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strained control systems: simultaneous design of the nonlinear
plant and control policy where the control is bounded. Similar to
prior art, the co-design is attacked as a non-convex optimization
problem, which is solved by using an improved policy iteration
scheme. We have proved rigorously that the system performance
can be improved after each step of the proposed policy iteration
scheme until convergence to a sub-optimal solution is attained.
Effectiveness of the proposed methodology is illustrated through
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I. I NTRODUCTION

The plant and the control design of nonlinear control sys-
tems is typically decoupled, i.e. the plant, also referred to as the
open-loop system, is given a priori while designing the control
policy. Such decoupling philosophy is popular in practice albeit
not necessary since both the plant and the control jointly
affect the closed-loop system performance. Slight adjustments
of the plant may result in remarkable improvements of the
system performance. Here, by “co-design”, we refer to the
simultaneous design of both the plant and the control policyto
optimize prescribed performance objectives. Similar research
work has been conducted under the names of “integrated
structure and control design” [1], [2], “optimal redesign”[3],
[4], and “simultaneous design” [5], [6], etc. The co-design
problem can find a great number of engineering applications,
such as the optimal design and control for aerospace crafts [5],
[6], smart buildings [2], [4], and electromechanical devices [7].

One commonly used approach to the co-design problem is
to formulate it as a nonlinear optimization problem, which
may commonly be non-convex [3], by parameterizing the
open-loop system as well as the control policy. The resultant
optimization problem is challenging due to the non-convexity.
When nonlinear system dynamics and non-quadratic cost
functions are taken into consideration, there is less hope of
solving the problem. Even for fixed system parameters, finding
the optimal control policy requires solving the well-known
Hamilton-Jacobi-Bellman (HJB) equation of which a closed-
form solution is not practical to be obtained in general cases.

With the optimization formulation of the co-design prob-
lem, some work has been devoted to establish the existence and
uniqueness of an optimal solution [8], and most of existing
work assume the existence of optimal solutions and study
the mathematical characterization of an optimal solution or
methods to solve for a sub-optimal solution [9]–[12]. This

paper focuses on new methods to solve nonlinear co-design
problems which are naturally resulted from co-design of non-
linear constrained control systems. This paper extends work
[2], [3], [13], [14] in the following two-folds: nonlinear system
dynamics and non-quadratic cost functions are considered;
control input is constrained. The main idea is to modify the
conventional policy iteration technique [15]–[17], by adding
an extra optimal system design step to update the system
parameters. We show the system performance can be improved
until the convergence to a sub-optimal solution.

The remainder of the paper is organized as follows. Section
II formulates the nonlinear co-design problem. Section III
presents the modified policy iteration scheme. Section IV
validates the proposed method by its application to a load-
positioning system. Section V concludes this paper.

II. PROBLEM FORMULATION

Consider the following continuous-time control-affine non-
linear system

ẋ = f(x, θ) + g(x, θ)u, x(0) = x0, (1)

wherex ∈ R
n is the state,u ∈ R

m is the control input, and
θ ∈ R

l is the vector of designable system parameters. The con-
trol u is lower- and upper-bounded element-wisely by constant
vectorsumin ∈ R

m andumax ∈ R
m, respectively; the system

parameters are lower- and upper-bounded component-wisely
by θmin ∈ R

l and θmax ∈ R
l, respectively. For simplicity of

notation, we denote the constraints onu asumin ≤ u ≤ umax

and the constraints onθ as θmin ≤ θ ≤ θmax. The vector
fields f : Rn × R

l → R
n and g : Rn × R

l → R
n×m are

locally Lipschitz satisfyingf(0, θ) = 0, for θmin ≤ θ ≤ θmax.
The cost for the co-design problem to minimize is inspired
from [18] and takes the following expression

J(x0, θ, u) =

ˆ

∞

0

[Q(x) + L(u)] dt, (2)

whereQ(x) is a positive definite function, and

L(u) = 2

ˆ u

0

(Φ−1(v))TRdv,

Φ(v) = [φ1(v), · · · , φm(v)]T ,

Φ−1(u) = [φ−1
1 (u), · · · , φ−1

m (u)]T ,

with R a symmetric positive definite matrix, andΦ(v) a
bounded smooth one-to-one, and monotonic odd function
satisfyingΦ(0) = 0 andumin ≤ Φ(v) ≤ umax, ∀v ∈ R

m.



Definition 1. Let Ω be a compact set containing the origin in
its interior. Consider system (1) and the cost(2). A feedback
control policy u(x) is called admissible with respect to the
vector of parametersθ, if

1) umin ≤ u(x) ≤ umax, ∀x ∈ Ω;
2) the closed-loop system composed of (1) andu(x) is

asymptotically stable onΩ;
3) J(x0, θ, u) is finite, if x(t) ∈ Ω, ∀t ≥ 0.

DenoteUθ as the set of all admissible control policies
corresponding toθ satisfyingθmin ≤ θ ≤ θmax. We introduce
the following assumption on the system (1).

Assumption 1. There existsθ0 and u0(x) satisfyingθmin ≤
θ0 ≤ θmax, such thatu0 ∈ Uθ0 .

Given anyθ satisfyingθmin ≤ θ ≤ θmax and an admissible
controlu(x) ∈ Uθ, we call(θ, u(x)) an admissible pair. Given
u(x) ∈ Uθ, the associated cost must satisfy

J(x0, θ, u) = V (x0),

whereV (x) is the solution of the following partial differential
equation

0 =∇V T (x) [f(x, θ) + g(x, θ)u(x)]

+Q(x) + L(u(x)), x ∈ Ω, V (0) = 0.

Remark 1. The co-design problem of the system parameters
θ and the controlu(x) can be formulated as follows: Given
system(1), find an admissible pair(θ∗, u∗) which minimizes
the cost(2). As pointed out in [17], ifθ is fixed, the co-design
problem is reduced to a constrained optimal control problem,
which can be attacked by solving the following Hamilton-
Jacobi-Bellman (HJB) equation:

∇(V ∗)T (f − gΦ(
1

2
R−1gT∇V ∗)) +Q

+ 2

ˆ −Φ( 1
2
R−1gT

∇V ∗)

(Φ−1(v))TRdv = 0,

(3)

with V ∗(0) = 0, and the optimal control is given byu∗ =
−Φ(12R

−1gT∇V ∗).

Remark 2. Although work [2] deals with the co-design of
linear unconstrained control systems, its methodology canbe
readily extended to the co-design of nonlinear constrained
control system(1). That is: an optimal control policyu is
solved from the HJB for fixedθ, then θ and the controlu
are updated by solving an optimization problem subject to a
system-equivalence constraint.

Since the HJB is difficult to solve, our intention is to
circumvent the HJB by formulating the co-design problem as
follows.

Problem 1 (Co-design problem).

min
θ,V,u,

J(x0, θ, u) = V (x0)

s.t. 1) 0 = ∇V T (x) [f(x, θ) + g(x, θ)u(x)]

+Q(x) + L(u(x)), ∀x ∈ Ω, (4)
2) 0 = V (0),

3) u ∈ Uθ,

4) θmin ≤ θ ≤ θmax.

Remark 3. As it will become clear in the sequel, introducing
the constraint(4) instead of the HJB in Problem 1 enjoys
several advantages: the constraint(4) is relatively simpler than
the HJB in the sense that it might be easier to handle by
convexification techniques; the constraint(4) is much easier
to solve than the HJB which is a nonlinear partial differential
equation; the constraint allows us to reuse the well-established
policy iteration idea for optimal control design.

Problem 1 is difficult to solve for at least two reasons.
First, this optimization problem is generally non-convex and
solving non-convex constrained optimization problems arenot
only computationally expensive, but also have no guaranteed
convergence to an optimal solution. Second, nonlinearities
involved in the problem make it almost impossible to find an
analytic solution even for a fixedθ.

III. A N ITERATIVE TECHNIQUE FOR SOLVING THE
CO-DESIGN PROBLEM

We first study an optimal system design problem where
system parameters are decision variables with control fixed,
then present an iterative algorithm for solving Problem 1.

A. Optimal system design

We begin with an admissible pair(θi, ui) whereθmin ≤
θi ≤ θmax and ui ∈ Uθi . Our purpose is to find a new
vector of system parametersθi+1, such that the cost can be
minimized. The resultant optimal system design problem can
be formulated as follows:

Problem 2 (Optimal system design problem).

(θi+1, Si) = argmin
θ,S

S(x0)

s.t. 1) 0 = ∇ST (x) [f(x, θ) + g(x, θ)ui(x)]

+Q(x) + L(ui(x)), x ∈ Ω, (5)
2) S(x) ≥ 0, ∀x ∈ Ω and S(0) = 0,

3) θmin ≤ θ ≤ θmax.

Technical challenges of solving Problem 2 come from the
equality constraint 1) and non-convexity of constraints 1)-2). A
standard technique to handle an equality constraint is to relax
it into an inequality constraint. We thus have the following
relaxed optimal system design problem.

Problem 3 (Relaxed optimal system design problem).

(θ̄i+1, S̄i) = argmin
θ̄,S̄

S̄(x0)

s.t. 1) 0 ≥ ∇S̄T (x)
[

f(x, θ̄) + g(x, θ̄)ui(x)
]

+Q(x) + L(ui(x)), x ∈ Ω, (6)
2) S̄(x) ≥ 0, ∀x ∈ Ω and S̄(0) = 0,

3) θmin ≤ θ̄ ≤ θmax.

The optimal solution of a relaxed problem is generally dif-
ferent from its original problem. When looking into Problems 2
and 3, one can readily show that both problems have the same
optimal solutions. This is because the equality constraint(5)
essentially represents necessary optimality conditions,thus de-
fines a subsetO containing all optimal solutions. The optimal



solutions of Problem 3 which has a larger feasible domain than
Problem 2, still belong to the subsetO.

Remark 4. After replacing the equality sign in(5) with an
inequality sign, we derive a set of sufficient conditions which
ensure the satisfaction of non-convex inequality constraints(6).
Under certain conditions, the sufficient conditions are convex
thus the non-convex inequality constraint(6) is relaxed to
convex inequality constraints. Schur complement condition is
applied to derive the sufficient conditions [19].

DefineV (x), with V (0) = 0, as the solution of

0 = ∇V T
i (x)fi(x) +Q(x) + L(ui(x)), ∀x ∈ Ω,

wherefi(x) = f(x, θi) + g(x, θi)ui(x). Denote

δfi(x, θ̄) = f(x, θ̄)− f(x, θi) + [g(x, θ̄)− g(x, θi)]ui(x),

δVi(x) = S̄(x) − Vi(x).

The following lemma gives sufficient conditions for (6).

Lemma 1. Givenui ∈ Uθi , the constraint(6) is satisfied for
θ̄ and S̄(x) = Vi(x) + δVi(x) if for any x ∈ Ω, the following
inequality holds





M(x, θ̄) ∇ (δVi(x))
T (

δfi(x, θ̄)
)T

∇(δVi(x)) 4γ−1 0
δfc(x, θ̄) 0 γ



 ≥ 0, (7)

whereγ > 0, and

M(x, θ̄) = −∇(δVi(x))
T fi(x) −∇V T

i (x)δfi(x, θ̄).

Proof: For notation simplicity, in the proof we drop the
argumentx from δVi(x), fi(x), Q(x), and ui(x), and the
arguments(x, θ̄) from δfi(x, θ̄). Then, by Schur complement
condition, the inequality (7) is equivalent to the following
inequality∀x ∈ Ω

∇δV T
i fi+∇V T

i δfi+
γ

4
|∇δVi|

2+
1

γ
|δfi|

2 ≤ 0, ∀x ∈ Ω. (8)

On the other hand, from (6) and (8) we have

∇S̄T
[

f(x, θ̄) + g(x, θ̄)ui

]

+Q+ L(ui)

= (∇Vi +∇δVi)
T
(fi + δfi) +Q+ L(ui)

= (∇Vi +∇δVi)
T
(fi + δfi)−∇V T

i fi

= ∇V T
i δfi +∇δV T

i fi + (∇δVi)
T δfi

≤ ∇V T
i δfi +∇δV T

i fi +
γ

4
|∇δVi|

2 +
1

γ
|δfi|

2

≤ 0.

The proof is thus complete.

Remark 5. Since(7) is sufficient to guarantee(6), it introduces
some conservativeness. The extent of the conservativeness,
which is ideally minimized, is not only affected by the con-
straint (6) itself, but also controlled by the choice ofγ. It
is however not obvious to quantify the conservativeness result
from γ thus difficult to chooseγ with guaranteed performance.

Remark 6. With δVi and δfi treated as decision variables,
the inequality(7) is convex for any givenx. Further, if f(x, θ)
andg(x, θ) are linearly parameterized byθ, the inequality(7)
is convex inδθ or equivalentlyθ.

B. An iterative technique for solving the co-design problem

Assuming the vector fieldsf andg have linear parameter-
izations ofθ, we propose the following iterative algorithm.

1) Initialization

Selectu0 and θ0 satisfyingθmin ≤ θ0 ≤ θmax andu0 ∈
Uθ0 . Seti = 0.

2) Policy evaluation

SolveVi(x), with Vi(0) = 0, from

0 =∇V T
i (x) [f(x, θi) + g(x, θi)ui(x)]

+Q(x) + L(ui(x)), ∀x ∈ Ω.

3) Optimal system design

(θi+1, δVi) = argmin
θ,δV

δV (x0) (9a)

s.t.





M(x, θ) ∇ (δV (x))
T
(δfi(x, θ))

T

∇(δV (x)) 4γ−1 0
δfi(x, θ) 0 γ



 ≥ 0, (9b)

δV (x) + Vi(x) ≥ 0 and δV (0) = 0, (9c)
θmin ≤ θ ≤ θmax, (9d)

whereδfi = [f(x, θ) + g(x, θ)ui(x)]δθ.

4) Policy improvement

ui+1(x)

= −Φ

(

R−1gT (x, θi+1) (∇Vi(x) +∇δVi(x))

2

)

.
(10)

5) Iteration

Repeat steps 2)-4) until the sequence{Vi(x0)} converges.

Theorem 1. For i = 0, 1, 2, · · · , the aforementioned algorithm
has the following properties

1) ui ∈ Uθi ;
2) 0 ≤ Vi+1(x0) ≤ Vi(x0) + δVi(x0) ≤ Vi(x0);
3) There existsJ∗ > 0, such thatlimi→∞ Vi(x0) = J∗.

Before giving the proof of Theorem 1, we first recall the
following facts:Vi is a solution of

0 =∇V T
i (x)fi(x) +Q(x) + L(ui(x)), x ∈ Ω, Vi(0) = 0,

where the pair(θi, ui(x)) is given;S̄i = Vi+ δVi is a solution
of (9) thus satisfies

0 ≥∇S̄T
i (x) [f(x, θi+1) + g(x, θi+1)ui(x)]

+Q(x) + L(ui(x)), x ∈ Ω, S̄i(0) = 0,

where the pair(θi+1, ui) is given;Vi+1 is a solution of

0 =∇V T
i+1(x) [f(x, θi+1) + g(x, θi+1)ui+1(x)]

+Q(x) + L(ui+1(x)), x ∈ Ω, Vi+1(0) = 0,
(11)

where the pair(θi+1, ui+1) is given andui+1 is updated
according to the policy improvement.

Proof: We use induction to prove 1)-2). i) The initial-
ization of the algorithm ensures thatui ∈ Uθi for i = 0.
ii) Supposeui ∈ Uθi, we need to showui+1 ∈ Uθi+1

.
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Fig. 1. Lumped parameter model of a motor-driven linear ballscrew stage
supported on a flexible base platform bolted to the ground.

Since δVi(x) is the optimal solution of Problem (9), along
the trajectories of (1) withu = ui(x), by Lemma 1 we have

S̄i(x0) = Vi(x0) + δVi(x0) ≤ Vi(x0). (12)

Let Ŝi(x) be a positive definite function satisfying

0 =∇ŜT
i (x) [f(x, θi+1) + g(x, θi+1)ui(x)]

+Q(x) + L(ui(x)), ∀x ∈ Ω, Ŝi(0) = 0.
(13)

We knowŜi(x) ≤ S̄i(x), ∀x ∈ Ω andx 6= 0. Notice that (13)
and (10) can be viewed as one iteration step described in [17].
Therefore, by [17, Lem. 1], it follows that

V ∗(x) ≤ Vi+1(x) ≤ Ŝi(x) ≤ S̄i(x), ∀x ∈ Ω (14)

for i ≥ 0. Combining (12) and (14) yields 2).

GivenVi+1(x) an finite solution of (11), we have

V̇i+1 = −Q(x)− L(ui+1(x)).

Thus the closed-loop system withui+1 is stable. Also ifx0 is
such thatx(t) ∈ Ω, ∀t ≥ 0, it follows that

0 ≤ J(x0, θi+1, ui+1) ≤ Vi(x0) + δVi(x0) ≤ Vi(x0),

i.e. J(x0, θi+1, ui+1) is finite. We conclude thatui+1 ∈ Uθi+1
.

Since the sequence{Vi(x0)} is non-negative and mono-
tonically decreasing, its limit exists. 3) is shown.

IV. A N UMERICAL EXAMPLE

In this section, we applied the proposed co-design method
to a load-positioning system as shown in Figure 1. Its dynamics
can be described by the following continuous-time linear time-
invariant system [20]

ẍL = (u − dLẋL)(
1

mL

+
1

mB

) +
kB
mB

xB +
dB
mB

ẋB ,

ẍB = (dLẋL − u)
1

mB

−
kB
mB

xB −
dB
mB

ẋB ,

wherexL denotes the relative displacement of the load with
respect to the platform, andxB denotes the displacement of
the platform.dL, mB, mL, kB , anddB are constant system
parameters. In addition the control input is required to satisfy
−5 ≤ u ≤ 5.

The co-design process is to optimize the system perfor-
mance in tracking a step command. For this purpose, we define
x1 = xL − yd, with yd the desired constant output,x2 = ẋL,
x3 = xB, andx4 = ẋB . Then the system is converted to

ẋ = Ax +Bu,

wherex = [x1, x2, x3, x4]
T , and

A =















0 1 0 0

0−
dL
mL

−
dL
mB

kB
mB

dB
mB

0 0 0 1

0
dL
mB

−
kB
mB

−
dB
mB















, B =















0
1

mL

+
1

mB
0

−
1

mB















.

The cost to be minimized is chosen as

J(θ, u) =

ˆ ∞

0

(

100x2
1 + 0.5

ˆ v

0

tanh−1(v/5)dv

)

dt,

where θ = [ 1
mL

, 1
mB

, kB

mB

, dB

mB

]T . The lower bounds, upper
bounds, and initial values are shown in the second to fourth
columns in Table I.

TABLE I. SYSTEM PARAMETERS

Parameters Min Max Initial Optimized
1

mL
0.2 0.3333 0.2 1

1
mB

0.04 0.0667 0.05 0.0667
kB

mB
0.4 1.3333 0.75 0.7496

dB

mB
0.004 0.0667 0.025 0.0041

We set Ω = {x| − 1.2 ≤ x1 ≤ 1.2,−2 ≤ x2 ≤
2,−1 ≤ x3 ≤ 1,−1 ≤ x4 ≤ 1}. To implement the
proposed algorithm, we approximate the cost functionVi(x)
by Vi(x) =

∑N

j=1 wi,jσj(x) + ǫ, with {σj(x)} a set of
polynomials of x, and ǫ the approximation error. For the
purpose of solving the optimization problem (9), we take81
points on Ω and replace the constraint (9b) with a semi-
positive constraint of dimensions729, and replace (9c) with
81 inequalities.

The initial condition is set to bex0 = [−1, 0, 0, 0]T , and
the initial stabilizing control policy is chosen as the optimal
control policy with respect to the initial system parameters.
The initial cost isJ = 217.2996. We execute the algorithm
for 30 iterations. The optimized parameters are shown in the
fourth column of Table I. Figure 2 shows that the co-designed
cost converges to a stationary point (J = 202.8367). By
applying the proposed co-design technique, the closed-loop
system performance has been improved by6.7% compared
with the initial cost. Figures 3 and 4 also show that the closed-
loop system result from the co-design gives shorter settling
time and less control energy.

V. CONCLUSIONS

This paper considered a co-design problem for a class
of nonlinear constrained control systems. A novel iterative
method was proposed by combining the conventional policy
iteration technique and an extra optimal system design step
updating the system parameters. The convergence of the pro-
posed algorithm to a sub-optimal solution was established
and the effectiveness of the proposed algorithm in improving
the closed-loop system performance was demonstrated by
simulation.
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Fig. 2. Illustration of the convergence property of the proposed iterative
technique, compared with the system-equivalence-based method.
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