u_1 = K_1x_1, \quad u_2 = K_2x_2,$$

such that the closed-loop system

$$x(k+1) = Ax(k) + B_1K_1x_1(k) + B_2K_2x_2(k),$$

(6)

(i) enforces constraints (2), (ii) is asymptotically stable, (iii) $u_2(k) \neq 0$ only if (2) cannot be satisfied for every $h \geq k$ by $u_1(h) = K_1x(h), u_2(h) = 0$.

At any time $k \in Z_{0+}$, the control architecture (4), (5) computes $x(k) = x_i, i \in \{1, 2\}$, from $x = x(k)$, and assigns $u_i(k) = u_i, i = \{1, 2\}$, so that (1) evolves as

$$x(k+1) = Ax(k) + B_1K_1g_1(x(k)) + B_2K_2g_2(x(k)).$$

(7)

Thus (4), (5) is a (nonlinear) static state feedback that modulates the control action of each actuator in order to enforce the constraints, to guarantee asymptotic stability, and to minimize the use of the “expensive” actuator group, u_2, in the sense that $u_2 \neq 0$ only when needed for guaranteeing that the constraints are satisfied.

III. COORDINATION BY VIRTUAL STATE GOVERNOR

First, we construct a design for $g(*)$ in (4) that ensures (i) in Problem 1, and later we specialize it to also ensure (ii), (iii). We rewrite (6) as

$$\begin{align*}
\min_{u_1, u_2} & \quad J(x_1, x_2) \\
\text{s.t.} & \quad x_1 + x_2 = x \quad (10a)
\end{align*}$$

which can be decomposed into two subsystems

$$\begin{align*}
\Sigma_1 : & \quad x_1(k+1) = Ax_1(k) + B_1K_1x_1(k) \quad (9a) \\
\Sigma_2 : & \quad x_2(k+1) = Ax_2(k) + B_2K_2x_2(k) \quad (9b)
\end{align*}$$

Consider first the case when $C_y \subseteq R^p$, and let O_{∞} be the maximum constraint-admissible set for system Σ_i subject to $u_i \in C_{u_i}$, for $i = 1, 2$. Given $x(k)$, consider the optimization problem,

$$\min_{x_1, x_2} J_1(x_1, x_2) \quad (10a)$$

s.t. $x_1 + x_2 = x \quad (10b)$

where $J_1 : R^n \times R^n \rightarrow R_{0+}$ is a cost function. Constraint (10b) decomposes x in two vectors, $x = x_1 + x_2$, each to be provided to one of the predefined controllers, i.e., each used for feedback through one of the actuators. Cost function (10a) may be defined to minimize the use of the expensive actuator, while (10c) ensures that the decomposition (10b) satisfies the constraints at every future time instant. The effect of (10b), (10c) is to decompose the state vector x into $x_1 \in O_{\infty}^1, x_2 \in O_{\infty}^2$, such that $x_1 + x_2 = x$. Among all admissible decompositions, the one that minimizes the value of the cost function (10a) is selected.

Let $\{x_1^*(x(k)) \in R^1, x_2^*(x(k)) \in R^2\}$ be the optimizer of (10), and define

$$g(x(k)) = \begin{bmatrix} x_1^*(x(k)) \\ x_2^*(x(k)) \end{bmatrix},$$

so that $x_1(k) = x_1^*(x(k)) = g_1(x(k))$, and indeed if $x_1^*(x(k)) = x(k), u_2(k) = 0$. Let $\Lambda_i \subseteq \{x(k) \in R^n : \exists \bar{x}_i \in O_{\infty}^i, i \in \{1, 2\}, x_1 + x_2 = x\}$.

Theorem 3: For all $x(k) \in O_{\infty}^1 \cup O_{\infty}^2$, (10) admits a feasible solution. For (7), it is feasible if $k \in Z_{0+}$, then it is feasible for all $t \in Z_{0+}, t \geq k$, i.e., $X_t \subseteq \{X_t \subseteq \{x(k) \in R^n \times R^n : \exists \bar{x}_1 \in O_{\infty}^1, \bar{x}_2 \in O_{\infty}^2, x_1 + x_2 = x\}$. (7) evolves according to (8). Thus, $x_1(k+1) = (A + B_1K_1)x_1(k), i \in \{1, 2\}$, are such that $x(k+1) = x_1(k+1) + x_2(k+1)$. Since $x_1(k) \in O_{\infty}^1, (A + B_1K_1)x_1(k) \in O_{\infty}^1$ for any $j \in Z_{0+}$, and hence $x_1(k) \in O_{\infty}^1$, for any $i \in \{1, 2\}$. Hence, the decomposition
for all bounded.

For all $0 \leq \epsilon$, let $x(\epsilon) = (1+\epsilon)x + \epsilon^2$. Given $x(\epsilon) \in O(\epsilon)$, $i \in \{1, 2\}$, then the constraints are satisfied at any instant time $t \geq k, t \in (0, \infty)$, i.e., $X^i \in X^i$ for (7), (11).

Theorem 4: Under the assumptions of Lemma 1, X^i is convex, compact and finite. Determine the sets $X^i \in \{1, 2\}$ are convex, and so are the sets defined by (13b), (13d). Let X^i be convex. By Lemma 1, $X^i \in \{1, 2\}$ is compact and finite. Since X^i is the intersection of the sets defined by (13b), (13c), (13d), which are compact and finite, then is X^i. Let X^i be compact at time $t \leq k$ for $k \in X^i$, and let $x(\epsilon) \in X^i$, $i \in \{1, 2\}$ be selected. Then, at time $k+1$, $(A + Bx(k), x(k), x(\epsilon))$, $i \in \{1, 2\}$ is a feasible solution for (13), since $(x(k), x(\epsilon)) \in X^i$ implies $(A + Bx(k), x(\epsilon)) \in X^i$ by invariance of X^i. Then, the claim follows by induction.

Theorems 3 and 4 ensure that (11) and (10) or (13) satisfy (i) in Problem 1. Next, we show that (ii) and (iii) can be obtained through a proper choice of J in (10a) or (13a).

IV. CLOSED-LOOP STABILITY

Consider the Lyapunov functions $V_i(x_i) = x_i^2P_i x_i$, for $i = 1, 2$, where $P_i > 0$ is such that $A + Bx(k)^TP_i + P_i = -Q_i$, for some $Q_i > 0$, for $i \in \{1, 2\}$. In what follows, $P_i = \|A + Bx(k)\|$ is the induced norm of the state update matrix of Σ_i, for $i \in \{1, 2\}$.

In order to achieve (ii) and (iii) in Problem 1 we propose to use as the cost function in (10), (13)

$$J(x_1, x_2) = J(x_2) = \|P_i^{1/2} x_2\|^2 = x_i^2P_i x_i,$$

where P_i is such that $x_i^2P_i x_i$ is a Lyapunov function for $x_2(k + 1) = (A + Bx(k)^2) x_2(k)$. By (14), (11) selects x_2 that belongs to the minimum achievable level set of a Lyapunov function for Σ_2. Thus, by (14), (11) minimizes the value of the Lyapunov function of the closed-loop system $x_2(k + 1) = (A + Bx(k)^2) x_2(k)$, that is the closed-loop system associated with the expensive actuator, which could be regarded as a measure of “energy” in Σ_2.

Remark 1: With (14), (10), and (13) result in convex quadratic programs, since for (1), (2), $O(\epsilon), O(\epsilon)$ are polyhedra for $i = 1, 2$. Several efficient algorithms for solving QP exist (see, e.g., [16] and references therein).

Next, we show that, (11), with (10) or (13) and (14) achieves (ii) of Problem 1, i.e., the origin is asymptotically stable for the closed-loop system. In what follows we explicitly refer to (10), while it is understood that (13) is to be used when output constraints are present.

Given the Lyapunov functions $V_i(x_i)$ for Σ_i, let $i = 1, 2$, we prove that there exists $\gamma > 0$ such that $V(x) = V_1(x_1) + V_2(x_2)$ is a Lyapunov function for $x(k + 1) = Ax(k) + Bx(K_1g_1(x(k)) + Bx(K_2g_2(x(k)))) = g(x(k)), i = 1, 2$, defined by (11).

Assumption 4: Either at least one of $O(\epsilon)$, $i = 1, 2$, is bounded or the minimum of (10) is bounded at $k = 0$.

\[\hat{x}_i(k + 1) = (A + Bx_i(x_i)) x_i(x_i), i \in \{1, 2\} \] is feasible. Then, the claim follows by induction.

From Theorem 3 the VSG-controlled system has larger domain of attraction ($O(\epsilon_0) \subset O(\epsilon_0)$) than the ones achieved when the single actuators are used ($O(\epsilon_0), i = 1, 2$), and when a switching control law based on $O(\epsilon_0)$ is used ($O(\epsilon_1) \cup O(\epsilon_2)$).

When $C \subset \mathbb{R}^n$ the output constraints couple the subsystems requiring a slightly more complex decomposition in (8). Let $C \subset \mathbb{R}^n : H C_x \leq h$, where $H \in \mathbb{R}^{n \times p}, h \in \mathbb{R}^n$, and for $i = 1, 2$ introduce the additional state vector $e_i \in \mathbb{R}^n$, representing the constraint range allocated to Σ_i. Then, compute the maximum constraint admissible set $\bar{O}(\epsilon)$ for

\[x_i(k + 1) = (A + Bx_i(x_i)) x_i, i \in \{1, 2\}, \quad \epsilon \geq 0 \]

Thus, the minimum of (10) is bounded at $k = 0$.

Given $x(k), i \in \{1, 2\}$, consider the optimization problem

\[\min_{x_1, x_2, \epsilon_1, \epsilon_2} \quad J(x_1, x_2, \epsilon_1, \epsilon_2) \]

s.t.

\[x_1 + x_2 = x(k) \]

\[x_i \in \bar{O}(\epsilon), \quad i = 1, 2 \]

\[\epsilon_1 + \epsilon_2 \leq h - 2\phi \]
Lemma 2: Along the closed-loop trajectories of (7) with \(g(\cdot) \) defined by (11), (14), there exists \(c_i > 0, i = 1, 2 \), such that \(\|x_i(k)\| \leq c_i\|x_i(k)\|, i = 1, 2 \).

Proof: We prove only the cases when the minimum of (10) is bounded at \(k = 0 \), and \(O^i_{\infty} \) is bounded. The proof for when \(O^i_{\lambda} \) is bounded is similar. Since \(0 \in \text{int}(O^i_{\infty}), i = 1, 2 \), there exists \(\rho > 0 \) such that \(\{x_i \in \mathbb{R}^n : \|x_i\| \leq \rho \} \subseteq O^i_{\lambda} \), and since \(x_2(k) \) is selected by (10), (14), whenever \(\|x_i(k)\| \leq \rho \), we have \(x_1(k) = x_i(k), x_2(k) = 0 \).

Let \(\|x_i(k)\| \geq \rho \). Suppose that the minimum of (10) is bounded at \(k = 0 \), i.e., \(x_2(0)P_2x_2(0) \leq \beta \). Since \(V_2(x_2) = x_2^TP_2x_2 \) is a Lyapunov function for \(\Sigma_2, V_2(A + B_kK)x_2(0) \leq \beta \), and given that for all \(k \in Z_{n+1}, x_2(k) \) is the optimum of (10) with \((A + B_kK)x_2(k) \) being a feasible solution, \(V_2(x_2(k + 1)) \leq V_2(x_2(k)) \). Since \(V_2(x_2) \) is a Lyapunov function, \(\frac{d}{dt}\|x_2(k)\| \leq V_2(x_2(k)) \leq V_2(x_2(0)) \leq \beta \). Given that \(\beta \) is finite and \(\omega_\infty \in K_\infty \), for some \(\beta > 0 \), \(\|x_2(k)\| \leq \beta \) for all \(k \in Z_{n+1}. \)

Instead of the minimum of (10) being bounded at \(k = 0 \), suppose \(O^i_{\lambda} \) is bounded. Then, along any feasible trajectory there exists \(\beta > 0 \) such that \(\|x_i(k)\| \leq \beta \) for all \(k \in Z_{n+1}. \)

Thus, for all \(k \in Z_{n+1}, \) when \(\|x_i(k)\| \geq \rho \), \(\|x_i(k)\| \leq \|x_i(k)\| + \|x_i(k)\| + \beta \leq (1 + \frac{\beta}{\rho})\|x_i(k)\| \). Since \(\|x_i(k)\| \leq \|x_i(k)\| + \|x_i(k)\| + \beta \leq (1 + \frac{\beta}{\rho})\|x_i(k)\| \), (11) is true.

Lemma 3: Let \(x_1(k) \in O^i_{\infty}, i = 1, 2 \) be given, let \(\tilde{x}_2(k + 1) = (A + B_kK)x_2(k), \) and let \(x_2(k + 1) \) be obtained by solving (10), (14). There exists \(\epsilon \in \mathbb{R}^+ \) such that \(\|x_2(k + 1) - \tilde{x}_2(k + 1)\| \leq \epsilon\|x_2(k)\| \).

Proof: By optimality of \(x_2(k + 1) \) and feasibility of \(\tilde{x}_2(k + 1), \) we have that \(x_2(k + 1)^TP_2x_2(k + 1) - \tilde{x}_2(k + 1)^TP_2x_2(k + 1) \leq \lambda_{\min}^P[\tilde{x}_2(k + 1)]^2. \)

Since \(x_2(k + 1)^TP_2x_2(k + 1) - \lambda_{\min}^P[\tilde{x}_2(k + 1)]^2 \), it holds that \(\|x_2(k + 1)\| \leq \sqrt{\lambda_{\min}^P}\|x_2(k)\| \).

Thus, \(\|x_2(k + 1) - \tilde{x}_2(k + 1)\| \leq \|x_2(k + 1)\| + \|\tilde{x}_2(k + 1)\| \leq \epsilon\|x_2(k)\|. \)

Theorem 5: Let \(V_1(x_1) = x_1^TP_1x_1 \) be a Lyapunov function for \(x_1(k + 1) \in \{x_1 \in \mathbb{R}^n : \|x_1\| \leq \beta \}, i = 1, 2 \). Then, there exists \(\gamma \in R_+ \) such that \(V_1(x_1) + V_2(x_2) \) is a Lyapunov function within \(\mathcal{L}_1 \) for (7) in closed-loop with \(g(x) \) defined by (11), (10), (14).

Proof: First note that because of Theorem 3, \(\lambda_1 \) is PI for the closed-loop dynamics. In order to prove that \(V_1(x_1) \) is a Lyapunov function, we first need to prove that there exists \(\alpha_2 \in K_\infty \) such that \(\alpha_2(\|x_2\|) \leq V_1(\|x_2\|) \). For any \(\gamma > 0, \) \(V_1 \leq \alpha_2(\|x_2\|) \leq \gamma \), and, by Lemma 2, \(V_1 \leq \gamma \alpha_2(\|x_2\|) \).

Hence, \(\alpha_2(\|x_2\|) = \alpha_2(\|x_2\|) + \gamma \alpha_2(\|x_2\|) \) is an upper bound on \(V_1(\|x_2\|) \) and \(\alpha_2(\|x_2\|) \in K_\infty \). By the definition of \(V_2(\|x_2\|) \) for any \(\gamma > 0, \) \(V_2 \leq \alpha_2(\|x_2\|) + \gamma \alpha_2(\|x_2\|) \).

Next, to prove that there exists \(\alpha_2(\|x_2\|) \in K_\infty \) such that \(\Delta V(x) \leq -\alpha_2(\|x_2\|) \).

Let \(x \in \mathbb{R}^n, i = 1, 2 \), be given, where \(x = x_1 + x_2, \) and consider the evolution as composed of two stages: (i) continuous evolution of (9) resulting in \(\tilde{x}_1 = (A + B_kK)x_1, i = 1, 2 \), (ii) reset of the subsystem states \(\tilde{x}_2 \) by (11), i.e., \(x_1^+ = g(\tilde{x}_1, \tilde{x}_2) \).

\begin{equation}
\Delta V(x) = \Delta V(x_1, x_2, \tilde{x}_1, \tilde{x}_2) + \phi(\tilde{x}_1, \tilde{x}_2, x_1^+, x_2^+) \tag{15}
\end{equation}

Since the reset does not change the actual system state, and at every step the closed-loop dynamics evolve by a continuous evolution and a reset, we can arbitrarily choose which of the two actions is considered first.
$|x| > \rho$. Since X_f is compact, $|x(0)|$ is finite, and hence $V(x(0))$ is finite. Thus, there exists $\bar{k}(x(0))$ such that $|x(0)| \leq \rho$. Assume this is false. Then, $V(x(k)) \leq V(x(0)) - k\rho$, and $\lim_{k \to \infty} V(x(k)) = -\infty$, which contradicts $V(x) \geq 0$ for all $x \in \mathbb{R}^n$. Then, there must exist $\bar{k}(x(0))$ such that $x(\bar{k}(x(0))) \in \{x \in \mathbb{R}^n : |x| \leq \rho\} \subseteq O_{\infty}^1$, and hence $x_1(\bar{k}(x(0))) = x(\bar{k}(x(0)))$, $x_2(\bar{k}(x(0))) = 0$. Since cost function (14) is used, O_{∞}^1 is invariant for $A + B K_1$, and $x_1(\bar{k}(x(0))) = x(\bar{k}(x(0)))$, $x(k) \in O_{\infty}^1$ for all $k \geq \bar{k}(x(0))$, and thus $x_2(k) = 0$, $u_2(k) = 0$ for all $k \geq \bar{k}(x(0))$.

By summarizing the results of Sections III and IV, the following theorem shows that the proposed VSG solves entirely Problem 1.

Theorem 6: Given (1) subject to constraints (2) and initial state $x_0 \in X_f$, control strategy (11), (10) (or (13)), (14) solves Problem 1, and ensures that $u_2 \neq 0$ for a finite time.

Proof: By Theorem 3 (Theorem 4) X_f is PI for (1) in closed loop with (10) (or (13)), (11), and for $x \in X_f$, $x_i \in O_{\infty}^1$ ($x_i \in O_{\infty}^1(\xi_i)$) and hence (2) is satisfied along the trajectories of the closed-loop system. Hence, (i) holds. By Theorem 5 the closed-loop system is AS, hence (ii) holds. Finally, by using (14) in (10)/(13), if $x(k) \in O_{\infty}^1$, for some $k \in Z_{0+}$, $u_1(h) = Kx(h)$, $u_2(h) = 0$ for all $h \geq k$. Instead of the definition of O_{∞}^1, if $x(k) \notin O_{\infty}^1$ and $u_1(h) = Kx(h)$, $u_2(h) = 0$ for all $h \geq k$, there exists $\bar{k} \geq k$ such that (2) is violated. Thus, (iii) holds. In addition, since X_f is compact, by Corollary 1, if $x(k) \notin O_{\infty}^1$, there exists a finite $h \in Z_{0+}$ such that $\bar{x}(h) \in O_{\infty}^1$, and $u_2(h) = 0$, for all $h \geq \bar{h}$.

V. Case Study in Attitude Control

We apply VSG to attitude regulation of a spacecraft equipped with reaction wheels and thrusters. Reaction wheels are powered by solar energy, and hence inexpensive to use, but have small authority. Thrusters have larger authority but consume fuel, so their usage must be minimized. We consider a body fixed frame aligned with the principal axes and with the origin at the satellite center of mass. We call ϑ, ς, ψ the three Euler angles (roll, pitch, yaw) determining the spacecraft attitude, and $\dot{\vartheta}$, $\dot{\varsigma}$, $\dot{\psi}$ the related angular rates. For small angles, the linearized attitude dynamics are described by

$$J_{sc}\ddot{\theta}(t) = -J_{rw}\alpha(t) + \tau(t),$$ \hspace{1cm} (17)

where $\theta = [\vartheta \quad \varsigma \quad \psi]^T \in \mathbb{R}^3$ is the vector of Euler angles, $\dot{\theta} = \omega = [\dot{\vartheta} \quad \dot{\varsigma} \quad \dot{\psi}]^T \in \mathbb{R}^3$ is the vector of angular rates, $\tau = [\tau_{\vartheta} \quad \tau_{\varsigma} \quad \tau_{\psi}]^T \in \mathbb{R}^3$ is the vector of torques by the thrusters, and $\alpha = [\alpha_{\vartheta} \quad \alpha_{\varsigma} \quad \alpha_{\psi}]^T \in \mathbb{R}^3$ is the vector of angular accelerations from the reaction wheels. In (17), $J_{sc}, J_{rw} \in \mathbb{R}^{3 \times 3}$ are the matrices of the moments of inertia of the spacecraft and of the reaction wheels, respectively. By choosing the principal axes as reference frame and having the reaction wheels aligned with the principal axes, J_{sc}, J_{rw} are diagonal.

For $x = [\theta \quad \theta']^T$, $u_1 = \alpha$, $u_2 = \tau$, two discrete-time LQR controllers with $T_s = 1$s are given for reaction wheels and thrusters, respectively, and cannot be modified. Thus, we implement a VSG to coordinate the thrusters and the reaction wheels, and to enforce constraints. Simulations of the VSG that enforces the actuator constraints $-0.2 \leq [u_1_i] \leq 0.2$, $-0.9 \leq [u_2_i] \leq 0.9$, for $i = 1, 2, 3$, are shown in Figure 1, where $V_1(x_1) = x_1^2 P_1 x_1$, $V_2(x_2) = x_2^2 P_2 x_2$ and P_1, P_2 are the solutions of the Riccati equations for the LQR controllers of reaction wheels and thrusters, respectively. The trajectory in a simulation with initial state $x_0 = [0.35, -0.25, 0.6, 0.2, -0.1, 0.05]^T$ is shown in Figure 1(a), demonstrating that the input constraints are enforced and the thrusters are used only for a (short) finite period. Figure 1(b) shows that along the trajectory from x_0, V_1 is not monotonically decreasing, but there exists $\gamma > 0$, such that $V(x) = V_1(x_1) + \gamma V_2(x_2)$ is decreasing. In Figure 1(c) the trajectories for several initial conditions, superimposed to the projections of O_{∞}^1, $i = 1, 2$ and $O_{\infty}^1 \oplus O_{\infty}^2$, on the plane $[x_1, x_4] = (\vartheta, \dot{\vartheta})$, are shown, where, by Theorem 3, $X_f = (O_{\infty}^1 \oplus O_{\infty}^2)$.

Next, we add the inclusion zone constraint $-0.5 \leq \vartheta \leq 0.5$, which, by defining $y = \vartheta$, is reformulated as output constraints. The trajectory of y in a simulation with initial state $x_0 = [-0.2 \ 0 \ 0 \ 0.275 \ 0.1 \ -0.1]^T$ is shown in Figure 2(a), demonstrating that input and output constraints are enforced. In Figure 2(b) the trajectories for several initial conditions are shown, superimposed to the projections of O_{∞}^1, $i = 1, 2$ and $O_{\infty}^1 \oplus O_{\infty}^2$, on the plane $([x_1], [x_4])$. Figure 1. Simulations of attitude control with input constraints by VSG.
i.e., $(\dot{\vartheta}, \dot{\phi})$, where according to Theorem 4, $X_f \subseteq \text{Proj}_x(\bar{O}_\infty^1 \oplus \bar{O}_\infty^2)$.

The VSG control law as obtained from multiparametric programming consists of 424 regions, reduced to 123 by the merging algorithm in [18]. To further assess the performance, we have compared the VSG with a single (saturated) LQR re-designed to control all actuators. We use as performance metrics the cumulative squared 2-norm of thruster input and state. From the initial conditions as assigned controllers, and to the case of partial state information.

REFERENCES

