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multiparameter extremum seeking, to estimate the uncertain model parameters. In this sense
we are proposing to solve an adaptive control problem with model-free learning based algo-
rithms. We show the performance of the proposed controller on a numerical example.
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Nonlinear Learning-based Adaptive Control for Electromagnetic

Actuators

Mouhacine Benosman and Gökhan M. Atınç

Abstract— We present in this paper our preliminary results
on the problem of learning-based adaptive trajectory tracking
control for electromagnetic actuators. First, we develop a nom-
inal nonlinear backstepping controller that stabilizes the track-
ing errors asymptotically and globally. Second, we robustify
the nominal controller using a model-free learning technique,
namely, multiparameter extremum seeking, to estimate the
uncertain model parameters. In this sense we are proposing
to solve an adaptive control problem with model-free learning-
based algorithms. We show the performance of the proposed
controller on a numerical example.

I. INTRODUCTION

Electromagnetic actuators have been utilized for a variety

of practical applications, e.g. valves of combustion engines,

artificial hearts, etc. This work deals with a particular control

problem of nonlinear electromagnetic actuator, namely, the

so-called ‘soft landing’ problem. The soft landing requires

accurate control of the moving element of the actuator be-

tween two desired positions. The main objective, is to attain

small contact velocity, which in turn ensures a low-noise,

low-component-wear operation of the actuator. Furthermore,

this ‘soft-landing’ requirement has to be guaranteed over

long period of time during which the actuator’s components

may age. Due to these practical constraints we have de-

veloped a robust control algorithm that 1) aims for a zero

impact velocity, and 2) adapts to the actuator’s aging parts

via a learning-based adaptive algorithm. We present here the

results of this study.

Many papers have been dedicated to the soft-landing problem

for electromagnetic actuators, e.g. [1], [2], [3], [4], [5], [6],

[7], [8]. Some linear controllers have been proposed in [1],

[4], [8]. The results based on linear control theory use linear

approximations of the actuator dynamics and thus are usually

valid only in the vicinity of linearization points. To control

the system over a larger operating state space, the controller

has to be based on more complex nonlinear models of the

actuators. Thus, in this paper we have decided to take into

account the nonlinear dynamics of the system and design

a fully nonlinear controller. Different nonlinear controllers

have been used in [2], [3], [5], [7], [9], [10]. In [2], the

authors studied the problem of electromagnetic valve actua-

tor control in an internal combustion engine. The solution

proposed by the author is based on iteratively solving a

constrained nonlinear optimal problem using Nelder-Mead
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algorithm. The optimal solution defines a feedforward control

signal. The robustness of this approach to system aging has

neither been proven nor tested, and there are no feedback

terms to robustify the feedforward control. In [5], the authors

proposed a nonlinear controller to solve the problem of ar-

mature stabilization for an electromechanical valve actuator.

The authors proved a global asymptotic stability result using

Sontag’s nonlinear controller. However, this approach does

not solve the problem of armature trajectory tracking and

does not consider robustness of the controller with respect to

system’s uncertainties and changes in parameters over time.

In [10], the authors designed a backstepping based controller

for electromagnetic actuators position regulation. However,

robustness w.r.t. uncertainties in parameters of the system are

not considered in this paper. In [7], a nonlinear sliding mode

approach is used to solve the problem of trajectory tracking

for an electromagnetic valve actuator. The authors used a

nonlinear model to design the sliding mode control. The

reported results show good tracking performances, however,

this sliding mode controller does not ensure robustness with

respect to model uncertainties. In [3], the authors used a

single parameter extremum seeking learning method to solve

the problem of soft landing for an electromechanical valve

actuator. The authors first designed a nonlinear controller

based on a nonlinear model of the actuator and then used

an extremum seeking algorithm to tune one gain of the

controller. Although, the learning algorithm was not directly

tailored to ensure robustness of the controller to model

uncertainties or parameters drift over time, one could argue

that this robustness is intrinsic due the iterative nature of

the learning process. However, in this controller design only

one gain of the control is tuned online, which limits the

robustness capabilities of the controller with respect to model

uncertainties or system’s aging.

In this work we use a nonlinear model of the electromagnetic

actuator to design a nonlinear backstepping controller that

is proven to ensure trajectory tracking for the nominal

system, which assumes that there are no uncertain or drift

of parameters. Subsequently, this controller is robustified by

a multiparameter extremum seeking (MES) algorithm that

is used to identify online the model’s uncertain parameters,

this includes tracking over time any slow drifts of these

parameters. Notice that contrary to [3], we are using a MES

approach to learn a vector of the model parameters, and not

the gain of the controller. In this sense, we are proposing a

new learning-based adaptive control. One noticeable feature

of such a learning algorithm is that there is no a priori

constraint on the uncertainty structure, e.g. the assumption
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used in classical adaptive control, of linearity w.r.t. the

uncertain parameters is not necessary.

This paper is organized as follows: We first present in Section

II some notations and preliminaries. In Section III, we recall

the nonlinear model of electromagnetic actuators. Then, in

Section IV, we report the main result of this work, namely

the learning-based adaptive nonlinear controller. Numerical

validation of the proposed controller is given in Section V.

Finally, concluding remarks are stated in Section VI.

II. PRELIMINARIES

Throughout the paper we will use ‖.‖ to denote the

Euclidean norm; i.e., for x ∈ R
n we have ‖x‖ =

√
xT x.

Also, we will use the notations diag{m1, ...,mn} for n×n
diagonal matrix, and ˙(.) for the short notation of time

derivative. We denote by Ck functions that are k times

differentiable.

Definition 1 (K function [11]): A continuous function α :
[0, a) → [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. It is said to belong to class K∞ if

a = ∞ and α(r) → ∞ as r → ∞.

Definition 2 (KL function [11]): A continuous function

β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s → ∞.

III. SYSTEM MODELLING

Following [9], we consider the nonlinear electromagnetic

actuator model

md2x
dt2

= k(x0 − x) − η dx
dt

− ai2

2(b+x)2 + fd

u = Ri + a
b+x

di
dt

− ai
(b+x)2

dx
dt

, 0 ≤ x ≤ xf ,
(1)

where, x represents the armature position physically con-

strained between the initial position of the armature 0, and

the maximal position of the armature xf , dx
dt

represents the

armature velocity, m is the armature mass, k the spring

constant, x0 the initial spring length, η the damping co-

efficient (assumed to be constant), ai2

2(b+x)2 represents the

electromagnetic force (EMF) generated by the coil, a, b being

constant parameters of the coil, fd a constant term modelling

disturbance forces, e.g. static friction, R the resistance of

the coil, L = a
b+x

the coil inductance (assumed to be

armature-position dependent), ai
(b+x)2

dx
dt

represents the back

EMF. Finally, i denotes the coil current, di
dt

its time derivative

and u represents the control voltage applied to the coil. In

this model we do not consider the saturation region of the

flux linkage in the magnetic field generated by the coil, since

we assume a current and armature motion ranges within the

linear region of the flux.

Based on this well known nonlinear model of the electromag-

netic actuator we develop in the next section a backstepping

nonlinear control and we extend it to an adaptive version

based on a MES algorithm.

IV. LEARNING-BASED ADAPTIVE NONLINEAR CONTROL

A. Nominal Backstepping Controller

In this section we first apply the backstepping approach

to the model (1), assuming that all the coefficients of the

model are known. We then prove the stability of the equilib-

rium point for the closed-loop dynamics. Subsequently, we

extend this result to its adaptive version by using a learning

technique based on extremum seeking theory to learn the

uncertain coefficient of the model.

Consider the dynamical system (1). Defining the state vector

z := [z1 z2 z3]
T = [x ẋ i]T , the objective of the control

is to make the variables (z1, z2) track a sufficiently smooth

(at least C2) time-varying position and velocity trajectories

zref
1 (t), zref

2 (t) =
dz

ref
1

(t)
dt

that satisfy the following con-

straints: zref
1 (t0) = z1int

, zref
1 (tf ) = z1f

, żref
1 (t0) =

żref
1 (tf ) = 0, z̈ref

1 (t0) = z̈ref
1 (tf ) = 0, where t0 is the

starting time of the trajectory, tf is the ending time, z1int
is

the initial position and z1f
is the final position.

To start, let us first write the system (1), in the following

way:

ż1 = z2

ż2 =
k

m
(x0 − z1) −

η

m
z2 −

a

2m(b + z1)2
z2
3 +

fd

m

ż3 = − R
a

b+z1

z3 +
z3

b + z1
z2 +

u
a

b+z1

. (2)

Also, consider the following control input:

u = a
b+z1

(

R(b+z1)z3

a
− z2z3

(b+z1)
+ 1

2z3

(

˙̃u +
a(z2−z

ref
2

)
2m(b+z1)2

−c2(z
2
3 − ũ)

))
(3)

with

ũ = 2m(b+z1)
2

a

(

k
m

(x0 − z1) − η
m

z2 − żref
2

+c3(z1 − zref
1 ) + c1(z2 − zref

2 ) + fd

m

)

.
(4)

We provide the stability analysis for the nominal system (1)

with the control input given by (3) and (4) in the next lemma.

Lemma 1: Consider the closed-loop dynamics given by

(2), (3) and (4). Then, there exist positive gains c1, c2,

and c3 such that (z1(t), z2(t)) are uniformly bounded and

satisfy lim
t→∞

(z1(t), z2(t)) = (zref
1 (t), zref

2 (t)), for any initial

condition (z1(t0), z2(t0), z3(t0))
T .

Proof: Consider the mechanical subsystem that consists

of only the first two equations, and define the virtual control

input ũ := z2
3 :

ż1 = z2

ż2 =
k

m
(x0 − z1) −

η

m
z2 −

a

2m(b + z1)2
ũ +

fd

m
. (5)

Consider the Lyapunov function Vsub = c3

2 (z1 − zref
1 )2 +

1
2 (z2 − zref

2 )2, where c3 > 0 is a design parameter. Taking

the derivative of Vsub along the trajectories of (5), we obtain

V̇sub = c3(z1 − zref
1 )(ż1 − żref

1 )

+(z2 − zref
2 )(ż2 − żref

2 )

= (z2 − zref
2 )

(

c3(z1 − zref
1 ) + k

m
(x0 − z1)

− η
m

z2 − żref
2 + fd

m

)

− (z2 − zref
2 )

(

a
2m(b+z1)2

ũ
)
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We want to design the virtual input so that V̇sub = −c1(z2−
zref
2 )2, with c1 > 0. In order to do so, we design the virtual

input as the follows:

ũ = 2m(b+z1)
2

a

(

k
m

(x0 − z1) − η
m

z2 − żref
2 + fd

m
+

c3(z1 − zref
1 ) + c1(z2 − zref

2 )
)

.
(6)

Next, we define the augmented Lyapunov function Vaug =

Vsub+
e2

2 . Taking the derivative of Vaug along the trajectories

of the full system, we have

V̇aug = c3(z1 − zref
1 )(ż1 − żref

1 ) + (z2 − zref
2 )(ż2 − żref

2 )

+e(2z3ż3 − ˙̃u)

= (z2 − zref
2 )

(

c3(z1 − zref
1 ) + k

m
(x0 − z1) − η

m
z2 + fd

m
−

az2

3

2m(b+z1)2

)

− (z2 − zref
2 )(żref

2 )

+e(2z3(
(b+z1)u

a
− R(b+z1)z3

a
+ z3z2

(b+z1)
) − ˙̃u)

= e
(

−a(z2−z
ref
2

)
2m(b+z1)2

+ 2z3(
b+z1

a
u − Rz3

a
(b + z1) + z2z3

(b+z1)
) − ˙̃u

)

−c1(z2 − zref
2 )2

If we denote T =
(

−a(z2−z
ref
2

)
2m(b+z1)2

+ 2z3(
b+z1

a
u − Rz3

a
(b +

z1) + z2z3

(b+z1)
) − ˙̃u

)

, we want to design the control input

u such that T = −c2e, which in turn will give V̇aug =

−c1(z2 − zref
2 )2 − c2e

2 < 0 for all z2 6= zref
2 , e 6= 0.

The control input given by (3) and (4) will achieve this. The
derivative of the virtual input term ũ can be explicitly stated
as

˙̃u = 4m(b+z1)z2

a

(

k
m

(x0 − z1) −
ηz2

m
+ c1(z2 − zref

2 ) + fd

m

)

+ 2m(b+z1)2

a

(

c1

(

fd

m
+ k(x0−z1)

m
− ηz2

m
−

az2

3

2m(b+z1)2
− ż2

ref
))

+ 2m(b+z1)2

a

(

−kz2

m
− η

m
( k

m
(x0 − z1) −

ηz2

m
−

az2

3

2m(b+z1)2
+ fd

m
)
)

+ 4m(b+z1)z2

a

(

c3(z1 − zref
1 ) − ż2

ref
)

+ 2m(b+z1)2

a

(

c3(z2 − z2
ref ) − z̈2

ref
)

.

(7)

Utilizing the control input u(t) given by (3), (4) and (7), we
have

V̇aug = −c1(z2 − zref
2 )2 − c2e

2 := W (z) ≤ 0 (8)

where W (·) is positive semi-definite. This implies, by the virtue of
LaSalle-Yoshizawa Theorem [11], that all the solutions of (2) are
globally uniformly bounded and satisfy lim

t→∞

W (z(t)) = 0. This

means that lim
t→∞

z2 = zref
2 and lim

t→∞

e = 0 starting from any initial

condition z2(t0) and i(t0). Hence, we obtain the following zero
dynamics for the subsystem given in (5):

ż1 = z2

ż2 =
k

m
(x0 − z1) −

η

m
z2 −

a

2m(b + z1)2
ũ +

fd

m
. (9)

Substituting ũ from (4) into (9), we obtain

ż1 = z2

ż2 = żref
2 − c3(z1 − zref

1 ) − c1(z2 − zref
2 ). (10)

Writing the second equation in (10) in terms of z1 and zref
1 only,

and introducing ez1
:= z1 − zref

1 , we obtain

ëz1
+ c1ėz1

+ c3ez1
= 0 (11)

It can be seen that if c3 and c1 are selected such that

−c1 ±

√

c2
1 − 4c3 < 0 (12)

the roots of the characteristic equation of (11) would be negative,

which in turn would imply lim
t→∞

z1 = zref
1 starting from any initial

condition z1(t0). In the next section we discuss how multiparameter
extremum seeking scheme is utilized along with backstepping
controller to render the backstepping robust to uncertainties in the
system parameters.

B. Robustification of the backstepping Controller

The controller (3), (4) ensures asymptotic tracking of the desired
trajectories for the nominal system (2), however, in real applications
the model is never known perfectly. For instance the damping
coefficient η can be hard to estimate and might drift over time due
to the wear and tear of the system. Similarly, the spring constant
k can vary very slowly over time. For these reasons, we need to
improve, i.e. robustify, the controller (3), (4), with respect to the
unknown parameters k, η. The main idea of this work is that instead
of using classical adaptive techniques to estimate these parameters
e.g. [12], we use model-free learning techniques to do so, e.g. MES.
One noticeable advantage is less constraints on the uncertainties’
structure, e.g. the assumption of linearity in the parameters is
not necessary anymore, since the model-free learning approaches
are not limited to a particular class of uncertainties. Furthermore,
these type of learning algorithms alow for the estimation of a
set of uncertain parameters simultaneously, which can be hard to
achieve with classical adaptive algorithms, e.g. gradient descent-
based estimation filters [12]. A full comparison between classical
adaptive control techniques and the idea that we proposing here is
ongoing, and will not be reported here due to space limitations,
but will appear in a longer version of this work. To use the MES
learning algorithm, we first define the cost function to be minimized
as

Q(z(β)) = C1(z1(tf ) − zref
1 (tf ))2

+C2(z2(tf ) − zref
2 (tf ))2

(13)

where C1, C2 > 0, and β = (∂k̂, ∂η̂)
′

represents the variations

of the learned parameters (k̂, η̂) defined such that

k̂ = knominal + ∂k̂
η̂ = ηnominal + ∂η̂

(14)

where knominal, ηnominal are the nominal initial values of the
uncertain parameters, i.e. the best know values from which to start
learning the actual values.
Folowing multi-parametric extremum seeking theory [13], [14], the
variations of the estimated parameters are defined as

ẋk̂ = ak̂sin(ω1t + π
2
)Q(z(β))

∂k̂(t) = xk̂(t) + ak̂sin(ω1t + π
2
)

ẋη̂ = aη̂sin(ω2t + π
2
)Q(z(β))

∂η̂(t) = xη̂(t) + aη̂sin(ω2t + π
2
)

(15)

where ak̂, aη̂, are positive tuning parameters, and

ω1 6= ω2. (16)

1) Stability discussion: Under the constraints (16) and
quadratic approximation of the cost function, the convergence of the
previous learning algorithm has been proven, e.g. [13], [14]. Proving
the stability of the combined controller (3), (4) and the learning
(14) and (15), is much more challenging. A rigorous convergence
proof of the whole controller is under development, and will be
presented in a long version of this work. However, we want to
discuss here the intuition behind the proof. Indeed, we showed in
Lemma 1 that the nominal controller (3), (4), achieves asymptotic
tracking of the desired trajectory if applied to the nominal model
(2). Now the question is how does it behave if the parameters k, η
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Parameter Value

m 0.27 [kg]
R 6 [Ω]
η 7.53 [kg/sec]
x0 8 [mm]
k 158 [N/mm]
a 14.96× 10−6 [Nm2/A2]
b 4× 10−5 [m]

TABLE I

NUMERICAL VALUES OF THE MECHANICAL PARAMETERS

are uncertain, i.e. their real value differ from their assumed value.
In the targeted application, i.e. electromagnetic actuator, the drift
of these parameters happens over a long period of time, and thus
we can expect the nominal controller to still maintain some kind
of bounded input/ bounded output stability for small errors of the
uncertain parameters, which means that the tracking error bound
will be correlated to the error in the parameters. Since we are
using the MES learning algorithm to track these slow changes of
the parameters, we can expect a bounded tracking error over time,
with a decreasing error-bound correlated to a decreasing parameter
estimation error over the learning iterations. Again, this discussion
does not pretend to be a proof of stability of the whole controller,
it is only a practical explanation of the stable behavior that we
observed during the application of this scheme to our example,
shown on the numerical results presented in the next section,
however, a more rigorous proof will be presented in our future
reports.

V. SIMULATIONS

We show here the behavior of the proposed approach on the
example of electromagnetic actuator presented in [10], where the
model (1) is used with the numerical values of Table I. The desired
trajectory has been selected as the 5th order polynomial xref (t) =
∑5

i=0 ai(t/tf )i, where the ais have been computed to satisfy the

boundary constraints xref (0) = 0.2, xref (tf ) = xf , ẋref (0) =
ẋref (tf ) = 0, ẍref (0) = ẍref (tf ) = 0, with tf = 0.5 sec,
xf = 0.7 mm. In these simulations we neglect the effect of fd,
since this force is usually very small comparatively to the spring
force. We introduced initial errors both on the position and the
velocity z1(0) = 0.01 mm, z2(0) = 0.1 mm/sec. Due to paper
length limitations, we will not report here the numerical results of
the nominal case, i.e. controller (3) and (4), applied to the nominal
model (2) without any parametric uncertainties. The convergence
from any states initial conditions is obvious from Lemma 1. We
rather report here the more challenging cases of uncertain model,
and learning control. We consider that the parameters k, η have an
initial estimation error of δk = −10 N/mm, δη = −1 kg/sec.
We test the robustness of the whole controller, i.e. the backstepping
(3) and (4), merged with the learning algorithm (14) and (15), with
the following parameters: c1 = 100, c2 = 5000, c3 = 100, C1 =
C2 = 100, knominal = 158 N/mm, ηnominal = 7.53 kg/sec,
ak̂ = aη̂ = 1, ω1 = 7.5 rad/sec, ω2 = 7.4 rad/sec. We decided
to stop the simulations, when the controller has driven the cost
function under the threshold 10−4. Figure 1, shows the cost function
over time. It is clear that the learning algorithm is converging and
drives the cost function to less that 10−4 after about 800 iterations.
The number of iterations might seem high, but we underline here
that we are imposing a very small tracking error target (cost
target of 10−4). Furthermore, we have deliberately imposed high
uncertainties values on k and η, to test the controller in challenging
cases. In any real application the drift of this parameters happens
very slowly over time and the learning algorithm will track it in
realtime, and will need much less iterations to track the actual
values of the parameters. We report on Figures 2, 3 the behavior of

the learned parameters ∂k̂, ∂η̂ in equation (14). Both parameters
converge to the desired ’actual’ value of uncertainties −10 and
−1, respectively. Note that, since we choose a relatively high

excursion values of the dither signals, ak̂ = aη̂ = 1, the learning
converges to a neighborhood of desired values with an oscillation
of the same amplitude as the dither signal. This can be easily
tuned by using smaller amplitudes ak̂, aη̂ , but will lead to a
slower convergence. Another way is to stop the learning when
the cost function is less than the desired threshold and resume
the learning when the cost function rises above the threshold if
the system parameters start drifting again. In our simulations we
decided to stop the learning when the cost function values reached
the threshold, in this case the final learned parameters values were

∂k̂ = −9.1924 N/mm, ∂η̂ = −0.8417 kg/sec. We report on
Figures 4, 5 the armature position and velocity trajectories, before
and after the learning, vs. the desired trajectories. We see clearly
that without the learning algorithm, the tracking is lost, whereas,
when the learning is used the tracking of the desired trajectories is
recovered. Now we show that the proposed learning-based adaptive
control is not limited by the structure of the uncertainties, i.e. the
classical assumption of linearity w.r.t. the uncertain parameters is
not needed here. To do so, we choose as an example to learn the
parameter b appearing as nonlinear terms in the model (1). We
assume an uncertainty of δb = 0.01 mm which is 25% of the
nominal value, no uncertainties are considered for k and η. We use

the same learning algorithm (15) for only one variable ∂b̂, with
ab̂ = 10−3 and ωb̂ = 7.5 rad/sec. The same cost function is
used with C1 = C2 = 100, and the same gains are used for the
backstepping controller. We show on Figures 6, 7, 8 and 9, the
obtained results. It is clear that the uncertain parameter converges
towards a neighborhood of its actual value 0.01 mm (Figure 7),
keeping in mind again that we purposely choose a large uncertain
value of 25% to show the behavior of the algorithm on a challenging
case. The convergence of the cost function is shown on Figure 6,
here again we stopped the learning after the cost function reached
the threshold 10−4. The tracking performance, with and without
learning, are shown on Figures 8 and 9. The correction of the
tracking errors achieved with the adaptive learning-based algorithm
is clearly depicted.

VI. CONCLUSION

We have studied in this paper the problem of adaptive control for
electromagnetic actuators. We have developed a nominal nonlinear
trajectory tracking controller based on backstepping approach. We
have proven the global stability of this nominal controller. We have
complemented the nominal controller with a model-free learning
algorithm, i.e. MES, to estimate on-line a vector of uncertain
parameters in the actuator model. In this sense we have solved
an adaptive control problem using a model-free learning algorithm.
We have shown the performance of the combined backstepping and
MES on a numerical example.
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