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Abstract
Optimal power flow (OPF) is a well known challenging optimization problem for power sys-
tems engineering. There have been a myriad of works dedicated to solving OPF problems
in a centralized way, i.e. using a centralized solver, which necessitates for a central control
center to receive and transmit a large amount of data. Recently, few attempts have been
done to solve OPF problems in a distributed way, which means that the computations are
distributed over the whole network, reducing the need for communications (with a central
control center) and increasing the robustness of the control to loss of communications and
to unexpected faults in the network nodes. Furthermore, a decentralized solution to the
OPF problem has the advantage to be flexible to the network topology and size, since the
computations are distributed over the network. In this paper we propose some preliminary
results on a distributed OPF algorithm, to solve the original OPF problem, i.e. without any
convexification steps. We propose a consensus-based distributed OPF algorithm, which uses
consensus algorithm to estimate the optimization variables between neighboring nodes in a
given network. We test the performance of this algorithm on the IEEE 14-node test-case.
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Abstract—Optimal power flow (OPF) is a well known challenging
optimization problem for power systems engineering. There have been
a myriad of works dedicated to solving OPF problems in a centralized
way, i.e. using a centralized solver, which necessitates for a central control
center to receive and transmit a large amount of data. Recently, few at-
tempts have been done to solve OPF problems in a distributed way, which
means that the computations are distributed over the whole network,
reducing the need for communications (with a central control center) and
increasing the robustness of the control to loss of communications and
to unexpected faults in the network nodes. Furthermore, a decentralized
solution to the OPF problem has the advantage to be flexible to the
network topology and size, since the computations are distributed over
the network. In this paper we propose some preliminary results on a
distributed OPF algorithm, to solve the original OPF problem, i.e. without
any convexification steps. We propose a consensus-based distributed OPF
algorithm, which uses consensus algorithm to estimate the optimization
variables between neighboring nodes in a given network. We test the
performance of this algorithm on the IEEE 14-node test-case.

I. I NTRODUCTION

Optimal power flow (OPF) problem is a classical problem for
power system engineering. Under constraints of power generation
limits, voltage limits , transmission thermal limits as well as other
security constraints, the solution of OPF determines the active and
reactive power generation and the voltages of buses to minimize the
cost of generation. The OPF problem is crucial to the secure operation
of the power grids and wholesale power market including the day-
ahead and real-time market.

Due to its significance, the OPF problem has received considerable
attentions since 1960’s [3] and still remains a hot research topic
until now. Despite all efforts, the OPF problem remains difficult
to solve. The main reasons can be summarized into two aspects:
1) OPF is a non-convex, nonlinear optimization problem. The non-
convexity, caused by quadratic relations between voltages of adjacent
buses prevents a guarantee to a global optimal solution in general. 2)
The OPF is a large scale optimization problem with a large number
of decision variables and constraints in complex power generation,
voltages in all buses, transmission thermal limits. The computational
complexity needs to reduced in the design of algorithm for practical
implementation.

In practice, such difficulties in solving OPF are avoided by approx-
imation. The original complex AC power flow problem is approxi-
mated by a DC-power flow problem, which is a linear programming
problem. This approximation is reported to have acceptable level
of accuracy for transmission networks and thus, utilized by current
ISOs [11]. However, the DC power flow solution is inaccurate for
distribution networks [5]. This cannot satisfy the emerging demand
of smart grid technology. Thus, there is another line of research
that focuses on a global optimal solution to the AC OPF problem.
Algorithms that can achieve the global optimal solution under certain
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assumptions, are proposed based on SDP relaxation such as [6], [9],
[4].

Even though the non-convexity of the problem can be handled in
several circumstances, the centralized algorithms still cannot meet the
current requirement of modern power networks. Nowadays, various
renewable energy sources such as distributed generation and power
storage are involved as part of the smart grid technology. Due to the
diverse, time-varying, volatile load or storage connected to the grid,
the centralized OPF problem is desirable to be solved to reflect any
significant change in the power network. To satisfy the requirement
of the daily operation of the grid and wholesale power market, it is
reported that the OPF problem is usually solved every five minutes by
the power planning authority such as regional transmission operator
(RTO) or independent system operator (ISO). As a result, the large
scale OPF problem in the era of smart grids technology has so
high requirement for the efficiency and accuracy that a centralized
algorithm is unable to be effective any more.

To provide a scalable, fast solution to large scale optimization
problems, distributed optimization algorithms are proposed. In a
distributed framework, the original centralized problem is divided
into a certain number of small scale subproblems. Each subproblem
is solved by a single agent as a computation entity with agent-to-agent
communication capabilities. A certain communication between adja-
cent agents is required during the computation process to exchange
necessary data according to a certain protocol. Thus, all agents can
solve the centralized problem collaboratively in a parallel fashion.
Distributed optimization algorithms have been widely studied in the
research community. The idea of distributed optimization was first in-
troduced in the seminal work [13]. In [10], an unconstrained nonlinear
optimization problem is solved by multiple agents cooperatively using
sub-gradient method to minimize the individual objective function
and also sharing information among agents in the neighborhood. For
constrained optimization problem, distributed algorithms have been
proposed based on penalty function method [7], alternative direction
method of multiplier (ADMM) [1], [14].

Distributed optimization algorithms have also been adapted to solve
the OPF problems. In [8] and [2], the original power network is
divided into several groups based on geographical regions. Maximal
cliques are formed from a modified network of the regional groups
according to certain rules. Each clique is associated with a relaxed
SDP problem and solved by in a distributed fashion. In [12], each bus
is treated as an individual agent. Each agent maintains an estimate
of voltages of the adjacent buses and formulates the reduced OPF
problem by minimizing the local cost of power generation and the
estimation error. The local equality constraint for each agent is the
power balance equation of each bus with the voltage variables of other
buses replaced by estimates. The estimates are reported to converge to
true values when the algorithm reaches a feasible solution. Simulation
results on IEEE test cases are provided in those works, which shows



a great reduction of CPU times in the decentralized algorithms. Such
an improvement becomes more significant as the number of buses
grows.

In this paper, we proposed a novel consensus-based distributed
OPF algorithm. The algorithm is run by individual agents which own
a portion of the power grid and solve local optimization problem. The
agent not only use the voltage and power variables that observed
locally, but also estimates the voltage and power variables coupled
with the local power balance constraints. The agents exchange their
local data and estimates with the neighbors to form a correct esti-
mation. To improve the estimation, we proposed to use a consensus-
filter to process the data shared among the neighboring agents. The
local objective function of each agent is an augmented cost function
that consists of both power cost and the estimation errors. A penalty
function-like method is used to minimize the local objective.

The rest of the report is organized as follows. We first introduce
some notations and define the OPF problem in Section II. Then
the proposed consensus-based approach for distributed optimization
problem is presented in Section III. Numerical results are in Section
IV. We conclude our report in Section V.

II. N OTATIONS AND PROBLEM FORMULATION

The power network is modelled as a graph(N , E), where the
vertex setN is the set of all buses in the network , the link setE is
the transmission line that connects two buses in the grid. Each bus
i ∈ Ncan be connected to generators or loads. The set of buses that
connected to generators is denoted asNG ⊂ N . For convenience,
the bus connected to a generator is called generator bus. The bus
without any generator is called load bus. We usei ∼ j to denote that
the busi is connected to busj.

The active and reactive generation power at the busi are denoted
as P G

i and QG
i . The power demand of at the busi is denoted as

P D
i , QD

i . The complex voltage of the busi is denoted asVi = ei+jfi

with ei being the real part of the voltage,fi the imaginary part and
j =

√
−1. For simplicity, we refer toei and fi collectively by Vi.

Denote the admittance-to-ground of busi asyii and denote the line
admittance between two busesi and j as yij . The admittances are
complex numbers given asyij = gij + jbij . Clearly, if i 6∼ j, then
yij = 0, finally, N (i) denotes the set of all neighbors of nodei.

The OPF problem can be stated as

min
P G

i
,QG

i
,ei,fi,i∈N

∑
i∈NG

Fi(P
G
i ) (1)

s.t.P G
i − P D

i = Re{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj)

∗}, i ∈ N (2)

QG
i −QD

i = Im{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj)

∗}, i ∈ N (3)

V i ≤ e2
i + f2

i ≤ V̄i, i ∈ N (4)

P G
i ≤ P G

i ≤ P̄ G
i , QG

i
≤ QG

i ≤ Q̄G
i , i ∈ N . (5)

where the cost functionFi is usually defined as quadraticFi(P
G
i ) =

c2,i(P
G
i )2+c1,iP

G
i . Equation (2) and (3) are real and reactive power

balance equations for the busi. The inequality (4) is the upper and
lower bound on the magnitude of the voltages. The inequality (5) is
the bound on the real and reactive generation power.

The non-convexity of the OPF comes from the quadratic relation-
ships between the voltages in power balance equations (2) and (3).
This poses difficulty to solve the OPF problem. Moreover, the number
of the buses is often too large to handle in the centralized OPF form.
In the following section, we proposed our consensus-based distributed
algorithm to solve the centralized version of OPF (1).

III. C ONSENSUS-BASED DISTRIBUTED OPF ALGORITHM

In this section, we introduce the direct approach of our distributed
algorithm. We assume that each bus in the network is attached to an
agent. Each agent can be viewed as an entity with computation and
communication capabilities. For the purpose of brevity, we do not
distinguish the agent of the bus and the bus itself, unless there is a
particular need.

The entire centralized OPF is formulated as a combination of sub-
problems that is solved by each bus. For the ease of presentation, we
assume that all buses are connected to a generator,i.e. NG = N .
For each busi, we formulate a local sub-problem of OPF. The local
decision variables at the busi are P G

i , QG
i , ei, fi. Note that there

are coupling between the busi and its neighbor of the voltage in
the power balance equations, as shown in (2) and (3). Thus, in the
process of solving the optimization problem, the busi estimates the
voltages of the neighboring busj, which is denoted asej(i), fj(i).
The voltageVj(i) = ej(i) + jfj(i) represents the complex voltage of
bus j ∼ i estimated by the busi. The estimates are used to replace
the real voltages of busj in the power balance equations of the bus
i. Those estimates are also part of the decision variables for the bus
i. The local OPF problem for busi can be written as follows.

min
P G

i
,QG

i
,ei,fi,ej(i),fj(i)

ci,2(P
G
i )2 + ci,1P

G
i , (6)

s.t.P G
i − P D

i = Re{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj(i))

∗}, i ∈ N ,

(7)

QG
i −QD

i = Im{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj(i))

∗}, i ∈ N ,

(8)

V i ≤ e2
i + f2

i ≤ V̄i, (9)

V j(i) ≤ e2
j(i) + f2

j(i) ≤ V̄j(i), j ∈ N (i), (10)

P G
i ≤ P G

i ≤ P̄ G
i , QG

i
≤ QG

i ≤ Q̄G
i , i ∈ N . (11)

Vj = Vj(i), i ∼ j, i ∈ N , (12)

where the constraint (12) ensures that the estimate of the voltage
of bus j formed at the busi is consistent with the true valueVj .
To solve the local OPF problem (6), each busi has to achieve two
goals. 1) minimization of the generation cost. 2) the estimatesej(i),
fj(i) follow the real voltagesej , fj , i.e. the constraint (12) is satisfied.
Since the generation cost is already included in the local OPF problem
(6), the goal 2) remains to be considered. Here, we adopt a consensus-
like method to update the estimates at each iterationk by exchanging
information among adjacent buses.

1) Consensus Algorithm of the Estimates:For each pair of voltage
estimateej(i), fj(i), the busi maintains a pair of consensus variables
êj(i), f̂j(i) and updates these variables using the real value ofej , fj

obtained from the busj according to the following rules.

êj(i)(k + 1) = êj(i)(k) + γ(ej(k)− êj(i)(k)), (13)

f̂j(i)(k + 1) = f̂j(i)(k) + γ(fj(k)− f̂j(i)(k)),

where0 < γ < 1 is the consensus gain by design. In our algorithm,
the estimates such asej(i), fj(i) are not replaced by true values
like ej , fj from other buses directly. Instead, those values are passed
through a consensus filter. The consensus variables can be viewed
as intermediate variables in the filter and will be used to update the
estimates in the local optimization which will be described later.

Following this algorithm, the busi andj exchange the real voltages
as well as their consensus variables at each iterationk. In other



words, the busi receives the true voltageVj(k) and the consensus
variableŝei(j), f̂i(j) and send its own voltageVi(k) and the consensus
variablesêj(i), f̂j(i) to its neighbors. Since the data exchange only
occurs among the neighbors, there is not too much burden in the com-
munication as compared to the centralized algorithm, which requires
all data from every bus collected and uploaded to a computation
center.

2) Local Optimization Problem:To minimize both the generation
cost and estimation error, the local optimization problem (6) is
reformulated . For busi ∈ N , the local optimization problem is
written as

min
P G

i
,QG

i
,ei,fi,ej(i),fj(i)

F (P G
i ) + ρi

∑
i∼j

(‖ej(i) − êj(i)‖2

+‖fj(i) − f̂j(i)‖2 + ‖ei − êi(j)‖2 + ‖fi − f̂i(j)‖2) (14)

s.t.P G
i − P D

i = Re{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj(i))

∗}, i ∈ N

(15)

QG
i −QD

i = Im{|Vi|2y∗ii +
∑
i∼j

Viy
∗
ij(Vi − Vj(i))

∗}, i ∈ N

(16)

V i ≤ e2
i + f2

i ≤ V̄i, (17)

V j(i) ≤ e2
j(i) + f2

j(i) ≤ V̄j(i), j ∈ N/i (18)

P G
i ≤ P G

i ≤ P̄ G
i , QG

i
≤ QG

i ≤ Q̄G
i , i ∈ N . (19)

whereρi > 0 is a large positive number selected as a penalty factor
in order to make sure that the estimation errors are minimized with
a higher priority. This is necessary because without such a penalty,
each bus is prone to minimize his own generation cost selfishly based
on a set of biased estimation.

The decision variables of the problem (14) are only related to
the busi and its neighbors. So it is a local nonlinear optimization
problem with a small scale. This problem can be solved efficiently
using the state-of-art nonlinear programming solvers such asIPOPT
or fmincon .

Next, we summarize the distributed algorithm for busi as follows.

1) initialize the values of
P G

i (0), QG
i (0), ei(0), fi(0), ej(i)(0), fj(i)(0), êj(i)(0), f̂j(i)(0)

2) At iteration k + 1, if the stop criterion is satisfied (e.g. the
differences between consecutive estimates are small enough
‖ei(j)(k) − ei(j)(k + 1)‖ < ε), then stop. If not, each agent
sends the variablesei(k), fi(k), êj(i)(k), f̂j(i)(k) to neighbors
j ∼ i.

3) Update the consensus variablesêj(i)(k), f̂j(i)(k) according to
(13).

4) Update the decision variables by solving the optimization prob-
lem (14) to (19), then go to step 2).

IV. N UMERICAL TESTS

In this section, we present a numerical example to illustrate the
application of the distributed algorithm proposed in Section III.

We consider the IEEE14 case which is a benchmark case for OPF
problem and apply the proposed approach to solve the problem. The
topology of the 14-bus system is illustrated in Figure 1.

Due to the high number of buses, it takes 200 iterations for the
distributed algorithm to converge. The voltage and the estimates
profile of some of the buses are illustrated on the Figures 2 to

Fig. 1: IEEE14 system topology
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Fig. 2: The real voltage of bus 1 and the estimates in IEEE14 system
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Fig. 3: The real voltage of bus 2 and the estimates in IEEE14 system

11 (due to space limitation we did not include the voltage profile
of all the buses). We can see clearly that the estimated voltages at
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Fig. 4: The real voltage of bus 3 and the estimates in IEEE14 system
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Fig. 5: The real voltage of bus 4 and the estimates in IEEE14 system
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Fig. 6: The real voltage of bus 5 and the estimates in IEEE14 system
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Fig. 7: The real voltage of bus 8 and the estimates in IEEE14 system
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Fig. 8: The real voltage of bus 9 and the estimates in IEEE14 system
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Fig. 9: The real voltage of bus 10 and the estimates in IEEE14 system
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Fig. 10: The real voltage of bus 11 and the estimates in IEEE14
system
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Fig. 11: The real voltage of bus 12 and the estimates in IEEE14
system

each node synchronize with the actual voltages of their neighboring
nodes. The generation power generated by both the distributed and
centralized algorithm are summarized in the Table I. Although, the
two algorithms do not converge necessarily to the same optimal
solutions, the distributed algorithm converges to a feasible solution
and the cost function value at this solution is close to the cost function
value at the centralized solution. Of course, these are preliminary
results, that we wanted to share with the audience, but further
analysis of the algorithm in terms of robustness and convergence
are understudy and will be presented in our future reports.

TABLE I: Power generation results of 14 Bus OPF problem
Bus number Distributed Centralized

Bus 1 1.98 1.38
Bus 2 0.58 + 0.38j 1.31 + 0.22j
Bus 3 0.21 + 0.17j 0.3j
Bus 6 0.24j 0.1j
Bus 8 0.07j 0.08j

V. CONCLUSION

We have studied a consensus-based distributed optimization algo-
rithm and its application to the optimal power flow problem (the
original OPF problem, i.e. without any convexification steps). The
algorithm is run by multiple agents, each agent solves its local OPF
problem under the constraint of the power balance equation of the
bus related to it. The agent estimates the voltages of its neighbors
and exchange information to reach consensus. A consensus filtering
method is utilized to ensure the convergence of the estimation.
Numerical results are provided to demonstrate the effectiveness of
this distributed optimization problem. The consensus are reached
between all variables and their estimates. The algorithm provides
a feasible solution which is obtained via local computations only.
However, since the OPF problem is non-convex, there is no guarantee
that a global optimal solution is attained (we remind the reader that
this is not usually guaranteed even for centralized solvers, due to
the non-convexity of the problem). Thus, it would be interesting to
further evaluate the proposed algorithm in terms of its convergence
robustness w.r.t. the network size/ initial conditions, and compare its
convergence point to various centralized solvers to evaluate the gap
between the obtained solution and the centralized, possibly global,
optimal solutions.
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