Model Predictive Control of Engine Speed During Vehicle Deceleration

Di Cairano, S.; Doering, J.; Kolmanovsky, I.V.; Hrovat, D.
TR2014-118 April 2014

Abstract
We consider the speed control of a spark ignition engine during vehicle deceleration. When the torque converter bypass clutch is open the engine speed needs to be kept close to the turbine speed to guarantee responsiveness of the vehicle for subsequent accelerations. However, to maintain vehicle drivability, undesired crossing between engine speed and turbine speed must not occur, despite the presence of significant torque disturbances. Hence, the engine speed during vehicle decelerations needs to be precisely controlled by feedback control, which has to coordinate airflow and spark timing and enforce several constraints including engine stall avoidance, combustion stability, and actuator limits. We develop a model predictive controller that manipulates airflow and spark to track the reference signal for engine speed while enforcing constraints, and synthesize it in the form of a feedback law. The controller is evaluated in simulations and in a vehicle, and it is shown to achieve a responsive and consistent deceleration and the potential for reducing fuel consumption.

IEEE Transactions on Technology
Model Predictive Control of Engine Speed during Vehicle Deceleration

S. Di Cairano, J. Doering, I.V. Kolmanovsky, D. Hrovat

Abstract—We consider the speed control of a spark ignition engine during vehicle deceleration. When the torque converter bypass clutch is open the engine speed needs to be kept close to the turbine speed to guarantee responsiveness of the vehicle for subsequent accelerations. However, to maintain vehicle drivability, undesired crossing between engine speed and turbine speed must not occur, despite the presence of significant torque disturbances. Hence, the engine speed during vehicle decelerations needs to be precisely controlled by feedback control, which has to coordinate airflow and spark timing and enforce several constraints including engine stall avoidance, combustion stability, and actuator limits. We develop a model predictive controller that manipulates airflow and spark to track the reference signal for engine speed while enforcing constraints, and synthesize it in the form of a feedback law. The controller is evaluated in simulations and in a vehicle, and it is shown to achieve a responsive and consistent deceleration and the potential for reducing fuel consumption.

Index Terms—Engine control, Model predictive control, Automotive control systems, Constrained control.

I. INTRODUCTION

In today’s vehicles the powertrain control system is being continuously refined to improve fuel economy, emissions, safety, and drivability, thus making the vehicles more economical, sustainable, safe, and fun to drive. Drivability is the capability of the vehicle to be responsive and predictable to the driver’s commands. While good drivability often goes unnoticed by the driver, poor drivability may lead to low driver confidence in the vehicle. Examples of poor drivability include, among others, lack of responsiveness, undesired responses to the driver commands and/or excessive vehicle jerk. Thus, a significant effort is devoted to refining the powertrain response by appropriate control system design and calibration. Due to multiple objectives and constraints, achieving good drivability can be complex and time consuming.

For vehicles equipped with standard automatic transmissions, the drivability effects are noticeable during vehicle deceleration. When the vehicle is decelerating and the torque converter bypass clutch is open, the torque provided to the vehicle is related to the turbine-engine speed ratio [1]–[4], the ratio between the speeds of the engine and of the torque converter turbine, which is connected to the gearbox input shaft. In order to obtain a consistent behavior, to maintain vehicle responsiveness, and to achieve high fuel economy, the engine speed during deceleration has to be precisely controlled. In spark ignition (SI) engines such control is achieved by manipulating the airflow and the spark timing, which, however, are subject to several constraints, including limits imposed by combustion stability and engine breathing.

Model predictive control (MPC) [5] systematically addresses the problem of achieving multiple objectives while enforcing constraints on vehicle inputs and states. Thus, it has the potential of significantly simplifying design and calibration of multivariable control systems. Furthermore, the execution of MPC controllers at high rate and with low computing power can be achieved by using the explicit MPC feedback law [6]. In this paper, we demonstrate the effectiveness of MPC in engine speed control during vehicle deceleration for vehicles equipped with standard automatic transmissions. MPC has been investigated for several automotive control applications, including engine control, driveline control, lateral vehicle dynamics control, and hybrid electric vehicle energy management [7]–[14]. See also the survey in [15]. Based on the authors’ previous experience with idle speed control [16], MPC is a promising candidate for engine speed control during deceleration (engine deceleration control, for shortness).

The paper is organized as follows. In Section II, we discuss the behavior of the powertrain during deceleration, and we introduce the engine deceleration control problem. In Section III we describe the physical model of the relevant dynamics during deceleration. Since the model is nonlinear, a control-oriented re-parametrization is proposed. In Section IV we design the MPC deceleration controller, which is synthesized as a feedback law for implementation in the engine control unit (ECU). In Section V, the controller is evaluated in simulations with disturbances and setpoint values recorded from real vehicle maneuvers. Then, in Section VI experimental tests spanning nominal and non-nominal deceleration conditions are reported. Conclusions are summarized in Section VII.

Notation: Real, positive real, nonnegative real, and integer, positive integer, nonnegative integer numbers are denoted by \mathbb{R}, \mathbb{R}_+, \mathbb{R}_{0+}, \mathbb{Z}, \mathbb{Z}_+, \mathbb{Z}_{0+}, respectively. For a continuous signal $a(t)$ sampled with period T_s, $a(k), k \in \mathbb{Z}_{0+}$, denotes the value at the k^{th} sampling instant, $a(k) = a(kT_s)$, and $a[i], i \in \mathbb{Z}_{0+}$ denotes the value $a(k+i)$ predicted based on data at kT_s. For a vector a, $[a]_i$ is the i^{th} component, and inequalities between vectors are intended as componentwise. In all figures the units are those introduced for the corresponding variables in the paper, unless otherwise indicated.

1Preliminary studies related to this paper appeared in [17].
II. ENGINE SPEED CONTROL DURING VEHICLE DECELERATION

Figure 1 shows the schematic of the powertrain of a vehicle with standard automatic transmission. The engine and the transmission are connected through a torque converter, which shapes the torque transfer between the two. With some simplifications, the torque converter is composed of an impeller, rigidly connected to the crankshaft and thus rotating at the same speed as the engine, and of a turbine, rigidly connected to the transmission input shaft, that connects the torque converter to the gearbox. Turbine and impeller are immersed in oil, which realizes a hydraulic coupling between the two (the impeller spins the oil, which spins the turbine, and the other way around), hence allowing torque transfer between engine and transmission through the speed difference.

The engine speed dynamics are described by

\[J_e \ddot{N} = (M_{\text{brk}} - M_{\text{id}}), \]

where \(N \) [rpm] is the engine speed, \(J_e \) [rpm/(s·Nm)] is the lumped inertia of engine, flywheel, impeller and the oil rotating with it, \(M_{\text{brk}} \) [Nm] is the engine brake torque (the net engine output torque) and \(M_{\text{id}} \) [Nm] is the load torque on the engine transmitted from the torque converter.

Neglecting the driveline dynamics, when the torque converter bypass clutch that directly connects the crankshaft to the transmission shaft is engaged and the transmission is “in-gear” (i.e., not shifting), the engine speed and turbine speed \((N_T \text{[rpm]}) \) are equal, \(N = N_T \), and the turbine speed is determined by the wheel speed, \(N_T = \varrho_{\text{fdr}} \varrho_{g_i} N_w \), where \(N_w \) [rpm] is the vehicle wheel speed, \(\varrho_{g_i} \), \(g_i = 1, \ldots, n_p \) is the gear ratio, and \(\varrho_{\text{fdr}} \) is the final drive ratio. In these conditions and assuming a flat road, the load on the engine is a function of the wheel speed \(M_{\text{id}} = \varrho_{\text{fdr}} \varrho_{g_i} f_w(N_w) \), where \(f_w \) is a quadratic function [18].

When the torque converter bypass clutch is open, the engine speed and the turbine speed are in general not equal. In this case the load on the engine, i.e., on the crankshaft, \(M_{\text{id}} \) is the torque transferred from the torque converter [1], [2], [4],

\[M_{\text{id}} = \text{sign}(N - N_T) \cdot \max\{N, N_T\}^2, \]

where \(\text{sign} \) is a positive nonlinear function defined by the torque converter mechanical and hydrodynamical design. This function has maximum at 1, is monotonically increasing for arguments smaller than 1, and monotonically decreasing (although not symmetrically) for arguments larger than 1. For the vehicle used for experimental validation, a plot of the torque converter load on the engine \(M_{\text{id}} \) as function of the engine speed \(N \) and of the torque converter speed ratio, \(\rho_{\text{TQC}} = N_T/N \) is shown in Figure 2. The curve for \(\rho_{\text{TQC}} > 1 \) is significantly different from the one for \(\rho_{\text{TQC}} < 1 \). This is due to the mechanical design of the torque converter [3], which maximizes the power transfer from the engine to the wheels, and minimizes the transfer from the wheels to the engine. In particular, for speed ratios larger than 1 the torque converter load changes are relatively small.

By (2), in the case of null external torques, when the engine speed is greater than the transmission speed, the turbine tends to accelerate and the impeller tends to decelerate, while when the engine speed is lower than the transmission speed, the opposite occurs. The hydraulic coupling introduces damping, hence smoothing the torque transfer from the engine to the driveline, and avoiding excessive jerk due to torque variations. The bypass clutch allows bypassing the hydraulic coupling for improved fuel economy, when damping is not needed (for instance in high gears).

A typical deceleration profile with brake application is shown in Figure 3, where different phases are highlighted. In the first phase \((a)\), at high speed and in high gear, the torque converter bypass clutch is locked, so that \(N = N_T \). In this phase usually there is no closed-loop control of the engine speed, and fuel injection may be shutoff. When the vehicle speed reduces and lower gears are engaged, the torque converter bypass clutch is opened \((b)\) in order to avoid excessive jerk, and hence to maintain drivability. When the torque converter is open, the crankshaft and the transmission input shaft are coupled through the oil in the torque converter and the engine speed and the turbine speed become different. Initially, \(N < N_T \), so that by (2) torque is transferred from the vehicle to the crankshaft, which increases the deceleration. At low gears and low vehicle speed \((c)\), \(N > N_T \) and, if the brakes are not applied, eventually the vehicle “creeps”. If the brakes are applied, the vehicle speed and the turbine speed reach zero \((d)\) and the engine speed is stabilized at idle.

When the torque converter is open \((b-d)\), to provide good
response to a driver’s application of the accelerator pedal (the so-called “tip-in”) while ensuring smooth and predictable vehicle deceleration without penalizing fuel consumption, the engine speed needs to be tightly controlled. If the engine speed is too low prior to a tip-in, it is difficult to provide smooth and responsive behavior since the engine has to be accelerated above transmission input shaft speed to provide positive torque to the wheels. If the engine speed is too high prior to a tip-in, the engine consumes more fuel than needed while decelerating. Also, the driveline has lash [19], and if the engine speed varies above and below transmission input shaft speed due to poor control, unintentional driveline lash crossings causing non-uniform deceleration and noise, vibration, and harshness (NVH) occur. Oscillations due to lash crossing may be felt by the driver as undesired accelerations that compromise the vehicle drivability. Thus, during deceleration, to provide fuel economy, powertrain responsiveness, and drive smoothness, precise feedback control of the engine speed is needed. Since the modification of the engine torque through the airflow is subject to delays and gas dynamics, a spark torque reserve is created for feedback control by advancing the spark timing from the optimal ignition timing. In this way, when disturbances occur, torque modifications can be achieved rapidly (in both directions) by manipulating the spark timing. However, the authority of the spark reserve is limited and it depends on the current engine airflow.

A well known speed control problem in automotive is Idle Speed Control (ISC) [20]. In ISC the engine speed is regulated to a constant setpoint using throttle (or bypass valve, in older engines) and spark timing, while rejecting disturbances caused for instance by air-conditioning and power steering pump load. Since the setpoint remains mostly constant, ISC operates in very specific, and almost stationary, engine operating conditions. The challenges in ISC are the time delay in the airpath and the reduced and varying authority of the spark actuation. Several control strategies have been proposed for ISC, see [20] and the references therein. Recently in [16], the authors have proposed an idle speed controller based on MPC that was experimentally shown to improve closed-loop robustness and to reduce the need for spark reserve, thus resulting in a more efficient engine operation.

While similar in terms of manipulated and controlled variables, engine speed control during deceleration is significantly more challenging than ISC, since the controller operates across several engine operating conditions, i.e., speeds and loads. The controller has to track various reference profiles generated by the vehicle control system according to the type of deceleration (braking, coasting, creeping, etc.). Some reference profiles can be rapidly changing (e.g., during braking), while others may be almost constant (e.g., during creeping). In all these conditions the controller must track the reference profile with small error (e.g., less than 50rpm), to provide a smooth and predictable deceleration (i.e., consistent in repeated maneuvers), and to maintain vehicle responsiveness to subsequent accelerations while avoiding undesired lash crossing events. The engine deceleration controller needs to counteract the disturbances that affect the idle controller. In addition it has to regulate the engine speed after a gear-shift, to engage from transient conditions, and to respond to reference profiles changing with rates that may not be achievable.

The architecture for engine speed control during deceleration is shown in Figure 4. The deceleration controller receives the powertrain state (engine speed, torque, etc.) from the vehicle sensors and estimators, and the desired engine speed and constraints from the vehicle control system. The controller commands the base torque, the maximum achievable indicated torque for the current airflow, and the torque ratio, the percentage of the base torque that is actually produced through spark modulation. The commanded base torque and the torque ratio are achieved by electronic throttle control and spark timing control implemented in lower level control functions that may exploit additional powertrain state variables, such as maximum brake torque (MBT) ignition angle [21], engine temperature, manifold pressure, etc. By this architecture, the engine deceleration control is decoupled from the actuator control, and hence the complexity of control design is reduced, and the resulting control system is modular.

Remark 1: In today’s SI engines the air-to-fuel ratio is
tightly controlled to stoichiometry to maintain efficiency of the three-way catalyst which reduces emissions [22], and, as a consequence, it is not a manipulated variable for the engine deceleration control. Also, since it is tightly controlled to a constant value, the impact of air-to-fuel ratio fluctuations on deceleration control. Also, since it is tightly controlled to stoichiometry to maintain efficiency of

The base torque is limited to the range,

\[M_{\text{air}}(t) \leq M_{\text{air}}(t) \leq M_{\text{air}}^\text{max}(t), \]

where the lower bound \(M_{\text{air}}^\text{min}(t) \) varies with time, and is imposed to avoid combustion instability (e.g., misfires) that occurs when too little air is trapped in the cylinder. In (6), the time-varying upper bound \(M_{\text{air}}^\text{max}(t) \) reflects the maximum achievable torque, due to current engine operating conditions and operational requirements in terms of emissions, drivability, and NVH. Both \(M_{\text{air}}^\text{min}, M_{\text{air}}^\text{max} \) mainly depend on engine speed, load, and temperature. Similarly, the torque ratio is lower and upper bounded due to emissions, combustion stability, and physical limitations,

\[0 \leq \kappa_{\text{spk}}^\text{min} \leq \kappa_{\text{spk}} \leq \kappa_{\text{spk}}^\text{max} \leq 1, \]

where \(\kappa_{\text{spk}}^\text{min}, \kappa_{\text{spk}}^\text{max} \) are constant during deceleration.

In the torque domain, the control variables for engine speed regulation are the commanded base torque \(\dot{M}_{\text{air}}[\text{Nm}] \) and the commanded torque ratio \(\kappa_{\text{spk}} \). The action of \(\dot{M}_{\text{air}}, \kappa_{\text{spk}} \) is not instantaneous due to the presence of dynamics and time delays. The base torque generation process is subject to the combustion time delay \(\delta_{\text{air}}[\text{s}] \) which is usually assumed to be 360 crank angle degrees, and hence its time duration \(^2\) depends on the engine speed, \(\delta_{\text{air}} = \frac{60}{N} \). Furthermore, due to manifold filling dynamics, the base torque generation is subject to a first order lag with a time constant \(\tau_{\text{air}}[\text{s}] \). Thus, the dynamics from commanded to generated base torque are

\[\dot{M}_{\text{air}}(t) = \frac{1}{\tau_{\text{air}}} (-M_{\text{air}}(t) + \dot{M}_{\text{air}}(t - \delta_{\text{air}}(t))). \]

Remark 2: From physics, the torque dynamics are the manifold filling dynamics, a first order lag, followed by a combustion time delay. Here, by linearity, we use an equivalent model with input time delay.

The effect of the torque ratio actuation via spark is also subject to a delay due to the discrete firing of the cylinders, which, for a 6 cylinders vehicle, is 120 crank angle degrees, i.e., \(\delta_{\text{air}} = \frac{60}{360} \). Hence,

\[\kappa_{\text{spk}}(t) = \dot{\kappa}_{\text{spk}}(t - \delta_{\text{spk}}). \]

By collecting (2), (5)–(9), the complete dynamical model is

\[\dot{N}(t) = \frac{1}{J_e} (\kappa_{\text{spk}}(t - \delta_{\text{spk}})M_{\text{air}}(t) - M_{\text{ls}}(t) - M_{\text{id}}(t)), \]

\[\dot{M}_{\text{air}}(t) = \frac{1}{\tau_{\text{air}}} (-M_{\text{air}}(t) + \dot{M}_{\text{air}}(t - \delta_{\text{air}}(t))), \]

\[M_{\text{id}}(t) = \frac{\text{sign}(N - N_T) \cdot \max(N, N_T)^2}{\kappa(N/N_T)^2}, \]

\[M_{\text{air}}^\text{min}(t) \leq M_{\text{air}}(t) \leq M_{\text{air}}^\text{max}(t), \]

\[\kappa_{\text{spk}}^\text{min} \leq \kappa_{\text{spk}}(t) \leq \kappa_{\text{spk}}^\text{max}. \]

where the state variables are the engine speed \(N \), the base torque \(M_{\text{air}} \), and the past commands for base torque and spark torque ratio along the time delay windows, \(M_{\text{air}}(\tau), \tau \in [t - \delta_{\text{air}}, t] \) and \(\kappa_{\text{spk}}(\tau), \tau \in [t - \delta_{\text{spk}}, t] \); the control inputs are the commanded base torque \(\dot{M}_{\text{air}} \) and the commanded

\(^2\)Alternatively crank angle can be used as independent variable, resulting in a constant delay model. However, other aspects of the dynamics become significantly more complicated [24].
such that \(\zeta \) is unique where \(x, u, z \) are vehicle deceleration profile. However, precise engine speed losses dynamics have been neglected, since their changes are small and/or slow in the operating conditions of interest.

Remark 3: The powertrain dynamics in (10) are connected to the longitudinal vehicle dynamics. A simple longitudinal vehicle dynamics model is

\[
J_v \ddot{N}_w = g_{\text{dir}} M_T - M_{t1},
\]

where \(J_v \) is the vehicle inertia at the wheels, \(M_T \) is the output torque of the torque converter and \(M_{t1} \) is the road load. For zero road grade, the road load is a function of the vehicle speed only, \(M_{t1} = f_w(N_w) \). Based on (2), the torque converter output torque is a function of the engine and turbine speed, \(M_T = f_{\text{air}}(N, N_T) \). When the transmission is in-gear, \(N_w = N_T/(g_y g_{\text{dir}}) \). By substituting into (11),

\[
J_v \ddot{N}_w = g_{\text{dir}} f_{\text{air}}(N, g_y g_{\text{dir}}, N_w) - f_w(N_w),
\]

and hence the vehicle speed depends on the engine speed. Due to the torque converter design [3], when the engine speed is below the turbine speed, the torque transmitted though the converter is small and does not change significantly with the speed ratio (see Figure 3). Hence, during deceleration the engine speed can be modulated with limited impact on the vehicle deceleration profile. However, precise engine speed control is needed to maintain high fuel economy and vehicle responsiveness while avoiding lash crossings which cause NVH and reduced drivability.

A. Control-oriented parametrization

It is difficult to use model (10) for MPC design since it is nonlinear and subject to (variable) time delays. A re-parametrization can be performed to remove the nonlinearity as described by the following proposition.

Proposition 1: Consider

\[
\begin{align}
z(t) &= x(t)u(t), \\
\begin{array}{l}
u^\text{min} \\ \end{array} &\leq u(t) \leq \begin{array}{l}
u^\text{max} \\ \end{array},
\end{align}
\]

where \(x, u, z \in \mathbb{R} \), and

\[
\begin{align}
\zeta(t) &= v(t),
\begin{array}{l}
u^\text{min}_x \\ \end{array} &\leq v(t) \leq \begin{array}{l}
u^\text{max}_x \\ \end{array} x(t),
\end{align}
\]

where \(\zeta, v \in \mathbb{R} \). Let \(x : [t_0, t_f] \to \mathbb{R}_+ \). Then for all \(u : [t_0, t_f] \to \mathbb{R} \) satisfying (13b) for all \(t \in [t_0, t_f] \) there exist a unique \(v : [t_0, t_f] \to \mathbb{R} \) satisfying (14b) for all \(t \in [t_0, t_f] \) such that \(\zeta(t) = z(t) \) for all \(t \in [t_0, t_f] \).

The proof of Proposition 1 is immediate. One obtains (14) from (13) by introducing \(v \in \mathbb{R} \) as \(v(t) = u(t)x(t) \). The result follows from the fact that \(x(t) > 0 \) for all \(t \in [t_0, t_f] \) and hence the transformation is invertible. Note also that when \(x(t) = 0 \), \(v(t) = 0 \), but still \(\zeta(t) = z(t) \) independently of \(u(t) \).

In (14) we have reformulated a bilinear relation subject to bounds, as a linear relation subject to linear constraints. For applying the result in Proposition 1 to (10), we notice that \(M_{\text{air}}(t) > 0 \) for all \(t \), and define a nominal torque ratio \(\bar{\kappa}_{\text{spk}} \),

\[
\begin{align}
\kappa_{\text{spk}}(t) &= \bar{\kappa}_{\text{spk}} + \Delta\kappa_{\text{spk}}(t), \\
\Delta\kappa_{\text{spk}}^\text{min} &\leq \Delta\kappa_{\text{spk}}(t) \leq \Delta\kappa_{\text{spk}}^\text{max},
\end{align}
\]

where \(\Delta\kappa_{\text{spk}}^\text{min} = \kappa_{\text{spk}}^\text{min} - \bar{\kappa}_{\text{spk}} \), and \(\Delta\kappa_{\text{spk}}^\text{max} = \kappa_{\text{spk}}^\text{max} - \bar{\kappa}_{\text{spk}} \). By substituting (15) into (10a),

\[
\dot{N}(t) = \frac{1}{J_e} (\bar{\kappa}_{\text{spk}} M_{\text{air}}(t) + M_{\text{spk}}(t) - M_{\text{ls}}(t) - M_{\text{ld}}(t)),
\]

where \(\bar{\kappa}_{\text{spk}} \) is the indicated torque obtained from the current base torque and the nominal torque ratio, and \(M_{\text{spk}}(t) = \Delta\kappa_{\text{spk}} M_{\text{air}}(t) \) is the additional torque obtained by applying a torque ratio different from nominal. The box constraints on torque ratio difference from nominal (15b) become linear constraints between torque ratio and base torque,

\[
\Delta\kappa_{\text{spk}}^\text{min} M_{\text{air}}(t) \leq M_{\text{spk}}(t) \leq \Delta\kappa_{\text{spk}}^\text{max} M_{\text{air}}(t).
\]

In the new parametrization the control variables are the commanded engine indicated torque for spark at nominal value, \(u_{\text{air}} \), and the commanded additional torque, \(u_{\text{spk}} \), from modulating spark timing around nominal value. Thus from (10), (15), (16), we obtain

\[
\begin{align}
\dot{N}(t) &= \frac{1}{J_e} (\bar{\kappa}_{\text{spk}} M_{\text{air}}(t) + u_{\text{spk}} (t - \delta_{\text{spk}}) - M_{\text{ls}}(t) - M_{\text{ld}}(t)), \\
\dot{M}_{\text{air}}(t) &= \frac{1}{\tau_{\text{air}}} (-M_{\text{air}}(t) + u_{\text{air}} (t - \delta_{\text{air}}(t))), \\
\dot{M}_{\text{ld}}(t) &= \frac{\max(N(t), N_T(t))^2}{\Delta N_T(t)^2} \kappa_{\text{spk}}^\text{max} M_{\text{air}}(t),
\end{align}
\]

which is a constrained system subject to linear constraints with controls \(u_{\text{air}}, u_{\text{spk}}, \) states \(N, M_{\text{air}}, \) and past commands along the delay periods, \(u_{\text{air}}(\tau), \tau \in [t - \delta_{\text{air}}, t), u_{\text{spk}}(\tau), \tau \in [t - \delta_{\text{spk}}, t) \), and measured disturbances \(M_{\text{ls}}, N_T \).

Remark 4: For most control strategies (14) does not simplify the design, because constraints involving multiple states (or states and inputs) are difficult to enforce. However, MPC has the capability of enforcing such constraints by design, and hence it can control the bound constrained bilinear relation (13) though controlling the linearly constrained linear relation (14).

IV. MODEL PREDICTIVE CONTROL DESIGN

The advantage of model (17) with respect to (10) is that, except for (17c), the dynamics are linear, subject to linear constraints and time delays. As a result, (17) can be used in a linear-quadratic model predictive control algorithm.

A. Prediction model formulation

In order to simplify the computations, we remove (17c) and consider \(M_{\text{ld}} \), which is estimated by the vehicle control system via (17c), as a measured disturbance. The variable delays in (17b) are approximated as constant multiples of the sampling period \(T_s \), i.e., \(\delta_{\text{air}}(t) = T_s \delta_{\text{air}} \), for all \(t \geq 0 \), and \(\delta_{\text{air}} \in \mathbb{Z}_+ \). Similarly, the fixed spark-timing delay is approximated as a multiple of the sampling period, \(\delta_{\text{spk}} = T_s \delta_{\text{spk}} \). Although better results can be achieved by gain scheduling multiple controllers based on different delay durations, we
have verified that, during deceleration, this approximation does not significantly limit the performance. On the other hand, assuming constant delays reduces the amount of storage memory needed in the ECU.

Under these simplifications, (17) sampled with period T_λ results in the discrete-time linear dynamics

$$x(k+1) = Ax(k) + Bu(k) + \Gamma w(k),$$

where $x = [N M_{\text{air}}]'$, $v(k) = [u_{\text{air}}(k - \delta_{\text{air}})] u_{\text{spk}}(k - \delta_{\text{spk}})'$, and $w = [M I_d M_{\text{els}}]'$. The model of the input time delay is

$$x_{\delta}(k+1) = A_\delta x_{\delta}(k) + B_\delta u(k),$$

$$v(k) = C_\delta x_{\delta}(k),$$

where x_{δ} is of the size of the number of delays in the system, in this case $x_{\delta} \in \mathbb{R}^{\delta_{\text{spk}} + \delta_{\text{air}}}$, $u = [u_{\text{air}} u_{\text{spk}}]' \in \mathbb{R}^2$, and A_δ, B_δ, C_δ implement a delay buffer [16].

The value of the measured disturbances is known/estimated by the vehicle control system, but their dynamics are not known. Hence they are modeled as constant in prediction,

$$w(k+1) = w(k).$$

This approximation is based on the assumption that the measured disturbances changes are small and/or slow with respect to the other variables. The receding horizon operation of the MPC controller further compensates for such an approximation. At any control cycle the value of the measured disturbances is acquired and used to initialize the constant prediction model (20) for prediction along the MPC horizon. At the subsequent step, the MPC controller acquires the new value of the measured disturbances and adjusts the control sequence based on such an updated value.

Thus, the prediction model from (18), (19), (20) is

$$x(k+1) = A_f x_f(k) + B_f u_f(k),$$

where $x_f \in \mathbb{R}^{4 + \delta_{\text{spk}} + \delta_{\text{air}}}$, $x_f = [x' x'_\delta w']'$, and $u_f = u \in \mathbb{R}^2$.

In order to obtain the full prediction model for MPC design we need to further extend (21) to enforce the control design specification for the engine deceleration controller.

For a constant reference and constant load, the spark timing should return to the nominal value at steady state in order to maintain a torque reserve against future disturbances. Thus, the spark torque M_{spk} should decrease to zero, while the base torque M_{air} should converge to an (unknown) steady state. As a consequence, we formulate u_{air} in incremental form, and add an integrator on u_{spk}, to be used in the cost function

$$\xi_u(k+1) = \xi_u(k) + T_s u_{\text{spk}}(k),$$

$$x_u(k+1) = x_u(k) + \Delta u_{\text{air}}(k),$$

$$u_{\text{air}}(k) = u_{\text{air}}(k) + \Delta u_{\text{air}}(k),$$

where Δu_{air} is the input variation from previous step and ξ_u is the integral of the spark torque. Removing $\Delta u_{\text{air}}(k)$ in (22c) models an additional step of delay on the base torque.

Since we want to obtain a controller that rejects constant disturbances and achieves offset-free tracking of constant references, we add a model for the engine speed reference $r[\text{rpm}]$ and an integrator on the tracking error

$$r(k+1) = r(k) + T_s \Delta r(k),$$

$$\Delta r(k+1) = \Delta r(k),$$

$$\xi_r(k+1) = \xi_r(k) + T_s (N(k) - r(k)),$$

where $\Delta r[\text{rpm}/s]$ is the integral of the reference, which is known in this application and assumed constant in prediction, and ξ_r is the integral of the tracking error.

Additional ancillary equations relates to the torque upper and lower bounds in (17d). These values change depending on the engine operating conditions, and even if their current values are known, their future values are difficult to predict. Thus, we treat them as constant in prediction,

$$M_{\text{air}}^\text{min}(k+1) = M_{\text{air}}^\text{min}(k),$$

$$M_{\text{air}}^\text{max}(k+1) = M_{\text{air}}^\text{max}(k).$$

As for the measured disturbances (20), the bounds in (24) are updated at every control cycle with values computed by the vehicle control system, resulting in time-varying base torque bounds.

Equations (22), (23), (24) together with (21) define the full prediction model used in MPC

$$x_p(k+1) = A_p x_p(k) + B_p u_p(k),$$

where $x_p = [x' x'_u r \Delta r \xi_u \xi_r M_{\text{air}}^\text{min} M_{\text{air}}^\text{max}]'$, $x_p \in \mathbb{R}^{11 + \delta_{\text{spk}} + \delta_{\text{air}}}$.

B. Cost function and constraints

The MPC engine deceleration controller is calibrated by appropriately shaping the cost function. The control objective is to track the engine speed reference with zero steady-state offset for constant references and constant disturbances. Also, at steady state the spark timing has to return to its setpoint. These objectives are encoded in the cost function

$$J = \sum_{i=0}^{h-1} ((N(i) - r(i))^2 + r_x \xi_x(i)^2 + r_u \xi_u(i)^2 + r_s M_{\text{spk}}^2 + r_d \Delta u_{\text{air}}^2),$$

where $h \in \mathbb{Z}^+$ is the MPC prediction horizon, i.e., the time interval along which the cost function is integrated based on the prediction of the system dynamics, and r_x, r_u, r_d, r_s are positive weighting coefficients.

The remaining operating specifications, combustion stability, limits on base torque and spark timing, and minimum engine speed are enforced by the constraints

$$y_p(k) = C x_p(k),$$

$$y_{\text{min}} \leq y_p(k) \leq y_{\text{max}}.$$
\section{Controller design and synthesis}

The MPC finite horizon optimal control problem is formulated based on (25), (26), (27),

\[
\begin{align*}
\min_{u_{p}(k)} \sum_{i=0}^{h-1} x_{p}(i|k)'Q x_{p}(i|k) + u_{p}(i|k)'R u_{p}(i|k) & \quad (28a) \\
\text{s.t.} \quad x_{p}(i+1|k) &= A_{p} x_{p}(i|k) + B_{p} u_{p}(i|k) & \quad (28b) \\
y_{p}(i+1|k) &= C_{p} x_{p}(i|k) & \quad (28c) \\
y_{i \min} \leq y_{p}(i|k) \leq y_{i \max}, i = \delta_{\text{spk}}, \ldots, h_{c} + \delta_{\text{air}} & \quad (28d) \\
u_{p}(i|k) &= 0, i = h_{u}, \ldots, h - 1 & \quad (28e) \\
x_{p}(0|k) &= x_{p}(k) & \quad (28f)
\end{align*}
\]

where \(U_{p}(k) = (u_{p}(0|k), \ldots, u_{p}(h-1|k)) \), and \(h_{u} \in \mathbb{Z}^{+} \) is the control horizon, the number of free control moves available for the controller along the prediction horizon. In (28d) the bounds change depending on the time step to generalize the constraint horizon for system with multiple time delays. It is not possible to enforce the constraints from the beginning of the horizon, since the controller cannot modify the system response in an interval shorter than the shortest input time delay. Hence, after defining \(h_{c} \in \mathbb{Z}^{+} \), we enforce the constraints on minimum and maximum base torque \((|y_{i}|(i|k)|, |y_{j}|(i|k)|)\) for \(i = \delta_{\text{air}}, \ldots, \delta_{\text{air}} + h_{c} \), the constraints on minimum and maximum torque from spark modulation \((|y_{j}|(i|k)|, |y_{j}|(i|k)|)\) for \(i = \delta_{\text{spk}}, \ldots, \delta_{\text{spk}} + h_{c} \), and the constraint on engine speed \((|y_{i}|(i|k)|)\) for \(i = \delta_{\text{air}}, \ldots, \delta_{\text{air}} + h_{c} \), where \(\delta_{\text{spk}} < \delta_{\text{air}} \), according to Section III. In (28) we set \(|y_{i}|_{\max} = -|y_{i}|_{\min} = \infty \) for the steps \(i \) when the constraints are not enforced.

At every step \(k \in \mathbb{Z}^{+} \), the model predictive control algorithm executes the following: (i) builds the current state vector \(x_{p}(k) \) from the current estimated and measured signals; (ii) solves finite horizon optimal control problem (28) initialized from \(x_{p}(k) \); (iii) computes the command for the base torque and for the torque ratio from the optimal input sequence \(U_{p}^{*}(k) \) and the current state \(x_{p}(k) \) by

\[
\begin{align*}
\hat{k}_{\text{spk}}(k) &= \frac{u_{\text{spk}}^{*}(0|k)}{M_{\text{air}}(k + \delta_{\text{spk}})}, & \quad (29a) \\
\bar{M}_{\text{air}}(k) &= x_{u}(k) + \Delta u_{\text{air}}(k). & \quad (29b)
\end{align*}
\]

In (29a), the correct computation of the spark rate command requires the prediction of the base torque to compensate for the delay in the spark control channel. Since \(\delta_{\text{spk}} < \delta_{\text{air}} \), \(M_{\text{air}}(k + \delta_{\text{spk}}) \) in (29a) can be computed from the current state and past inputs by integrating the system dynamics.

In order to meet the stringent chromometric and memory requirements of automotive ECUs, we use multiparametric programming [6] to synthesize the explicit MPC feedback law as the piecewise affine function

\[
U_{p}^{*}(k) = F_{j}(k)x_{p}(k) + G_{j}(k) & \quad (30a) \\
j(k) \in \{1, \ldots, s\} : H_{j}(k)x_{p}(k) \leq K_{j}(k) & \quad (30b)
\]

where (30b) defines the polyhedral region partitions, \(s \) is the total number of regions, and (30a) assigns an affine expression to each region. The explicit synthesis of the MPC controller presents several advantages in terms of functionality and integration process. Specifically, there is no need to solve the optimization problem at every control cycle, but only to evaluate (30). Also, the worst case number of operations to execute per control cycle, as well as the required memory, can be precisely computed, and hence feasibility of the implementation of the controller in a given computing platform can be verified. Finally, a closed-loop system model is obtained from (25), (30),

\[
\begin{align*}
x_{p}(k+1) &= (A + B\Phi F_{j})x_{p}(k) + \Phi G_{j} & \quad (31a) \\
H_{j}(x_{p}(k)) &\leq K_{j}(k). & \quad (31b)
\end{align*}
\]

where \(\Phi = [I \ 0], \Phi \in \mathbb{R}^{2 \times 2} \), selects the first command of the optimal control sequence. System (31) is a piecewise affine system whose local and global stability and robustness margins can be analyzed using tools and methods available in the literature [16], [25].

\section{Controller Evaluation in Simulations}

The MPC controller designed in Section IV is implemented with a sampling period \(T_{s} = 160 \text{ms} \) and horizons \(h_{p} = 20 \), \(h_{c} = 3 \), \(h_{u} = 3 \). Based on the intermediate speed \(N = 1200 \text{rpm} \), the numbers of delay samples in torque and spark actuation channels have been set to \(\delta_{\text{air}} = 3 \), \(\delta_{\text{spk}} = 1 \), i.e., 48ms and 16ms, respectively. We set the lower bound on the engine speed as \(N = 400 \text{rpm} \). The sampling period is the same as the one of the production controller in the ECU, which is based on the tradeoff between performance and chromometric requirements. The choice of the prediction horizon is based on the bandwidth of the dominant system dynamics, which, for engine speeds in the interval of 1000-1500rpm is in the range of \(3 - 5 \text{Hz} \). Finally, the control and constraint horizons are chosen to tradeoff the explicit controller performance versus complexity. For the chosen values, the explicit MPC controller (30) results in \(s = 78 \) regions for a total of 469 inequalities. Using the techniques in [25], we have verified that the closed-loop system (31) is locally asymptotically stable around the equilibrium. We have verified that the robustness margin guarantees stability for at least 0.011s of additional delay in the base torque dynamics, which is sufficient for the operating conditions of interest. Thus, the controller design is slightly conservative at high engine speed. Such conservativeness may be reduced if more advanced stability analysis methods for systems with variable delay are used [26].

For evaluating the proposed control design, a simulation model based on (10) has been implemented, where the parameters have been identified from the prototype vehicle used later for experimental validation. The reference and measured disturbances for the simulations, \(r, N_{T}, M_{\text{fs}} \) in (10), have been recorded in the vehicle while executing a baseline controller.

\textbf{Remark 5:} The turbine speed (and as a consequence the load on the engine) and the torque losses are affected by the engine speed. The engine speed profile obtained by MPC is (obviously) not exactly the same as the engine speed in the data recording experiments. As a consequence the measured disturbances used for simulations are not exactly those that the controller will experience. However, during the data recording, the engine speed is maintained close to the reference by the
baseline controller, and if the same occurs in simulation, the engine speed profiles in simulation and in the experiment are similar. Hence, the approximations of M_{ld} and M_{ls} are reasonable, given also that the changes of M_{ld} and M_{ls} in the operating conditions occurring during deceleration are relatively small and slow.

In order to verify the capability of the controller of tracking a rapidly changing reference, in Figure 5 we show the deceleration from the maximum (limiter) engine speed to idle speed when the vehicle is in neutral and not moving. In this test the engine speed reference decreases by 3000 rpm in less than 2 s, and at the same time the load on the crankshaft is very small since the powertrain is in neutral, i.e., $N_T \approx N$. The controller cannot track the moving reference with 0 offset in the initial part of the deceleration. This is due to the small load on the crankshaft, and to the combustion stability constraint which imposes a lower bound on the commanded torque. However, the controller is able to enforce all the constraints and to “softly land” on the reference without undershoot.

In Figure 6 we show the simulation of a deceleration from high gear (6th, in this case) while the vehicle is moving. The vehicle is decelerated with the application of brakes causing downshifts to 1st gear (the last is 3rd-1st), which are easily noticeable by the sudden increase in the turbine speed. The reference profile to be tracked is designed for achieving good drivability and is generated by a separate function in the vehicle control system. All the constraints are satisfied, and the reference trajectory is tracked with a small error. Compared to the simulated deceleration in neutral in Figure 5, the reference engine speed decelerates at a slower rate, and there is a higher load on the crankshaft, which helps the deceleration. Since when the engine speed is larger than the turbine speed the engine is driving the wheels, while in the other case the wheels are driving the engine, the controller has to maintain the engine speed on the desired side relative to the turbine speed to avoid unintended lash crossings in the driveline. In the simulation no undesired lash crossings occur.

VI. EXPERIMENTAL RESULTS

The control strategy is synthesized in C-code for implementation in a dSPACE DS1401 rapid prototyping unit. The test platform is a FWD production vehicle equipped with a 3.7L V6 engine and a 6 speed standard automatic transmission. The controller in the rapid prototyping unit receives the current targets (reference and constraint bounds) and the
measurements/estimates for the plant variables from the ECU, constructs the prediction model state vector, evaluates the MPC feedback law, computes the actuators commands, and sends them to the ECU which actuates them by the existing actuator drivers and lower level controllers. The communication between rapid prototyping unit and ECU takes place via CAN, which introduces additional delays that will not be present when the control system is entirely implemented in the target platform, and hence not included in the prediction model. We have verified that the impact of the additional delays is appreciable only when the controller is initially engaged, causing a slightly larger initial tracking error.

While executed in the rapid prototyping unit for the simplicity of development, the controller computational requirements have been evaluated for implementation in the automotive powertrain control unit. The worst case number of atomic operations (scalar sums, multiplications, and comparisons to 0) is less than 10^6 per second, which amounts to less than 1% of the CPU capabilities. The total ROM size (mostly calibration memory) is about 10kB, and only 6 additional variables have to be stored in RAM, the commands along the delay windows in (19) and the integrators in (22), (23). In extensive experimental tests we have verified that the average CPU capabilities used are less than 10% of the worst case, and that the storage memory usage can be reduced by a factor of 4 by simple data compression.

A. Experiments in stationary and driving conditions

In Figure 7 we show the experimental results for the deceleration in neutral. The behavior is qualitatively similar to the one observed in the simulation in Figure 5, where it is not possible to closely track the reference speed due to the low load and to the combustion stability constraint (6). We also note that due to the way the engine maps are identified, in these operating conditions the engine torque actuation error (the difference between requested and delivered torque) may be significant (up to 30%). The proposed controller provides soft landing on the reference also in the experiments, with negligible undershoot. We have repeated the test with the transmission in drive and the vehicle kept stationary by braking, see Figure 8. In this case, there is a large difference between the engine speed and the turbine speed ($N_T = 0$), and hence there is a larger load on the crankshaft, so that the engine speed can track the reference also during the transient. The error transients when the controller is activated ($t = 4s, 12s, 20s$) are in part caused by the CAN induced time-delay.

Next, we show the results of a test where the vehicle was driven along an appropriately designed test course. The course involves different types of decelerations, including coastdowns, rapid decelerations using brakes, low speed creeping. As a further challenge, the test was executed with the air conditioning (AC) compressor engaged, where any error in the estimate of AC load introduces additional disturbances. The AC load during this test varied unpredictably between 5Nm and 15Nm. Figure 9 describes the scenario and highlights the different operating conditions that the test exercises. Some relevant maneuvers are discussed in details, next.

In Figure 10 we show a maneuver where the vehicle is creeping (Figure 3, phase c) in a roughly paved parking area, with a 2^{nd}-1^{st} downshift, where the 1^{st} gear of the vehicle has an over-running one-way clutch. Due to the low speed and low torque, this is a critical maneuver since any small disturbance can be felt. However, the controller precisely tracks the desired deceleration profile also after the downshift, which involves a large change in the gear ratio.

In Figure 11 we show a coastdown without the application of brakes (until $t = 162s$) ending with several consecutive downshifts. Initially the torque converter is locked (Figure 3, phase a) and $N = N_T$. After the 6-5 downshift the torque converter is unlocked and closed-loop speed control begins (Figure 3, phase b). The controller follows the target speed profile, rejecting load disturbances (e.g., around $t = 143s$), which are due to, for instance, power steering and AC compressor load changes. During the downshifts the controller maintains the engine speed on the desired side of the turbine speed.

An aggressive deceleration while braking is shown in Figure 12, similar to the simulation in Figure 6. The powertrain goes through multiple downshifts and even in this case the MPC is able to always maintain the engine speed on the correct
side with respect to the turbine speed. The crossing between turbine speed and engine speed (Figure 3, b to c), which changes the sign of the load torque per (2), is well controlled ($t = 50.5s$), which results in the driver not experiencing a significant jerk or NVH.

B. Experiments in non-nominal and faulty conditions

The controller operation was verified also in the case of non-nominal and faulty conditions. One of such tests is reported in Figure 13, where the vehicle was stationary with the transmission in neutral and near idle speed (Figure 3, phase d), which, as discussed before, is particularly challenging condition due to the limited load on the crankshaft, larger actuation errors, and longer delays. In the test, a disturbance θ_{cmd} is added to the commanded electronic throttle angle θ_{cmd}, simulating faults in the throttle. These cause large and sudden torque disturbances, since the base torque is different from what expected. During the test the throttle angle output disturbance is not corrected by any other control loop. In Figure 13(a) we see that the steady state throttle angle with the vehicle stationary in neutral is only slightly above $1\deg$. The disturbances are steps between $-1\deg$ and $+2\deg$, causing large relative torque disturbances, since in this conditions the torque is approximately linearly proportional to the throttle angle. The controller is robust to these disturbances, rejecting them rapidly and enforcing the constraints.
When the throttle angle disturbance increases from 0 deg to 2 deg \((t = 65s)\) the controller cannot bring the spark back to the setpoint, since the steady state value of the commanded throttle angle would need to be negative, in the prediction model. However, the controller cannot command a negative base torque (i.e., a negative throttle angle) because it has to maintain the base torque above the combustion stability limit, and the disturbance on the throttle angle is unknown even to the function that computes such limit. Thus, MPC uses the spark -including at steady state- to compensate for the disturbance. Finally, when the throttle angle disturbance decreases from 2 deg to 0 deg the lower bound on the engine speed is briefly violated \((t = 58s)\). The maximum violation is approximately 50 rpm and lasts less than 250 ms. However, since the limit on the engine speed is designed slightly conservatively and implemented as a soft constraint, the controller continues operating and rapidly recovers by commanding a rapid increase of the base torque request, which, when delivered, is modulated by the spark \((t = 89s)\).

C. Performance assessment

We have compared the proposed control strategy to a baseline controller and assessed the difference in performance. The baseline controller uses a gain-scheduled PID design with feedforward and antiwindup which outputs the desired brake torque. The feedforward is computed to compensate the torque load \(M_{ld}\) and losses \(M_{ls}\) estimated from the same engine maps used by MPC. The brake torque request computed by the control strategy is allocated to engine torque and spark torque ratio by an appropriate algorithm. This also guarantees that an appropriate spark torque reserve is maintained by implementing a form of mid-ranging \([27]\) on the base torque. The baseline controller is a robust and effective strategy, yet, since it does not optimally account for the dynamic interactions between the control inputs in the presence of constraints, its performance can be improved. Also, the design of the saturation and anti-windup is rather cumbersome due to the many constraints, resulting in a complex control logic. An immediate benefit of MPC is that the constraints are dealt with by design in a systematic way. In terms of performance the MPC controller has shown improvements in terms of
tracking and robustness. Quantitatively, in the deceleration
tests the settling time was reduced on average by 11% and by
62% in neutral (Figure 7) and drive (Figure 8), respectively.
The performance improvement in neutral is less pronounced
because all the actuators are saturated for most of the test,
and hence there are no degrees of freedom to optimize.
Along the whole driving scenario (Figure 9) the RMS tracking
error is reduced by 16%. Also, we have observed that the
torque ratio is on average 1.15% higher when using the MPC
controller, due to the more precise tracking of the engine
speed reference which allows to bring the torque ratio to its
nominal value more rapidly. As a consequence, the engine
runs closer to MBT, and hence more efficiently, reducing the
fuel consumption by 1.32%. While a decisive improvement of
the engine efficiency was not the primary objective, we note
that this can be accomplished by increasing the spark ratio
nominal value and consequently tightening the constraints on
torque from spark modulation. Preliminary tests have shown
that in this way the fuel economy during deceleration can be
improved by more than 3% while keeping the same tracking
performance as the baseline controller.

VII. CONCLUSIONS

We have proposed a systematic design for engine speed
control during vehicle deceleration, when the torque converter
is open. The multivariable constrained controller must keep
the engine speed close to the turbine speed to maintain vehicle
responsiveness, yet it should avoid crossing the lash to min-
imize disturbances on the driveline and degraded drivability.
By re-parametrizing the powertrain dynamics to eliminate a
multiplicative nonlinearity, we have implemented a feedback
controller based on linear-quadratic MPC which enforces the
powertrain constraints. In experimental tests the controller has
been shown to achieve improved tracking performance and
fuel economy as compared to a baseline strategy. In terms
of its computational footprint, the controller is adequate for
implementation in a production ECU.

ACKNOWLEDGMENTS

The authors acknowledge C. Cox and S. Szwabowski of
Ford Motor Co., for support with the test vehicle, and Dr. D.
Yanakiev of Ford Motor Co., for useful discussions.

REFERENCES

Proc. SAE World Congress, Detroit, MI, 1982, paper N. 820393.
[2] D. Hrovat and W. Tobler, “Bond graph modeling and computer simula-
tion of automotive torque converters,” J. of the Franklin Institute, vol.
pump flow in an automotive torque converter,” in Proc. SAE World
automatic transmission engagement dynamics-linear case,” J. of
and practice–a survey,” Automatica(Oxford), vol. 25, no. 3, pp. 335–348,
1989.
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
[7] N. Giorgetti, G. Ripaccioli, A. Bemporad, I. Kolmanovsky, and
D. Hrovat, “Hybrid Model Predictive Control of Direct Injection Strati-
fied Charge Engines,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 5,
[8] P. Ortner and L. del Re, “Predictive Control of a Diesel Engine Air
Industrial Turbodiesel Engine Control,” in Proc. 47th IEEE Conf. on
Decision and Control, Cancun, Mexico, Dec 2008, pp. 5704–5711.
yaw stability control by coordinated active front steering and differential
[12] C. Beal and J. C. Gerdes, “Model predictive control for vehicle stabiliza-
tion at the limits of handling,” IEEE Trans. Contr. Systems Technology,
vol. 21, no. 4, pp. 1258–1269, 2013.
Phillips, “Power smoothing energy management and its application to
vol. 21, no. 6, pp. 2091–2103, 2013.
[14] H. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kolmanovsky,
and S. Di Cairano, “MPC-based energy management of a power-split

