
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

On the Security of Cooperative Single Carrier Systems

Wang, L.; Kim, K.J.; Duong, T.Q.; Elkashlan, M.; Poor, H.V.

TR2014-128 December 2014

Abstract
In this paper, the impact of multiple eavesdroppers on cooperative single carrier systems with
multiple relays and multiple destinations is examined. To achieve the secrecy diversity gains
in the form of opportunistic selection, a two-stage scheme is proposed for joint relay and
destination selection, in which, after the selection of the relay with the minimum effective
maximum signal-to-noise ratio (SNR) to a cluster of eavesdroppers, the destination that
has the maximum SNR from the chosen relay is selected. In order to accurately assess the
secrecy performance, the exact and asymptotic expressions are obtained in closed-form for
the ergodic secrecy rate in frequency selective fading. Based on the asymptotic analysis,
key design parameters such as multiplexing gain, and power cost are characterized, from
which new insights are drawn. Moreover, it is concluded that capacity ceiling occurs when
the average received power at the eavesdropper is proportional to the counterpart at the
destination.

IEEE Global Communications Conference (GLOBECOM)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2014
201 Broadway, Cambridge, Massachusetts 02139





On the Security of Cooperative Single Carrier

Systems

Lifeng Wang∗, Kyeong Jin Kim†, Trung Q. Duong‡, Maged Elkashlan∗, and H. Vincent Poor§

∗School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
†Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

‡School of Electronics, Electrical Engineering, and Computer Science, Queen’s University Belfast, Belfast, UK
§Department of Electrical Engineering, Princeton University, Princeton, NJ, USA

Abstract—In this paper, the impact of multiple eavesdroppers
on cooperative single carrier systems with multiple relays and
multiple destinations is examined. To achieve the secrecy diversity
gains in the form of opportunistic selection, a two-stage scheme is
proposed for joint relay and destination selection, in which, after
the selection of the relay with the minimum effective maximum
signal-to-noise ratio (SNR) to a cluster of eavesdroppers, the
destination that has the maximum SNR from the chosen relay is
selected. In order to accurately assess the secrecy performance,
the exact and asymptotic expressions are obtained in closed-
form for the ergodic secrecy rate in frequency selective fading.
Based on the asymptotic analysis, key design parameters such
as multiplexing gain, and power cost are characterized, from
which new insights are drawn. Moreover, it is concluded that
capacity ceiling occurs when the average received power at
the eavesdropper is proportional to the counterpart at the
destination.

I. INTRODUCTION

Recently, the concept of physical (PHY) layer security

has attracted considerable interest amongst wireless network

designers. In wireless PHY layer security, the breakthrough

idea is to exploit the characteristics of wireless channels such

as fading or noise to transmit a message from a source to an

intended destination while keeping the message confidential

from passive eavesdroppers [1]. Driven by this and with the aid

of multiple-input multiple-output (MIMO) technology, PHY

layer security in MIMO wiretap channels that employ multiple

co-located antennas at the transmitter, the legitimate receiver,

and/or the eavesdropper has attracted considerable attention

(e.g., [2–4], and the references therein). Unfortunately, ex-

ploiting multiple co-located antennas to secure the wireless

transmission would often face the practical constraints of size

and power, especially in small mobile and sensor terminals.

One way around this is cooperative relaying to achieve spatial

diversity using distributed terminals [5–8].

It is important to note that although PHY layer security has

been extensively studied in the open literature for both MIMO

and cooperative communication networks, all previous works

have assumed flat fading channels. In practice, multipath

components are frequently present in wireless communication

systems due to multiple reflectors, in which reflectors cause

a time dispersion and frequency selective fading. If the signal

bandwidth is larger than the frequency coherence bandwidth or

the delay spread is larger than the symbol duration, the signal

is distorted due to intersymbol interference (ISI). To avoid

the use of equalizers in dealing with ISI, single carrier (SC)

transmission is an alternative attractive solution [9]. There are

several existing works and on-going activities in the context

of CP-SC transmission in several different domains [10–12].

While the aforementioned literature laid a solid foundation

for the study of CP-SC systems, the PHY layer security

issues with secrecy constraints in CP-SC transmission re-

main unknown. In this paper, to harness the aforementioned

characteristics of multipath components in practice within the

framework of PHY layer security, we focus on secure CP-

SC transmission in DF relay networks. In contrast to the rich

body of literature on PHY layer security, we consider the

multiple relays and multiple destinations coexist with a cluster

of eavesdroppers in frequency selective fading environment.

A two-stage relay and destination selection is proposed to

minimize the eavesdropping and maximize the signal power

of the link between the relay and the destination. Analytical

results for ergodic secrecy rate are derived in closed-form.

The multiplexing gain and the power cost are calculated

based on simplified expressions for the ergodic secrecy rate

in the high-SNR regime. Furthermore, we reach an interesting

conclusion that secrecy performance limits exist when the

average received power at the eavesdropper is proportional

to the counterpart at the destination.

Notation: The superscript (·)H denotes complex conjugate

transposition; IN is an N×N identity matrix; 0 denotes an all-

zeros matrix of appropriate dimensions; CN
(
µ, σ2

)
denotes

the complex Gaussian distribution with the mean µ and the

variance σ2; C
m×n denotes the vector space of all m × n

complex matrices; Fϕ(·) denotes the cumulative distribution

function (CDF) of the random variable (RV) ϕ; Ea{·} denotes

expectation with respect to a. The probability density function

(PDF) of ϕ is denoted by fϕ(·); [x]+ = max(x, 0);
i∑

l1,...,la

denotes a set of nonnegative integers {l1, . . . , la} satisfying
a∑

t=1

lt = i.

II. SYSTEM AND CHANNEL MODEL

In the considered system, the source transmits the signal

to the destinations via relay link, which is intercepted by the

eavesdroppers. The direct link between source and destinations
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Fig. 1. PHY layer security for cooperative single carrier systems.

is assumed to be non-existent, due to the deep fading. Each

node has only one antenna and there are K relays and Q
destinations. We assume the following set of instantaneous

impulse channel responses.

• A set of channels {gk,q, ∀k, q} between a particular

kth relay and the qth destination undergo a frequency

selective fading. They are assumed to have the same

N1 multipath components, i.e., gk,q△=[gk,q1 , . . . , gk,qN1
]T ∈

C
N1×1, each of which is distributed by the complex white

Gaussian distribution with the zero mean and the unit

variance. The path losses over these channels are denoted

by {αk,q
1 , ∀k, q}.

• A set of channels {hk,1, . . . ,hk,n, . . . ,hk,N} between

the kth relay and N eavesdroppers undergo a frequency

selective fading. They are assumed to have the same

N2 multipath components, i.e., hk,n△
=[hk,n1 , . . . , hk,nN2

]T ∈
C

N2×1, each of which is distributed by the complex white

Gaussian distribution with the zero mean and the unit

variance. The path losses over these channels are denoted

by {αk,n
2 , ∀k, n}.

• The maximum channel length in the considered system

is assumed to be Ng = max(N1, N2).

For single-carrier cooperative transmission, we assume that

• Binary phase shift keying (BPSK) modulation is applied

such that P modulated data symbols transmitted by the

source form a transmit symbol block x ∈ C
P×1 ∈

{−1, 1}P satisfying Ex{x} = 0 and Ex{xx
H} = IP .

• To prevent inter-block symbol interference (IBSI) [10],

the CP comprising of Pg symbols is appended to the

front of x. It is also assume that Pg ≥ Ng .

• We employ the selective-DF relaying protocol, which

selects one relay and destination among their groups.

This selection is accomplished via the proposed two-step

selection scheme.

• We assume perfect decoding at each relay, so that error

propagation does not exist in the considered system.

The signal received at the nth eavesdropper from the kth

relay is given by

rk,n =

√
Psα

k,n
2 Hk,nx+ n

k,n
2 (1)

where Ps is the transmit power and Hk,n is the right circulant

matrix [10] defined by hk,n. Also, we assume that n
k,n
2 ∼

CN(0, σ2
nIP ). Since we assume perfect decoding at the all

relays and perfect knowledge of CSI, channels between the

source and relays are not taken into considered in (1) [7, 13].

Definition 1: Applying the properties of the right circulant

channel matrix [10, 14], the instantaneous signal-to-noise ratio

(SNR) between the kth relay and the nth eavesdropper is

defined as

γk,n2 =
Psα

k,n
2 ‖hk,n‖2

σ2
n

= α̃k,n
2 ‖hk,n‖2 ∼ χ2(2N2, α̃

k,n
2 ) (2)

where α̃k,n
2

△
=

Psα
k,n
2

σ2
n

, and the CDF of γk,n2 is

Fγk,n
2

(x) = 1− e−x/α̃k,n
2

N2−1∑

l=0

1

l!

( x

α̃k,n
2

)l

U(x), (3)

where U(x) denotes the discrete unit function.

Now the received signal at the qth destination from the kth

relay is given by

zk,q =

√
Psα

k,q
1 Gk,qx+ n

k,q
1 (4)

where Gk,q is the right circulant matrix defined by gk,q . Also,

we assume that n
k,q
1 ∼ CN(0, σ2

nIQ). According to Definition

1, the instantaneous SNR of the link between the kth relay and

the qth destination is γk,q1 =
Psα

k,q
1 ‖gk,q‖2

σ2
n

= α̃k,q
1 ‖gk,q‖2 ∼

χ2(2N1, α̃
k,q
1 ), where α̃k,q

1

△
=

Psα
k,q
1

σ2
n

, and the CDF of γk,q1 is

Fγk,q
1

(x) = 1− e−x/α̃k,q
1

N1−1∑

l=0

1

l!

( x

α̃k,q
1

)l

U(x). (5)

In the sequel, we assume that pathloss components αk,n
2 and

αk,q
1 are independent of the indices of the relay, eavesdropper,

and destination, so that we have α2 = {αk,n
2 , ∀k, n} and

α1 = {αk,q
1 , ∀k, q}. The corresponding normalized quantities

are defined as α̃1
△
=Psα1

σ2
n

and α̃2
△
=Psα2

σ2
n

.

III. RELAY AND DESTINATION SELECTION UNDER A

GROUP OF EAVESDROPPERS

In this section, we shall first propose the two-stage relay and

destination selection procedure, in which a relay is selected to

minimize the worst-case eavesdropping in the eavesdropper

group. And then, the desired destination is selected from

the chosen relay to have the maximum instantaneous SNR

between them. That is, the relay and destination are chosen

according to the following selection criteria:

stage1 : k∗ = min argk∈[1,K](γ
k,max
2 ) and

stage2 : q∗ = max argq∈[1,Q](γ
k∗,q
1 ) (6)



where γk,max
2 denotes the maximum instantaneous SNR

among those of between the kth relay and N eavesdroppers.

In addition, γk
∗,q

1 denotes the maximum instantaneous SNR

between the selected relay and the qth destination. When

Q = 1, the proposed relay and destination selection scheme

becomes somewhat similar to that of [7]. However, due to an

achievable multiuser diversity, the proposed selection scheme

will result in better secrecy outage probabilities, non-zero

achievable secrecy rates, and ergodic secrecy rates. For this

selection, we use a training symbol which has the same sta-

tistical properties as x, and assume a quasi-stationary channel

during its operation.

Next, the corresponding CDF and PDF for a link from a

particular relay to a group of eavesdroppers will be derived.

We start the derivation for the CDF of γk,max
2 , which is given

by

Fγk,max
2

(x) =
[
1− e−x/α̃2

N2−1∑

l=0

1

l!

( x

α̃2

)l]N
U(x) (7)

where we assume that channels between a particular relay and

N eavesdroppers are independent and identically distributed

(i.i.d.).

Since {γ1,max
2 , · · · , γK,max

2 } is a set of

i.i.d. continuous random variables, the PDF of

γmin,max
2

△
=γk

∗,max
2

△
=min(γ1,max

2 , · · · , γK,max
2 ) is derived

in (8) at the top of the next page. Due to limited space, we

do not include a detailed derivation of (8). If we use the

order statistics, and binomial and multinomial formulas, we

can readily derive (8).

For the i.i.d. frequency selective fading channels between

a particular relay and a group of Q destinations, the CDF of

γk
∗,q∗

1

△
=max(γk

∗,1
1 , ..., γk

∗,Q
1 ) is given by

F
γk∗,q∗

1
(x) =

[
1− e−x/α̃1

N1−1∑

l=0

1

l!

( x
α̃1

)l]Q
U(x). (10)

IV. ERGODIC SECRECY RATE

The instantaneous secrecy rate is expressed as [4, 15]

Cs =
1

2
[log2(1 + γk

∗,q∗

1 )− log2(1 + γmin,max
2 )]+ (11)

where log2(1 + γk
∗,q∗

1 ) is the instantaneous capacity of the

channel between the chosen relay and the selected destination,

whereas log2(1 + γmin,max
2 ) is the instantaneous capacity

of the wiretap channel between the selected relay and the

eavesdropper group. Having obtained PDFs and CDFs of

SNRs achieved by the two-stage relay and destination selection

scheme, the exact ergodic secrecy rate will be derived. Then,

an asymptotic analysis of the ergodic secrecy rate will be

developed to see the asymptotic behavior of the system.

The ergodic secrecy rate is defined as the instantaneous

secrecy rate Cs averaged over γj
∗,q∗

1 and γmin,max
2 . As such,

we formulate the ergodic secrecy rate as

C̄s =

∫ ∞

0

∫ ∞

0

Csfγk∗,q∗

1
(x1) fγmin,max

2
(x2)dx1dx2. (12)

Substituting (11) into (12), and applying some algebraic ma-

nipulations, we obtain

C̄s =
1

2 log(2)

∫ ∞

0

Fγmin,max
2

(x2)

1 + x2

(
1− F

γk∗,q∗

1
(x2)

)
dx2.

(13)

Based on the PDF of γmin,max
2 given in (8), the CDF of

γmin,max
2 is given by

Fγmin,max
2

(x)

= A
∑̃[ (Ñ2 − 1)!

(β2)Ñ2

− e−β2x
Ñ2−1∑

n1=0

(Ñ2 − 1)!

n1!

xn1

(β2)Ñ2−n1

]
.

(14)

In addition, by employing binomial and multinomial formulas,

the CDF of γk
∗,q∗

1 in (10) can be re-expressed as

F
γk∗,q∗

1
(x) = 1 +

Q∑

q=1

(
Q

q

)
(−1)

q
e−qx/α̃1

q∑

w1,...,wN1

q!

w1! . . . wN1 !

xL̃1

∏N1−1
t=0

(
t!(α̃1)

t
)wt+1

, (15)

where L̃1
△
=
∑N1−1

t=0 twt+1. Substituting (14) and (15) into

(13), and using the confluent hypergeometric function [16, eq.

(9.211.4)], we obtain the ergodic secrecy rate expressed in (16)

at the top of the next page.

In order to gather further insight, we present the asymptotic

ergodic secrecy rate. We first consider the case of α̃1 → ∞
and a fixed α̃2, and provide the following corollary.

Corollary 1: The asymptotic ergodic secrecy rate at α̃1 →
∞ and a fixed α̃2 is given by (17) at the next page. In (17),

ψ (·) is the digamma function [17].

Proof: A proof of this corollary is given in Appendix A.

In this Appendix, we have defined A1
△
=

N2−1∑
t=0

tvt+1 + 1 and

A2
△
=m/α̃2.

With the help of (17), we confirm that the multiplexing

gain [18] is 1/2 in bits/sec/Hz/(3 dB), which is given by

S∞ = lim
α̃1→∞

C̄∞
1

log2 (α̃1)
=

1

2
. (18)

It is indicated from (18) that under there circumstances,

secure communication achieves the same spectral efficiency

as communication without eavesdropping. Moreover, using

(17), we can easily calculate the additional power cost for

different network parameters while maintaining a specified

target ergodic secrecy rate. For example, we consider different

numbers of relays K1 and K2 with K1 > K2. Compared to the

K1 case, the additional power cost in achieving the specified

target ergodic secrecy rate in the K2 scenario is calculated as

∆P (dB) =
10

log 10
[η(K1)− η(K2)] (19)



fγmin,max
2

(x) =
KN

(α̃2)N2(N2 − 1)!

K−1∑

k=0

Nk∑

m=0

N−1∑

j=0

(
K − 1

k

)(
Nk

m

)(
N − 1

j

)
(−1)k+m+j

m∑

v1,...,vN2

j∑

u1,...,uN2

m!

v1! . . . vN2 !

j!

u1! . . . uN2 !

1
∏N2−1

t=0 (t!(α̃2)t)vt+1

1
∏N2−1

t=0 (t!(α̃2)t)ut+1

e−
x(m+j+1)

α̃2 xN2+(
∑N2−1

t=0 tvt+1)+(
∑N2−1

t=0 tut+1)−1

= A
∑̃

e−β2xxÑ2−1U(x) (8)

where A
△
= KN

(α̃2)N2 (N2−1)!
, β2

△
= (m+j+1)

α̃2
, Ñ2

△
=N2 + (

∑N2−1
t=0 tvt+1) + (

∑N2−1
t=0 tut+1), and

∑̃△
=

K−1∑

k=0

Nk∑

m=0

N−1∑

j=0

(
K − 1

k

)(
Nk

m

)(
N − 1

j

)
(−1)k+m+j

m∑

v1,...,vN2

j∑

u1,...,uN2

m!

v1! . . . vN2 !

j!

u1! . . . uN2 !

1
∏N2−1

t=0 (t!(α̃2)t)vt+1

1
∏N2−1

t=0 (t!(α̃2)t)ut+1

. (9)

C̄s = −
A

2 log(2)

∑̃ Q∑

q=1

(
Q

q

)
(−1)

q
q∑

w1,...,wN1

q!

w1! . . . wN1 !

1
∏N1−1

t=0

(
t!(α̃1)

t
)wt+1

(Γ(Ñ2)Γ(L̃1 + 1)

(β2)Ñ2

Ψ(L̃1 + 1, L̃1 + 1; q/α̃1)−
Ñ2−1∑

n1=0

Γ(Ñ2)Γ(L̃1 + n1 + 1)

n1!(β2)Ñ2−n1

Ψ(L̃1 + n1 + 1, L̃1 + n1 + 1;β2 + q/α̃1)
)
. (16)

C̄∞
1 =

1

2
log2(α̃1) +

1

2 log(2)

[ Q

(N1 − 1)!

Q−1∑

q=0

(
Q− 1

q

)
(−1)

q
q∑

w1,...,wN1

(
q!

w1! . . . wN1 !
)

1
∏N1−1

t=0 (t!)
wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1

[ψ(N1 + L̃1)− log(q + 1)] +
K∑

k=1

Nk∑

m=1

(
K

k

)(
Nk

m

)
(−1)

k+m+1

m∑

v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)

∏N2−1
t=0 (t!(α̃2)

t
)
vt+1

Ψ(A1, A1;A2)
]
. (17)

where

η(K) =
K∑

k=1

Nk∑

m=1

(
K

k

)(
Nk

m

)
(−1)

k+m+1

m∑

v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)

∏N2−1
t=0 (t!(α̃2)

t
)
vt+1

Ψ(A1, A1;A2).

Similarly, the additional power cost in achieving the specified

target ergodic secrecy rate under different numbers of desti-

nations or eavesdroppers can be accordingly obtained.

We next consider the case of α̃1 → ∞ and α̃2 → ∞ with
α̃1

α̃2
= κ. Using the similar way as the proof of Corollary 1,

we provide the following corollary.

Corollary 2: The asymptotic ergodic secrecy rate at α̃1 →
∞ and α̃2 → ∞ with α̃1

α̃2
= κ is given by (20) at the top of

the next page, where β̂
△
=m+ j + 1,

∑̂△
=
∑̃

(α̃2)
Ñ2−N2 .

It is indicated from (20) that a capacity ceiling exists in this

case.

V. SIMULATION RESULTS

For the simulations, we use BPSK modulation. The trans-

mission block size is formed by 64 BPSK symbols. The

CP length is given by 16 BPSK symbols. Every channel

vectors are generated by hk,n ∼ CN (0, IN2), ∀k, n and

gk,q ∼ CN (0, IN1), ∀k, q. The curves obtained via actual link



C̄∞
2 =

1

2
log2(κ) +

1

2 log (2)

[ Q

(N1 − 1)!

Q−1∑

q=0

(
Q− 1

q

)
(−1)

q
q∑

w1,...,wN1

(
q!

w1! . . . wN1 !
)

1
∏N1−1

t=0 (t!)
wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1

[ψ(N1 + L̃1)− log(q + 1)]−
KN

(N2 − 1)!

∑̂Γ(Ñ2)

(β̂)Ñ2

[ψ(Ñ2)− log(β̂)]
]
. (20)

simulations are denoted by Ex, whereas analytically derived

curves are denoted by An. Asymptotically obtained curves are

denoted by As in the following figures.
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Fig. 2. Ergodic secrecy rate for various values of (N1, N2, Q).
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In Fig. 2, we first compare the derived ergodic secrecy rate

with the exactly obtained ergodic secrecy rate for the case of
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Fig. 4. Multiplexing gain S∞.

(N1 = 3, N2 = 2, Q = 4). We assume a fixed number of

eavesdroppers (N = 3) and a single relay (K = 1). Perfect

matchings between them can be observed. From this figure, we

can see that in contrast to the fixed α̃2 case, capacity ceiling

is intrinsic when α̃2 and α̃1 are proportional, as verified in

Corollary 2. In Fig. 3, we show the asymptotic ergodic secrecy

rate for various values of (K,N1, N2, Q) at a fixed number

of eavesdroppers N = 3 and α̃2 = 1 dB. This plot shows

the corresponding asymptotic ergodic secrecy rate obtained

from Corollary 1. As α̃1 increases, the differences between the

exact ergodic secrecy rates and the asymptotic ergodic secrecy

rates are negligible. We can also easily see that the multipath

diversity and the multiuser diversity are two key factors in

determining the ergodic secrecy rates. According to (19), a

total of five relays can reduce 0.8 dB power than a single relay

in achieving 2.0 secrecy rate. Fig. 4 shows the multiplexing

gain S∞ as a function of (K,N1, Q), which are the key system

and channel parameters in determining the diversity gain. As

α̃1 increases, the multiplexing gain S∞ approaches 1/2. Since

a larger diversity has a more influence from the second term

in the right hand side of (17), the convergence speed to 1/2

becomes slower as the diversity gain increases.

VI. CONCLUSIONS

In this paper, we have proposed cooperative single carrier

systems with multiple relays and destinations. A coexisting

group of eavesdroppers have been assumed to eavesdrop the



relays. For this challenging environment, we have proposed

a two-stage relay and destination selection scheme. We have

analyzed the secrecy performance in terms of the ergodic

secrecy rate. Having derived the asymptotic ergodic secrecy

rate, the multiplexing gain has been shown to be equal to the

number of hops.

APPENDIX A: A DETAILED DERIVATION OF COROLLARY 1

We first rewrite the CDF of γmin,max
2 as

Fγmin,max
2

(x) = 1 + F̃γmin,max
2

(x), (A.1)

where

F̃γmin,max
2

(x) =

K∑

k=1

Nk∑

m=1

(
K

k

)(
Nk

m

)
(−1)k+m+1e−mx/α̃2

m∑

v1,...,vN2

( m!

v1! . . . vN2 !

) x
∑N2−1

t=0 tvt+1

∏N2−1
t=0 (t!(α̃2)t)vt+1

.

Then, the ergodic secrecy rate is derived as (A.2)

C̄s =
1

2 log(2)

[ ∫ ∞

0

log(1 + x1)fγk∗,q∗

1
(x1)dx1

︸ ︷︷ ︸
Θ1

+

∫ ∞

0

∫ x1

0

F̃γmin,max
2

(x2)

1 + x2
f
γk∗,q∗

1
(x1)dx2dx1

︸ ︷︷ ︸
Θ2

]
. (A.2)

As α̃1 → ∞, Θ1 asymptotically becomes

Θ∞
1 = log (α̃1) +

∫ ∞

0

log

(
x1
α̃1

)
f
γk∗,q∗

1
(x1) dx1. (A.3)

The PDF of γk
∗,q∗

1 can be obtained by taking the derivative of

(10). Substituting the PDF of γk
∗,q∗

1 into (A.3), and employing

[16, eq. 4.352.1], we compute (A.3) as

Θ∞
1 = log(α̃1) +

Q

(N1 − 1)!

Q−1∑

q=0

(
Q− 1

q

)
(−1)q

q∑

w1,...,wN1

(
q!

w1! . . . wN1 !
)

1
∏N1−1

t=0 (t!)
wt+1

Γ(N1 + L̃1)

(q + 1)N1+L̃1

[
ψ(N1 + L̃1)− log(q + 1)

]
. (A.4)

Changing the order of integration in Θ2, we have

Θ2 =

∫ ∞

0

F̃γmin,max
2

(x2)

1 + x2
(1− F

γk∗,q∗

1
(x2))dx2. (A.5)

Applying the Taylor series expansion truncated to the N1th

order given by ex =
N1∑
l=0

xl

l! + O(xN1), we derive the first

order expansion of F
γk∗,q∗

1
(x), which is specified in (10), at

high α̃1 as

F
γk∗,q∗

1
(x) =

1

(N1!)Q

(
x

α̃1

)QN1

+O((α̃1)
−QN1).(A.6)

From (A.6), we see that as α̃1 → ∞, F
γk∗,q∗

1
(x2) ≈ 0. Hence,

the asymptotic expression for Θ2 is given by

Θ∞
2 =

K∑

k=1

Nk∑

m=1

(
K

k

)(
Nk

m

)
(−1)

k+m+1
m∑

v1,...,vN2

(
m!

v1! . . . vN2 !
)

Γ(
N2−1∑
t=0

tvt+1 + 1)

∏N2−1
t=0 (t!(α̃2)

t
)
vt+1

Ψ(A1, A1;A2). (A.7)

Substituting (A.7) and (A.4) into (A.2), we derive the asymp-

totic expression for the ergodic secrecy capacity as (17).
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