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Abstract
This paper considers co-design of nonlinear constrained control systems: simultaneous design
of the nonlinear plant and control policy where the control is bounded. Similar to prior art,
the co-design is attacked as a non-convex optimization problem, which is solved by using an
improved policy iteration scheme. We have proved rigorously that the system performance
can be improved after each step of the proposed policy iteration scheme until convergence to
a sub-optimal solution is attained. Effectiveness of the proposed methodology is illustrated
through the co-design of a load-positioning system.
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Abstract—This paper considers co-design of nonlinear con- paper focuses on new methods to solve nonlinear co-design
strained control systems: simultaneous design of the nomear problems which are naturally resulted from co-design of-non
plant and control policy where the control is bounded. Simiér to  |inear constrained control systems. This paper extend wor
prior art, the.co-.deS|gn is attackgd as a non-convex optimation [2], [3], [13], [14] in the following two-folds: nonlineanstem
pr%blem,vv\\;hu;h IS SO"’e% by usmgl atrr‘] th;;rovedtpollcy |fterabnn dynamics and non-quadratic cost functions are considered;
scheme. We have proved rigorously that the system performare ; : : L : :
can be improved after each step of the proposed policy iter&in control |_nput IS qongtramgd. The main idea is to modﬁy the
scheme until convergence to a sub-optimal solution is attaed. conventional .pOI'Cy iteration t(?Chmque [15]-{17], by syl
Effectiveness of the proposed methodology is illustratechtough &N extra optimal system design step to update the system
the co-design of a load-positioning system. parameters. We show the system performance can be improved

) ) ) ) until the convergence to a sub-optimal solution.
Keywords—Nonlinear systems, Co-design, Constrained optimal

control, Policy iteration. The remainder of the paper is organized as follows. Section

II formulates the nonlinear co-design problem. Section Il

presents the modified policy iteration scheme. Section IV

validates the proposed method by its application to a load-
The plant and the control design of nonlinear control sys{positioning system. Section V concludes this paper.

tems is typically decoupled, i.e. the plant, also referoeast the

open-loop system, is given a priori while designing the oaint I

policy. Such decoupling philosophy is popular in practitted '

not necessary since both the plant and the control jointly Consider the following continuous-time control-affine non

affect the closed-loop system performance. Slight adjestsn  linear system

of the plant may result in remarkable improvements of the )

system performance. Here, by “co-design”, we refer to the & = f(z,0)+g(x,0)u, z(0)=mwo, 1)

simultaneous design of both the plant and the control paticy wherez € R" is the statey € R™ is the control input, and

optimize prescribed performance objectives. Simila“r_atasje g, € R! is the vector of designable system parameters. The con-
\é\{[?lzttuhrzsaggecr:)n(i?(;lld(;J:;?gdn”u[ri?e[rz]th‘l?opr][ﬁgna?sregl‘es;gntg]grategol u is lower- and upper-bounded element-wisely by constant
[4], and “simultaneous design” ,[5] ’[6] etc. The co-de’signvecmrsu“”" € R™ anduma, € R™, respectively; the system

' . P B o arameters are lower- and upper-bounded component-wisely
problem can find a great number of engineering application Y Oin € B! and e € R', respectively. For simplicity of
such as the optimal design and control for aerospace cHfts [ notation, we denote the CONStraints ®RS &, < & < Uyag
[6], smart buildings [2], [4], and electromechanical de&g7]. and the constraints ofl as f,;, < 0 < emax-_The_ veotor

One commonly used approach to the co-design problem ifields f : R x R — R" andg : R” x R! — R"™ ™ are
to formulate it as a nonlinear optimization problem, whichlocally Lipschitz satisfyingf (0, 6) = 0, for i,in < 6 < Oiax.
may commonly be non-convex [3], by parameterizing theThe cost for the co-design problem to minimize is inspired
open-loop system as well as the control policy. The resultanfrom [18] and takes the following expression
optimization problem is challenging due to the non-contyexi 0o
When nonlinear system dynamics and non-gquadratic cost J(x0,0,u) :/ [Q(x) + L(u)] dt, (2)
functions are taken into consideration, there is less hdpe o 0
solving the problem. Even for fixed system parameters, fopdin
the optimal control policy requires solving the well-known

I. INTRODUCTION

PROBLEM FORMULATION

where@(z) is a positive definite function, and

Hamilton-Jacobi-Bellman (HJB) equation of which a closed- Y 1/ WT

form solution is not practical to be obtained in general sase L(u) = 2/0 (@7 (v))" Rav,
With the optimization formulation of the co-design prob- ®(v) = [p1(v), D (v)]7,

lem, some work has been devoted to establish the existedce an O (w) = [p7 (u), -, ot ()],

unigueness of an optimal solution [8], and most of existing

work assume the existence of optimal solutions and studyith R a symmetric positive definite matrix, andi(v) a

the mathematical characterization of an optimal solution obounded smooth one-to-one, and monotonic odd function
methods to solve for a sub-optimal solution [9]-[12]. This satisfying®(0) = 0 andumin < ®(v) < Umax, Vv € R™.



Definition 1. Let 2 be a compact set containing the origin in
its interior. Consider system (1) and the cqg). A feedback
control policy u(z) is called admissible with respect to the
vector of parameters, if

1) Umin S U(CE) S Umax» V.I' € Q!

2) the closed-loop system composed of (1) afd) is
asymptotically stable ofy;

3)  J(xo,0,u) is finite, if z(t) € Q, Vt > 0.

Denote Uy as the set of all admissible control policies
corresponding t@ satisfyingf,,i, < 0 < O.¢. We introduce
the following assumption on the system (1).

Assumption 1. There existd, and ug(z) satisfyingfmin <
0o < Omax, such thatuy € Uy, .

Given anyd satisfyingf,,,;, < 0 < 0,4, and an admissible
controlu(z) € Uy, we call(0, u(x)) an admissible pair. Given
u(zx) € Uy, the associated cost must satisfy

J(x0,0,u) = V(xo),
whereV (z) is the solution of the following partial differential
equation
0=VV"(2)[f(x,0) + g(z,0)u(x)]
+ Q(x) + L(u(x)), z € 2, V(0) =0.

Remark 1. The co-design problem of the system parameter

6 and the controlu(x) can be formulated as follows: Given
system(1), find an admissible paif6*,«*) which minimizes
the cost(2). As pointed out in [17], i is fixed, the co-design

problem is reduced to a constrained optimal control prohlem
which can be attacked by solving the following Hamilton-

Jacobi-Bellman (HJB) equation:

VY (f ~ 98B gTVV)) 4 Q
—®(3R1gTVV™) (3
+ 2/ (@' (v))TRdv = 0,

with V*(0) = 0, and the optimal control is given by* =
—®(1R™1gTVV™).

Remark 2. Although work [2] deals with the co-design of
linear unconstrained control systems, its methodology loan

b

Remark 3. As it will become clear in the sequel, introducing
the constraint(4) instead of the HJB in Problem 1 enjoys
several advantages: the constra{d) is relatively simpler than
the HJB in the sense that it might be easier to handle by
convexification techniques; the constrai#) is much easier

to solve than the HIB which is a nonlinear partial differeti
equation; the constraint allows us to reuse the well-esshied
policy iteration idea for optimal control design.

Problem 1 is difficult to solve for at least two reasons.
First, this optimization problem is generally non-convexda
solving non-convex constrained optimization problemsrare
only computationally expensive, but also have no guarantee
convergence to an optimal solution. Second, nonlinearitie
involved in the problem make it almost impossible to find an
analytic solution even for a fixed.

IIl. AN ITERATIVE TECHNIQUE FOR SOLVING THE

CO-DESIGN PROBLEM

We first study an optimal system design problem where
system parameters are decision variables with control fixed
then present an iterative algorithm for solving Problem 1.

A. Optimal system design

We begin with an admissible pait;, u;) where b, <

< Omax and u; € Up,. Our purpose is to find a new
vector of system parametefs,;, such that the cost can be
minimized. The resultant optimal system design problem can
be formulated as follows:

Problem 2 (Optimal system design problem)
(0i+1,5:)

s.t.

in S
arg min 5 (o)

)

1) 0=vVS"(2)[f(2,0) + g(z,0)ui(z)]

+Q(z) + L(u;(x)), z= €9,
S(z) >0, Vo € Q and S(0) =0,
Omin < 0 < Opax.

(%)
2)
3)

Technical challenges of solving Problem 2 come from the
equality constraint 1) and non-convexity of constraint1)A

readily extended to the co-design of nonlinear constrainec?tandard technique to handle an equality constraint isléxre

control system(1). That is: an optimal control policy is
solved from the HJB for fixed, then ¢ and the controlu

it into an inequality constraint. We thus have the following
relaxed optimal system design problem.

are updated by solving an optimization problem subject to &rgplem 3 (Relaxed optimal system design problem)

system-equivalence constraint.

Since the HJB is difficult to solve, our intention is to

circumvent the HIB by formulating the co-design problem as

follows.
Problem 1 (Co-design problem)

0{1\1/12, J(x0,0,u) = V(xp)
s.t. 1) 0=vVVT(2)[f(z,0) + g(z,0)u(z)]
+Q(z) + L(u(x)), Yz € Q, 4)
2) 0=V(0),
3) u e Ug,

4) omin S 0 S omax-

(fit1,8:;) = argminS(zo)
st. 1) 0>VST(2) [f(z,0)+ g(z,0)u;(z)]
+Q(z) + L(u;(x)), x€Q, (6)
2) S(z) >0, Vo € Q and S(0) =0,
3) omin S é S omax-

The optimal solution of a relaxed problem is generally dif-
ferent from its original problem. When looking into Problggh
and 3, one can readily show that both problems have the same
optimal solutions. This is because the equality constrént
essentially represents necessary optimality conditiibnss, de-
fines a subse® containing all optimal solutions. The optimal



solutions of Problem 3 which has a larger feasible domain thaB. An iterative technique for solving the co-design problem

Problem 2, still belong to the subsét . ! .

Assuming the vector fieldg§ andg have linear parameter-
Remark 4. After replacing the equality sign i5) with an izations off), we propose the following iterative algorithm.
inequality sign, we derive a set of sufficient conditionsclhi
ensure the satisfaction of non-convex inequality consts#6).
Under certain conditions, the sufficient conditions are vmn Selectug and 6 satisfyingfmin < 6y < Omax andug €
thus the non-convex inequality constraif@) is relaxed to Us,. Seti = 0.
convex inequality constraints. Schur complement condiso . _
applied to derive the sufficient conditions [19]. 2) Policy evaluation

Solve V;(z), with V;(0) = 0, from
0=V (x) [f(x,0:) + g(z, 0;)ui ()]
+ Q(x) + L(ui(x)), Va e

1) Initialization

Define V(z), with V(0) = 0, as the solution of
0= VV(2)fi(z) + Q(z) + L(us(x)), VaeQ,
where f;(x) = f(x,0;) + g(z, 0;)u;(x). Denote
ofi(z, é) = f(z, é) — f(=, 6‘1) + [g(:v, é) —g(z, 91)]ul(x)7

oVi(z) = S(x) — Vi(z). (0iv1,0V;) = arg gnél‘l} 6V (zo) (9a)

3) Optimal system design

The following lemma gives sufficient conditions for (6). M(z,0) V (V) (5fi(x,0)"
Lemma 1. Givenu; € Up,, the constrain(6) is satisfied for st |V(©V(x) 4y7! 0 >0, (9b)
6 and S(z) = Vi(x) + 8V;(z) if for any = € Q, the following 6fi(x,0) 0 gl
inequality holds SV (x) + Vi(x) > 0 and 6V (0) = 0, (9c)
V(8Vi(x)) 4y~ 0 20, () wheresf; = [f(x,0) + g(x,0)u;(x)]56.
0fe(w,0) 0 7 4) Policy improvement
where~ > 0, and
_ . . _ uit1 ()
M(,0) = =V(Vi(2)" fi(z) = YV (@)8 i . 0). . <ng%, ) (VW) £ VD) 10
Proof: For notation simplicity, in the proof we drop the 2
argumentz from 0V;(z), fi(x), Q(z), and u;(x), and the 5) lteration

argumentgx, §) from 6 f;(z,6). Then, by Schur complement
condition, the inequality (7) is equivalent to the followin Repeat steps 2)-4) until the sequerdé(zy)} converges.
inequalityVz €

Theorem 1. Fori =0,1,2,-- -, the aforementioned algorithm
VoVT fi+ VVISf + %|V6Vi|2+ lléfi|2 <0,Vz e Q. (8) has the following properties
7 1) e Up;
On the other hand, from (6) and (8) we have 2) 0 < Viga(mo) < Vi(xo) 4 0Vi(zo) < Vi(zo);

- _ _ 3) There exists/* > 0, such thatlim;_, ., V;(z¢) = J*.
VS [f(a:, 0) + g(x, 9)u1] +Q+ L(u;)

= (VVi+ ngi)T (fi +0f:) +Q+ L(u;) Be.fore giving t_he proof .of Theorem 1, we first recall the
— (Vi + V(Wi)T (fi +6f:) — VVinZ- following facts: V; is a solution of
VVEsfi + VoVE fi+ (Vovi) T o 0 =VVi" (z)fi(z) + Q(z) + L(ui(x)), = € Q, V;(0) =0,
< VVIsf; + VSV, + 2|V6Vi|2 + l|§fi|2 where the paid;, u;(z)) is given;S; = V; +6V; is a solution
- ’ ’ 4 gl of (9) thus satisfies
< 0. _
. 0 >VS] (@) [f(,0i11) + g, 0511 )ui(2)]
The proof is thus complete. ]

+ Q(z) + L(ui(z)), = €Q, S;(0) =0,
Remark 5. Since(7) is sufficient to guarante®), it introduces . L _ .
some conservativeness. The extent of the conservatiyened1ere the pai®i.1,u;) is given; V., is a solution of
which is ideally minimized, is not only affected by the con- o v T () [f(z, 0i11) + (. 051 i (2
straint (6) itself, but also controlled by the choice of It +5(1 () j_[é(( § +(1))) 9l ’QH&_ +(10() ﬂ 0

is however not obvious to quantify the conservativenesstres t Uit1(@)), & €35 Vier (D) =10,

from  thus difficult to choose with guaranteed performance. where the pair(f;;1,ui1) is given andu;,; is updated

Remark 6. With 6V; and §f; treated as decision variables, @ccording to the policy improvement.

the inequality(7) is convex for any given. Further, if f(z, 6) Proof: We use induction to prove 1)-2). i) The initial-
andg(z,0) are linearly parameterized b, the inequalitf(7)  ization of the algorithm ensures that € U, for i = 0.
is convex iné6 or equivalentlyd. i) Supposeu; € Up,, we need to shows;; € Us,,,.

(11)



LB [ The co-design process is to optimize the system perfor-

>
! X mance in tracking a step command. For this purpose, we define
<—L>: r1 = xp — Y4, With y, the desired constant output; = &y,
x3 = xp, andzy = . Then the system is converted to
kp u ( t) d tp. Then th i d
|--— —
MAAVN — m; | Load i = Az + Bu,
wherez = [z1, 72, 23, 24]7, and
dr, 0o 1 0 0
1 O O 0
dp Base o_dr _d ks dp 1,1
mpg _ mr, mp mp Mmp _ |mp mp
Platform A= 0 0 (B B |, B= 0
@) @) g Y _ks_dp b
mp mp Mmp mp
Fig. 1. Lumped parameter model of a motor-driven linearsoativ stage ~ The cost to be minimized is chosen as
supported on a flexible base platform bolted to the ground. oo v
J(0,u) :/ (100x‘f‘+0.5/ tanh_l(v/5)dv) dt,
0 0
Since 6V;(x) is the optimal solution of Problem (9), along \yhere g — [%L’%B’ﬁ_i’i_i]ip' The lower bounds, upper
the trajectories of (1) with: = u;(z), by Lemma 1 we have  ,4nds, and'initial “valiies are shown in the second to fourth
Si(z0) = V(o) + 0Vi(20) < Vi(o). (12)  columns in Table I.
N . - . . TABLEI. S
Let S;(z) be a positive definite function satisfying VSTEM PARANETERS
R Parameters| Min Max Initial Optimized
0 =VS8! (@) [f(z,041) + 9(a, 0,1 )i ()] R I S I
. (13) = 0.04 | 0.0667 | 0.05 | 0.0667
+Q(2) + L(ui(z)), Ve e Q, 5i(0) =0. I8 0.4 | 1.3333| 075 | 0.749
We knowS;(z) < S;(z), Vz € Q andz # 0. Notice that (13) I 0.004 | 0.0667 | 0.025 ] 0.0041
and (10) can be viewed as one iteration step described in [17]
Therefore, by [17, Lem. 1], it follows that We setQ = {z|] — 12 < z; < 12,-2 < 25 <

. . _ 2,-1 < 23 < 1,-1 < x4 < 1}. To implement the
V*(2) < Viga(2) < Si(w) < Six), Yo €Q  (14)  proposed algorithm, we approximate the cost funciofr)

for i > 0. Combining (12) and (14) yields 2). by Vi(z) = 5L, wijoi(z) + e with {o;(2)} a set of
] o _ polynomials of x, and ¢ the approximation error. For the

Given Vz‘+1(17) an finite solution of (11), we have purpose of solving the optimization problem (9), we take
Vit = —Q(z) — L{uip (z). points on 2 and replace the constraint (9b) with a semi-

positive constraint of dimensiori&9, and replace (9c) with
Thus the closed-loop system with, ; is stable. Also ifzy is 81 inequalities.

such thatr(t) € €2, vt > 0, it follows that The initial condition is set to be, = [-1,0,0,0]”, and
0 < J(20,Oir1, uiv1) < Vi(mo) + 0Vi(zo) < Vi(zo), the initial stabilizing control policy is chosen as the opdi
control policy with respect to the initial system paramster
i.e. J(zo,0i+1,uit1) is finite. We conclude that; 1 € Up,,,.  The initial cost isJ = 217.2996. We execute the algorithm
: _ : . for 30 iterations. The optimized parameters are shown in the

Since the sequencgV;(xo)} is non-negative and mono- . ;

; e it Ay : fourth column of Table I. Figure 2 shows that the co-designed
tonically decreasing, its limit exists. 3) is shown. ] cost converges to a stationary poinf (= 202.8367). By
applying the proposed co-design technique, the closeg-loo
system performance has been improved@¥% compared

In this section, we applied the proposed co-design methowith the initial cost. Figures 3 and 4 also show that the adese
to a load-positioning system as shown in Figure 1. Its dyeami l00p system result from the co-design gives shorter sgittlin
can be described by the following continuous-time lineaweti ~ time and less control energy.
invariant system [20]

IV. A NUMERICAL EXAMPLE

V. CONCLUSIONS
1 kp dp .

ip=(u— de'CL)(m—L + m_B) + m—BxB + m—BZUBa This paper considered a co-design problem for a class
1 kp dp of nonlinear constrained control systems. A novel itemtiv
ip=(dpi, —u)— — —xp — —1ipg, method was proposed by combining the conventional policy
mp mpg mpg

iteration technique and an extra optimal system design step
wherexz; denotes the relative displacement of the load withupdating the system parameters. The convergence of the pro-
respect to the platform, angélz denotes the displacement of posed algorithm to a sub-optimal solution was established
the platform.d;, mg, mp, kg, anddp are constant system and the effectiveness of the proposed algorithm in impmpvin
parameters. In addition the control input is required tisat the closed-loop system performance was demonstrated by
-5 <u<bh. simulation.
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