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Abstract
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while adhering to torque and inclusion zone constraints.
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Constrained Spacecraft Attitude Control on SO(3) Using Reference
Governors and Nonlinear Model Predictive Control

Uroš Kalabić Rohit Gupta Stefano Di Cairano Anthony Bloch Ilya Kolmanovsky

Abstract— Nonlinear reference governor and nonlinear
model predictive control schemes are developed for constrained
spacecraft attitude control. The schemes use the nonlinear
discrete-time model of spacecraft dynamics based on the Lie
group variational integrator evolving on SO(3)× SO(3). The
reference governor is a computationally simpler add-on to
the nominal controller, while the model predictive controller
provides faster response and better performance. The stability
properties and constrained domains of attraction of these
schemes are analyzed and their capability to perform global
rest-to-rest reorientation maneuvers is established. Simulation
results are reported that demonstrate the capabilities of the
controllers to perform specified reorientation maneuvers while
adhering to torque and inclusion zone constraints.

I. INTRODUCTION

In this paper, we consider two schemes for constrained
control of spacecraft maneuvers that exploit predictions
based on discrete-time models with dynamics that evolve
on SO(3)× SO(3). The first scheme that we consider is the
reference governor, which makes online predictions in order
to enforce pointwise-in-time state and control constraints
through the choice of an admissible reference input. The
theory of nonlinear reference governors [1], [2] has been
developed for dynamics and constraints in Rn, and here
we extend the treatment to the case of SO(3) × SO(3).
The second scheme employs model predictive control [3]-[6]
designed for dynamics evolving on SO(3) × SO(3). Model
predictive control solves a finite-time state- and control-
constrained control problem that guarantees asymptotic sta-
bility of the desired equilibrium. Compared to the reference
governor, the model predictive controller provides better
performance at the cost of increased computing effort.

Model predictive control approaches to constrained space-
craft attitude control have been considered in [7]-[9] based
on linearized models. In this paper we pursue nonlinear
reference governor and model predictive control approaches
that are based on spacecraft nonlinear dynamics on SO(3)×
SO(3) and obtain global convergence properties.

Although other nonlinear methods of predictive control
have been considered for dynamics partially evolving on
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SO(3) [10], all of them calculate their predicted values
through numerical integration methods that do not preserve
the conserved quantities of motion, such as momentum
and energy, and this can lead to large differences between
the true and predicted values [11]. In contrast to previous
methods, the reference governor and model predictive control
schemes presented in this work utilize a Lie group variational
integrator [11]-[17] as a predictive model for the rotational
dynamics of a spacecraft.

Lie group variational integrators have been developed to
exploit the underlying group structure and have been shown
to preserve the conserved quantities of motion to machine
precision. Standard integration schemes such as Runge-
Kutta fail to achieve this, because they do not exploit the
group structure. The Lie group variational integrator updates
the rotation matrix by multiplying two matrices in SO(3),
thereby ensuring that the rotation matrix evolves on SO(3)
and the conserved quantities of motion are preserved. For
other types of variational integrators, see [18], [19].

Theoretical results presented in this paper show recur-
sive feasibility and convergence for both predictive control
schemes; furthermore, in both cases, we show that the
schemes have global convergence properties for all states
satisfying initial feasibility with respect to constraints – this
amounts to global stabilization if there are no constraints.

Simulations illustrating the methods above are also re-
ported. We simulate rest-to-rest maneuvers of spacecraft
attitude control, where the objective of the spacecraft attitude
control problem is to command the spacecraft from a given
attitude to the equilibrium in the non-inertial frame. The
controller that we propose exploits the fact that model
predictive control is able to generate discontinuous feedback
laws, as shown in [20]. Additionally, in the case of model
predictive control, we also command the spacecraft to a 180◦

rotational rest-to-rest maneuver; this maneuver is notable
because a discontinuity occurs at the 180◦ initial rotation as
a consequence of the Lefschetz-Hopf Theorem [21], which
states that the sum of the indices of fixed points of a map
on a manifold must be equal to the Lefschetz number of
the map. In the case where the map is homotopic to the
identity, the Lefschetz number is equal to the Euler char-
acteristic of the manifold. As described above, the discrete
state-update equation that we use in this paper is obtained
as an approximation to a continuous-time system with no
discontinuities, so it is homotopic to the identity. The Euler
characteristic χ(SO(3)×SO(3)) = 0, but the index of a sink
is 1, implying that any globally stabilizing control on SO(3)
is discontinuous.



The paper is organized as follows. The remainder of this
section describes the notation. In Section II, we describe the
Lie group variational integrator that we employ for making
predictions on SO(3)× SO(3). In Section III, we introduce
the reference governor. In Section IV, we describe the
model predictive control scheme and establish its recursive
feasibility and stability properties. In Section V, we present
numerical results for the two predictive control schemes
obtained by simulating rotational maneuvers. Section VI is
the conclusion.

A. Notation

The notation is mostly familiar with a few notable ex-
ceptions. ZN denotes the set of the first N nonnegative
integers, 0, 1, . . . , N − 1, and Z+ denotes the set of all
nonnegative integers. Positive semi-definite and orthogonal
matrices are written in uppercase bold. Elements of R3

are written in capital Greek letters. Given A ∈ R3, A×

denotes the corresponding value in the special orthogonal
Lie algebra so(3), so that if A =

∑3
i=1 λiei, where ei are

the standard basis elements of R3, then A× =
∑3

i=1 λiji,
where ji are the standard basis elements of so(3). I ∈ R3×3

is the identity matrix. For a matrix A ∈ R3×3, its trace
is given by tr(A) =

∑
i Aii. For a vector a ∈ Rn, and a

symmetric positive definite matrix M ∈ Rn×n, we denote
the square of the norm by ∥a∥2M = aTMa. For a matrix
A ∈ Rn×m, we denote the square of the Frobenius norm
by ∥A∥2F =

∑
i,j A

2
ij . For a set A ⊂ B, the interior with

respect to B is given by int(A). Finally, for a sequence
{vk, vk+1, . . . , vk+N}, its predicted value at time-instant k is
denoted by {vk|k, vk+1|k, . . . , vk+N |k}; note that vk|k = vk.

II. CONSTRAINED DYNAMICS

The Lie group variational dynamics for a controlled rigid
spacecraft on SO(3) × SO(3) in discrete-time are given by
[22], [13],

(hΠk)
× = FkJ− JFT

k, (1a)
Ck+1 = CkFk, (1b)

Πk+1 = FT
kΠk + hTk, (1c)

where Πk ∈ R3 is the angular momentum, Fk ∈ SO(3) is a
one time-step change in Ck ∈ SO(3), which is the spacecraft
rotation, Tk ∈ R3 is the applied torque, h is the discretization
time-step, and J = 1

2 tr(Jc)I−Jc, where Jc is the spacecraft
inertia matrix. For subsequent ease of exposition, we define
a new variable, Xk = (Ck,Fk) ∈ SO(3)× SO(3).

The dynamics are subject to the state- and control-
constraint,

(Xk,Tk) ∈ C, ∀k ∈ Z+, (2)

where C ⊂ SO(3) × SO(3) × R3 is a compact set with
nonempty interior.

The solution to (1) proceeds by first computing Fk in (1a)
from a given Πk, which was computed by (1c) at the previous
time-instant. This can be done through the solution of a
continuous-time algebraic Riccati equation [23]. However,

a special orthogonal solution Fk to (1a) exists if and only if
[23],

(hΠ×
k )

2 + 4J2 ≽ 0. (3)

This implies that, in order to guarantee a solution to (1a)
at the next time step, the convex1 condition (3) must be
enforced at the current time-step, i.e.,

(hΠ×
k+1)

2 + 4J2 ≽ 0. (4)

Therefore, in addition to all other constraints, (4) is always
included in the constraint set C.

Remark 1: Condition (3) ensures the angular velocity
Ωk = J−1

c Πk is small enough so there exists a solution Fk

corresponding to Ωk. Physically, the change in rotation Fk

can correspond to an infinite number of values of Ωk, but
the solution to (1a) only corresponds to one.

The two methods that we present in the following sections
utilize the above equations to propagate the given rotation
and angular momentum in order to predict the constraint
violation of the spacecraft and to ensure the tracking of a
desired reference rotation.

III. REFERENCE GOVERNOR

Reference governors are predictive control schemes that
modify a reference command to a closed-loop control sys-
tem in order to enforce pointwise-in-time state and control
constraints. They are applied to closed-loop systems that are
designed to track the reference, usually without considering
constraints. Reference governors use a state estimate to form
a prediction and modify the reference in order to avoid
constraint violation. A schematic is shown in Fig. 1.
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Fig. 1. Reference governor schematic

The reference governor described in [1], [2] is applied to
an asymptotically stable closed-loop nonlinear system, which
consists of an open-loop plant and a stabilizing controller
with the reference as an input. The dynamics of this system
are of the form,

xk+1 = f(xk, vk), (5)

where xk ∈ Rn is the state variable and vk ∈ Rm is a
reference input. Given a desired reference input rk ∈ Rm,
the reference governor computes,

vk = αk(rk − vk−1) + vk−1, (6)

1xT((hΠ×
1 )2 + 4J2)x ≥ 0, xT((hΠ×

2 )2 + 4J2)x ≥ 0 =⇒
xT((h(((1 − λ)Π1 + λΠ2)×)2 + 4J2)x = (1 − λ)2xT((hΠ×

1 )2 +
4J2)x+λ2xT((hΠ×

2 )2+4J2)x+λ(1−λ)xT(h2Π×
1 Π×

2 +h2Π×
2 Π×

1 )x+
2λ(1−λ)xT(4J2)x ≥ (1−λ)2xT((hΠ×

1 )2+4J2)x+λ2xT((hΠ×
2 )2+

4J2)x + λ(1 − λ)xT((hΠ×
1 )2 + (hΠ×

2 )2)x + 2λ(1 − λ)xT(4J2)x =
(1− λ)xT((hΠ×

1 )2 + 4J2)x+ λxT((hΠ×
2 )2 + 4J2)x ≥ 0, ∀λ ∈ [0, 1]



where αk ∈ [0, 1] is maximized subject to constraints being
satisfied for all t ∈ Z+ by the predicted response with
vk+t|k ≡ vk held constant. It is shown in [1], [2], that there
exists a time T ∗ such that if the constraints are satisfied for
all t ∈ ZT∗ , then they are satisfied for all t ≥ T ∗ if,

vk ∈ V, (7)

where V is a compact, nonempty, and convex set whose
corresponding set of equilibrium points is contained in the
interior of the set of all constraint-admissible equilibria.

A. Unconstrained closed-loop control law

The reference governor is a discrete-time control scheme
that ensures pointwise-in-time constraint enforcement. Be-
cause it is applied to closed-loop systems, we need to
develop a stabilizing nominal controller for the dynamics
of the discrete-time model described in Section II. For this
controller, we use the almost-globally stabilizing continuous-
time control law, which, in the unconstrained case, guaran-
tees Ck → Vk ∈ SO(3) for almost every rotation Ck. The
closed-loop control design is described in the subsequent
paragraph.

At every time-step k, given a constraint admissible ref-
erence rotation Vk, we calculate the attitude error, which
evolves on SO(3),

Ek = VT
kCk. (8)

We apply the feedback,

Tk = −KΠk − Ek, (9)

where K ∈ R3×3 is a positive-definite feedback gain and Ek

is given by,
E×
k = AEk −ET

kA, (10)

for some symmetric positive-definite matrix A ∈ R3×3, for
which no pair of eigenvalues is equal. In continuous-time,
(9) can be shown to be asymptotically stabilizing [24] on
all of SO(3) × R3 except for a set of measure zero, with
stable equilibrium Ek = I and unstable equilibria given by
the set UA = {Ek ∈ SO(3) : E×

k = 0, Ek ̸= I}; the set on
which the control is not stabilizing is the union of all stable
manifolds for the unstable equilibria in UA. In this work,
we assume that the continuous-time result is preserved in
the discrete-time case for sufficiently small time-step h. Note
that when A is diagonal, then UA = {Ci(π) : i = 1, 2, 3},
where Ci is an Euler rotation about the i-th axis from I.

B. Determining Vk

Because SO(3) is not closed under addition, the reference
update equation (6) is not appropriate for references that are
elements of the group. SO(3) is closed under multiplication
however, so we introduce a new update equation similar to
(6), but based on multiplication and exponentiation instead
of addition and multiplication,

Vk = (RkV
T
k−1)

αkVk−1 ∈ V, (11)

where V ⊂ SO(3) is the constraint set for the reference,
which satisfies the convexity-like condition,

V,V′ ∈ V =⇒ (V′VT)αV ∈ V, ∀α ∈ [0, 1]. (12)

Note that the curve described by varying αk ∈ [0, 1] in (11)
is the shortest geodesic connecting Vk−1 and Rk [25]; also
note that Vk = Vk−1 if αk = 0 and Vk = Rk if αk = 1.

In order to avoid the unstable dynamics associated with
the union of stable manifolds of UA, we impose,

(Xk,Vk) ∈ W, (13)

where W is positively invariant under the dynamics (1)-(2),
(8)-(10), and Vk held constant over the prediction horizon.
The set W can be chosen so as to be a sublevel set of the
closed-loop Lyapunov function2 [26].

Thus at every time-step k, αk is obtained through numer-
ical optimization by choosing the largest value of αk for
which constraint admissibility can be guaranteed if the ref-
erence is kept constant for all future time-steps. In this way,
we obtain a recursively feasible reference that guarantees
constraint admissibility for all future time-steps. Specifically,
we perform the following optimization online,

max {αk ∈ [0, 1] : Vk+t|k ≡ Vk,

(1)-(2), (8)-(10), (13) are satisfied for all t ∈ ZT s}. (14)

The optimization is performed through a bisection algorithm
similar to [1], [2]. Note that the simulation is only performed
until the time-instant, T s − 1, and this may not predict
constraint violation for all future time. However, under the
assumption that T s ≥ T ∗ (see the beginning of the section),
if all constraints are satisfied for all t ∈ ZT s , they will also
be satisfied for any t ≥ T s.

Due to the properties of SO(3), for some pair Rk and
Vk−1, (11) may not have a unique solution. This occurs
when Rk is a cut point of Vk−1, i.e. (RkV

T
k−1)

2 = I but
RkV

T
k−1 ̸= I. In this case, both geodesics connecting Vk−1

and Rk are equal in length and RkV
T
k−1 = Log πN×, for

some N ∈ R3 where ∥N∥2 = 1.3

By the defintion of V , both geodesics are contained in
V , so the choice of geodesic is arbitrary. Accordingly, our
approach is to modify the target reference by,

Rk := exp(−επN×)Rk, (15)

for some small 0 < ε < 1, before performing the optimiza-
tion (14). With this small modification of the reference, we
guarantee a unique solution for the algorithm in (14).

The online algorithm to calculate αk is now given. In the
algorithm, the initial state values are set at the current state
estimates and αcand, a candidate αk, is chosen. Simulations

2For example, let W = {(X,V) : V (X,V) ≤ c}, where V (X,V) is
a Lyapunov function for the continuous-time analog to (1)-(2), (8)-(10) and
c < infX∈UA

V (X, I).
3In this paper, the map Log : SO(3) → so(3) is defined as in [25]

with an extension to the case when tr(C) = −1. Log(C) = θ
2 sin θ

(C−
CT) if 0 < |θ| < π, where tr(C) = 1 + 2 cos θ; if tr(C) = 3, then
Log(C) = 0, and if tr(C) = −1, then Log(C) = πN×.



are then performed over a finite time horizon to determine
if a constraint is violated. When αcand converges to a preset
tolerance, the algorithm stops.

Algorithm 1:
1) If (RkV

T
k−1)

2 = I and RkV
T
k−1 ̸= I, perform (15).

2) Initialize αcand := 1 and check constraint satisfaction
for all times t ∈ ZT s . If constraints are satisfied, set
αk := 1 and exit.

3) Initialize αmax := 1 and αmin := 0.
4) Set αcand := αmin+

1
2 (αmax−αmin) and check constraint

satisfaction for all times t ∈ ZT s .
a) If constraints are satisfied, set αmin := αcand.
b) Otherwise, set αmax := αcand.

5) If αmax − αmin ≈ 0 to a predetermined tolerance, set
αk := αmin and exit.

6) Go to Step 4.
Using the above algorithm, we can state that under the

assumption that T s ≥ T ∗, the reference governor exhibits
the properties of recursive feasibility and finite settling time.

Proposition 1: Assume that (i) Rk ≡ R is constant for
k ∈ Z+, (ii) V−1 is feasible for (14), and (iii) T s ≥ T ∗.

Then the following holds: (i) the control scheme described
by Algorithm 1 is recursively feasible, i.e. the solution Vk =
Vk−1 is always feasible for (14); (ii) the scheme ensures
finite-time convergence to a constraint-admissible reference,
i.e. there exists a T c ∈ Z+ such that Vk = R̃ ∈ V for all
k ≥ T c; (iii) and if R ∈ V , then R̃ = R.

Proof: The proof follows from the theorems and
propositions in [1], [2], with a modification needed due to
Step 1 of Algortihm 1 to show that we are always able
to avoid antipodal points by redefining the admissible and
desired references according to the algorithm.

Specifically, if RVT
k−1 = exp(πN×), then before modifi-

cation, exp(−επN×)RVT
k−1 = exp(−επN×) exp(πN×) =

exp((1 − ε)πN×) ̸= exp(πN×). Therefore, if αk ̸= 0 for
some k ∈ Z+, then RVT

k′−1 ̸= exp(πN×) for all k′ ≥ k, if
not, then R̃ = Vk−1.

IV. MODEL PREDICTIVE CONTROL ON SO(3)

In this section, we propose a model predictive controller
on SO(3)× SO(3) for spacecraft dynamics. This predictive
control scheme solves a state- and control-constrained opti-
mization problem over a finite horizon. Recursive feasibility
and asymptotic stability of the resulting control sequence is
guaranteed by an additional constraint that the state at the
final time is contained in a terminal set, wherein a locally
stabilizing controller satisfies the constraints in addition to a
cost-decrease condition.

In order to derive the terminal set, we assume that the
equilibrium (I, I, 0) ∈ int C, and linearize the rotational
dynamics in order to obtain a locally stabilizing control.

A. Linearization

We linearize (1) around Xk = (I, I) and Tk = 0 to obtain
[13], [

δZi+1

δΠi+1

]
= A

[
δZi

δΠi

]
+BTi. (16)

where,

A =

[
I hJ−1

c

0 I

]
, B =

[
0
hI

]
, (17)

and δZi and δΠi are linear approximations, for which δZ×
i ≈

Z×
i = LogCk and δΠi ≈ Πi in a neighborhood of (I, I).
We also note that if (Ci,Fi) ≈ (I, I), then as a linear

approximation,

tr(Q1(I−Ci)) =
1

2
∥Q1/2

1 (I−Ci)∥2F , (18)

≈ 1

2
∥Q1/2

1 δZ×
i ∥

2
F , (19)

=
1

2
δZT

i Q̃1δZi, (20)

and similarly,

1

h2
tr(Q2(I− Fi)) =

1

2h2
∥Q1/2

2 (I− Fi)∥2F , (21)

≈ 1

2h2
∥Q1/2

2 h(J−1
c δΠi)

×∥2F , (22)

=
1

2
δΠT

i J
−1
c Q̃2J

−1
c δΠi, (23)

where Q̃1,2 = tr(Q1,2)I − Q1,2 for symmetric positive
definite Q1,2 ∈ R3×3.4

B. Model predictive controller

Consider the cost function,
N−1∑
i=0

λL(Xk+i|k,Tk+i|k) + F (Xk+N |k), (24)

where 0 < λ < 1,

L(Xi,Ti) =

tr(Q1(I−Ci)) +
1

h2
tr(Q2(I− Fi)) +

1

2
∥Ti∥2M, (25)

for some symmetric positive-definite M ∈ R3×3, and,

F (XN ) =
1

2
∥(ZN ,ΠN )∥2P, (26)

where P is the solution to the discrete-time algebraic Riccati
equation,

P = ATPA−(ATPB)(M+BTPB)−1(BTPA)+Q̃, (27)

for Q̃ = diag(Q̃1,J
−1
c Q̃2J

−1
c ).

Let K = −(M+BTPB)−1(BTPA) and define,

κ(Xi) = K

[
Zi

Πi

]
, (28)

so that Ti = κ(Xi) is an asymptotically stabilizing controller
in a neighborhood of (I, I). Let XT ⊂ SO(3) × SO(3) be
positively invariant with respect to the closed-loop dynamics
(1) with control Tk = κ(Xk) and satisfy the inclusion XT ⊂
P where,

P def
= {Xi : ∥(Zi,Πi)∥2P ≤ c, (Xi, κ(Xi)) ∈ C}. (29)

4To see this, consider a symmetric positive definite Q ∈ R3×3. Then for
every ω× =

∑3
i=1 λiji, tr(λijiQλij

T
i ) = λiλi(tr(Q) − Qii), and if

i ̸= k, then tr(λijiQλkj
T
k) = −λiλkQik .



Note that in (29), (Zi,Πi) correspond to Xi as per their
definition. The parameter c > 0 is numerically determined
to guarantee,

F (Xi+1)− F (Xi) ≤ −λL(Xi, κ(Xi)), (30)

for some choice of the parameter λ. Given 0 < λ < 1,
consider the following problem,

max
Xi

F (Xi+1)− F (Xi) + λL(Xi, κ(Xi)), (31a)

subject to Xi ∈ P. (31b)

The parameter c is chosen so that the solution to (31) is
as close to zero as possible without being positive. Note
that a positive solution always exists due to the fact that
the accuracy of a linear approximation increases in smaller
neighborhoods of the linearization. Specifically, because the
system (16), (28) satisfies (30) for any λ ≤ 1 and because
F and L are continuous in their arguments, there exists a
neighborhood of (I, I), in which nonlinear terms are bounded
by (1− λ)L(Xi, κ(Xi)).

The model predictive control is determined by solving the
following optimization problem,

min
{Tk+i|k}N−1

i=0

(24), (32a)

subject to (1),
(Xk+i|k,Tk+i|k) ∈ C, i ∈ ZN ,

Xk+N |k ∈ XT .

(32b)

The control Tk = T∗
k|k is set to the first element of the

sequence solving (32).
Let the set of all initial conditions for which there exists

a control input guiding the state to XT in N time-steps be
defined as,

RN = {Xk : ∃Tk+i|k, i ∈ ZN feasible for (32)}.

Proposition 2: Let X0 ∈ RN . Then the control law (32)
asymptotically stabilizes Xk to the equilibrium (I, I).

Proof: The proof is based on using the value function
of (32) as the Lyapunov function [3], [5]. Note that for all
(X, κ(X)) ∈ C, λL(X, κ(X)) ≤ λL(X, 0) and λL(X, 0) =

∥Q1/2
1 (I−C)∥2F + ∥Q1/2

2 (I−F)∥2F ≥ α1(∥I−C∥2F + ∥I −
F∥2F ), where α1 ∈ K∞ and X = (C,F).

Let {T∗
k|k, . . . ,T∗

k+N−1|k} be the optimal control of (32)
and {X∗

k+1|k, . . . ,X
∗
k+N |k} be the associated sequence of

states. Then {T∗
k+1|k, . . . ,T∗

k+N−1|k, κ(X
∗
k+N |k)} is feasible

for (32) because of the positive invariance and constraint
feasibility of XT .

Given state, Xk, let J∗(Xk) be the minimum value in
(32). Using (30), it can be shown that J∗(Xk) is a Lyapunov
function because J∗(Xk+1) − J∗(Xk) ≤ −λL(Xk,Tk) ≤
−λL(Xk, 0) ≤ −λα1(∥I−C∥2F + ∥I− F∥2F ).

The following proposition states that if there are no
constraints on the spacecraft rotation Ck in steady state, then
we are always able to stabilize an arbitrary inital rotation with
a small initial angular velocity to the equilibrium.

Proposition 3: Assume int C ⊃ SO(3)× {I} × {0}. Then
there exists N∗ ∈ Z+ and an open set V ⊂ SO(3) such that
I ∈ V and RN∗ ⊃ SO(3)× V .

Proof: The set C has nonempty interior, so there exist
open sets V ⊂ SO(3) and U ⊂ R3 containing I and 0,
respectively, such that C ⊃ SO(3) × V × U and such that
if Fk ∈ V , there exists Tk ∈ U so that at the next time-
instant, Fk+1 = I, and if Fk+1 ∈ V , there exists Tk ∈ U
so that at the current time-instant, Fk = I. Note that the
latter condition can always be satisfied by choosing V to be
smaller.

Let SC = {CF ∈ SO(3) : F ∈ V } be the set of all
rotations that are reachable from C with F ∈ V . Therefore,
by the application of two controls, Tk and Tk+1, we are able
to rotate Ck to any Ck+2 ∈ SCk

.
Let A be the enumeration of all elements Ci ∈ SO(3).

Because X is compact and SCi × V are open in SO(3) ×
SO(3), there exists a finite F ⊂ A such that ∪i∈FSCi×V =
∪i∈ASCi × V . This implies that there exists a finite control
sequence that guides the system to the terminal set from an
arbitrary rotation that is close to rest.

Remark 2: Proposition 3 implies that if the continuous-
time spacecraft dynamics on SO(3)×R3 are unconstrained,
we are able to form a globally stabilizing discrete-time
controller: If the spacecraft has large angular velocity Ωk, we
can detumble the spacecraft by using a closed-loop feedback
control, then when Ωk is small enough so that Fk ∈ V , the
result of Proposition 3 shows that we can guide an arbitrary
rotation to the equilibrium.

Corollary 4: If int C ⊃ SO(3)× SO(3)× {0}, then there
exists N∗ ∈ Z+ such that RN∗ = SO(3)× SO(3). �

V. NUMERICAL RESULTS

In this section, we consider a spacecraft with inertia matrix
Jc = diag(10, 8, 8) and discretization time-step h = 0.1. In
the figures, we plot the orientation maneuvers on the sphere
S2, where the vector [x y z]T, corresponding to the first
column of Ck is plotted in green, the second is in blue,
and the third is in red.

A. Reference governor simulation

For the reference governor, we consider two constraints: a
pointing inclusion constraint and a thrust limit. The pointing
inclusion constraint is given as a constraint that the spacecraft
point towards a fixed target, such as the Earth; it can
also be considered as an exclusion constraint, requiring the
spacecraft not point outside of the inclusion zone, e.g. so
as to not damage photosensitive equipment, we may require
that the spacecraft not point towards the Sun. The inclusion
constraint that we consider here is that the spacecraft point
within 60◦ of the fixed axis, e3. This can be expressed as a
constraint on the (3, 3) entry of the matrix, Ck,

Ck,33 ≥ cos 60◦ = 0.5. (33)

The other constraint is a limit on the thrust force, which is
expressed as,

∥Tk∥2 ≤ 0.02. (34)
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Fig. 3. Ωk,1 (solid), Ωk,2 (dot-dash), and Ωk,3 (dotted) corresponding to
the reference governor simulation

We choose the set V as a compact set, the elements of which
strictly satisfy (33) in steady state.

Figs. 2-5 present simulation results corresponding to the
reference governor simulation, with closed-loop control gains
A = diag(0.1, 0.2, 0.3) and K = 0.2I. The reference
governor modifies the reference to command the rotation,
while enforcing all constraints, from an initial condition
close to the inclusion constraint boundary to the reference
rotation Rk ≡ I. The only constraint that becomes active
in the closed-loop trajectory is the control constraint, which
is plotted in Fig. 2; the corresponding time history of
the reference governor parameter αk, is plotted in Fig. 4
and shows that the reference governor modifies the desired
rotation signal until the desired reference is admissible. In
Fig. 5, we plot the orientation maneuver of the spacecraft
along with the trajectory of the admissible reference Vk.

B. Model predictive control simulation

In this section, we present two numerical examples utiliz-
ing the model predictive control method from Section IV. In
the first example, the controller stabilizes an initial rotation
from the initial condition of the preceding subsection to the
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Fig. 5. Orientation maneuver corresponding to the reference governor
simulation plotted at 10s increments; the lines connecting the points on the
sphere represent the path of the reference trajectory

equilibrium, Ck = I. In the second example, we simulate a
rest-to-rest rotation from C3(π) to I.

The design of the controller uses weights, Q1 = I, Q2 =
J, M = 1000I, and λ = 0.1. The terminal constraint set is
chosen as XT = P in both cases.

In the first case, we let N = 5 and consider only the
control constraint (34) with the same initial condition as in
the previous example. The results are presented in Figs. 6-8,
where we show in Fig. 6 that the constraint is satisfied and
in Fig. 8 that the target orientation is achieved. Comparing
the results here with those of the previous section, we see
that the rotation trajectories are similar.

In the second case, we let N = 10 in order to expand
the region of attraction. Our goal is to investigate the stabi-
lizing properties of the controller. As a consequence of the
Lefschetz-Hopf Theorem, all globally stabilizing continous
time controllers must be discontinuous; we now check if
this is true of our controller. To do this, we do not need
to consider constraints on the control input, so we choose
a large constraint set C, ensuring that the constraints never
become active; we also decrease the control cost to M =
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Fig. 10. Ωk,3 for initial condition C3(π) (solid) and C3(−0.99π) (dotted)

I in order to allow larger control inputs. The results for
two simulations are presented in Figs. 9-12. In the first
simulation, the initial rotation is C3(π), and in the second
case, it is C3(−0.99π). The torque and angular velocity
on the z-axis are shown in Figs. 9-10, respectively, where
we can see that, although the initial conditions are very
close to each other, the trajectories are almost opposite in
sign. This shows that there is a discontinuity in the control
occurring near C3(π). In fact, it occurs exactly at C3(π)
or at any resting initial condition, for which tr(C) = −1;
the discontinuity is a consequence of the restriction of the
Log function range. For example, in our solution, we chose
the range of LogC3(θ) to be {θj3 : θ ∈ (−π, π]}; if we
had instead restricted θ ∈ (−π/2, 3π/2], then the control for
the cases considered above would not be discontinuous, but a
discontinuity would nevertheless exist at the initial condition
C3(3π/2).

In Figs. 11-12, the direction of rotation is marked with
an arrow. We see that in one case, the control rotates the
spacecraft in the counter-clockwise direction, whereas in the
other case, the rotation is clockwise.
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C3(π), plotted at 2s increments
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C3(−0.99π), plotted at 2s increments

VI. CONCLUSION

In this paper, we considered the problem of constrained
control of spacecraft dynamics and presented two predictive
control schemes, a reference governor and a nonlinear model
predictive controller. Both schemes used the Lie group
variational integrator to evolve their predictions on SO(3)×
SO(3). We showed that both schemes guarantee constraint
admissibility and convergence to the desired equilibrium and
presented numerical results exhibiting these properties.

We also showed that in the unconstrained case, both
schemes are globally stabilizing. Because globally stabilizing
controllers are necessarily discontinuous, we also numeri-
cally demonstrated a discontinuity in the control.
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